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Chapter 18

A Portfolio Selection Problem

This chapterIn this chapter you will find an extensive introduction to portfolio selection

decision making. Decision making takes place at two distinct levels. At the

strategic level, the total budget to be invested is divided among major invest-

ment categories. At the tactical level, the budget for a particular investment

category is divided among individual securities. Both the strategic and the tac-

tical portfolio selection problems are considered and subsequently translated

into quadratic programming models using the variance of the portfolio as a

measure of risk. The objective function of the relatively small strategic portfo-

lio selection model minimizes added covariances, which are estimated outside

the model. The objective function of the tactical portfolio selection model also

minimizes added covariances, but their values are not explicit in the model. In-

stead, scenario data is used to represent covariances indirectly, thereby avoid-

ing the explicit construction of a large matrix. The required mathematical

derivations for both models are presented in separate sections. In the last

part of the chapter you will find a section on one-sided variance as an im-

proved measure of risk, a section on the introduction of logical constraints,

and a section on the piecewise linear approximation of the quadratic objective

function to keep the model with logical constraints within the framework of

mixed-integer linear programming.

ReferencesThe methodology for portfolio selection problems dates back to the work of

Markowitz [Ma52] and is also discussed in [Re89].

KeywordsInteger Program, Quadratic Program, Mathematical Derivation, Mathematical

Reformulation, Logical Constraint, Piece-Wise Approximation, Worked Exam-

ple.

18.1 Introduction and background

InvestorsThe term investor is used for a person (or institution) who treasures a certain

capital. There are many types of investors, such as private investors, insti-

tutional investors (pension funds, banks, insurance companies), governments,

professional traders, speculators, etc. Each investor has a personal view of

risk and reward. For instance, the point of view of a pension fund’s portfo-
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lio manager will differ from that of a private investor. This is due to several

reasons. The pension fund manager invests for a large group of employees of

a company (or group of companies) who expect to receive their pension pay-

ments in due time. In view of this obligation, the fund manager needs to be

extremely risk averse. In contrast, a private investor is only responsible for

his own actions and has full control over the investment policy. He will decide

on the amount of risk that he is willing to consider on the basis of personal

circumstances such as his age, family situation, future plans, his own peace of

mind, etc.

Investment

categories

There are many types of investment categories. Typical examples are deposits,

saving accounts, bonds, stocks, real estate, commodities (gold, silver, oil, pota-

toes, pigs), foreign currencies, derivatives (options, futures, caps, floors), etc.

Each investment category has its own risk-reward characteristics. For instance,

saving accounts and bonds are examples of low risk investment categories,

whereas stocks and real estate are relatively more risky. A typical example

of an investment category with a high level of risk is the category of finan-

cial derivatives such as options and futures. These derivatives are frequently

used for speculation, since they offer the possibility of a high rate of return in

comparison to most other investment categories.

Discrepancies

within

investment

categories

The above statements need to be understood as general remarks concerning

the average performance of the investment categories. Naturally, within each

category, there are again discrepancies in risk-reward patterns. In the case

of bonds, there are the so-called triple A bonds with a very small chance of

default (for instance government loans of the United States of America). On

the other end of the spectrum there are the high-yield or so-called junk bonds.

These bonds are considered to have a relatively large chance of default. For in-

stance, during the economic crises in South East Asia many of the government

bonds issued by countries from that area are considered to be junk bonds. The

interest paid on these type of bonds can amount to 30 percent. Similarly in the

category of stocks there are many different types of stocks. The so-called blue

chips are the stocks corresponding to the large international companies with

a reliable track record ranging over a long period of time. On the other hand,

stocks of relatively new and small companies with high potential but little or

no profits thus far, often have a high expected return and an associated high

degree of risk.

Securities are

investment

products

The term security is used to denote one particular investment product within

an investment category. For instance, the shares of companies like IBM or

ABN AMRO are examples of securities within the category of stocks. Similarly

a 2002 Oct Future contract on the Dutch Index of the Amsterdam Exchange

(AEX) is an example of a security within the category of derivatives.



Chapter 18. A Portfolio Selection Problem 197

Percentage rate

of return is

widely used

Investing in a portfolio requires funds and thus a budget. Funds are usually

measured in some monetary unit such as dollars, yens or guilders. Using ab-

solute quantities, such as $-returns and $-investments, has the drawback of

currency influences and orders of magnitude. That is why the percentage rate

of return (in the sequel referred to as ‘rate of return’),

100 · new return− previous return

previous return

is a widely accepted measure for the performance of an investment. It is di-

mensionless, and simplifies the weighting of one security against the other.

As will be discussed later, the choice of the time step size between subsequent

returns has its own effect on the particular rate of return values.

Concept of riskNaturally, investors would like to see high rates of return on their investments.

However, holding securities is risky. The value of a security may appreciate or

depreciate in the market, yielding a positive or negative return. In general,

one can describe risk as the uncertainty regarding the actual rate of return

on investment. Since most investors are risk averse, they are only willing to

accept an additional degree of risk if the corresponding expected rate of return

is relatively high.

Portfolio

diversification

Instead of investing in one particular security, most investors will spread their

funds over various investments. A collection of securities is known as a port-

folio. The rationale for investing in a portfolio instead of a single security is

that different securities perform differently over time. Losses on one security

could be offset by gains on another. Hence, the construction of a portfolio en-

ables an investor to reduce his overall risk, while maintaining a desired level of

expected return. The concept of investing in a number of different securities

is called diversification. This concept and its mathematical background was

introduced by H. Markowitz in the early fifties ([Ma52]).

Practical

limitations

Although diversification is a logical strategy to reduce the overall risk of a

portfolio, there will be practical obstacles in realizing a well-diversified portfo-

lio. For instance, the budget limitation of a small private investor will severely

restrict the possibilities of portfolio diversification. This is not the case for the

average pension fund manager, who manages a large amount of funds. He, on

the other hand, may face other restrictions due to liquidity requirements over

time by existing pension holders.

Quantification

through

statistical

concepts

The main focus in this chapter is on how to quantify the risk associated with

a complete portfolio. What is needed, is a quantitative measure to reflect an

investor’s notion of uncertainty with respect to performance of the portfolio.

The approach presented in this chapter is based on tools from statistics, and

is one that is frequently referred to in the literature. Nevertheless, it is just

one of several possible approaches.



Chapter 18. A Portfolio Selection Problem 198

18.2 A strategic investment model

This sectionIn this section a strategic portfolio selection model will be formulated. It mod-

els how top management could spread an overall budget over several invest-

ment categories. Once their budget allocation becomes available, tactical in-

vestment decisions at the next decision level must be made concerning indi-

vidual securities within each investment category. Such a two-phase approach

supports hierarchical decision making which is typical in large financial insti-

tutions.

The strategic

investment

decision

During the last decade there has been an enormous growth in investment pos-

sibilities. There are several logical explanations for this phenomenon. The

globalization of financial markets has opened possibilities of geographical di-

versification. Investments in American, European or Asian stocks and bonds

have completely different risk-reward patterns. The further professionaliza-

tion of financial institutions has led to the introduction of all kinds of new

financial products. In view of these developments, top management needs

to concentrate on the global partitioning of funds into investment categories.

This is referred to as the strategic investment decision.

Decision

variables

The allocation of the total budget over the various investment categories will

be expressed in terms of budget fractions. These fractions need to be deter-

mined, and form the set of decision variables. Each budget fraction is asso-

ciated with a particular investment category, and is defined as the amount

invested in this category divided by the total budget.

Objective

function

The objective is to minimize the portfolio risk. In his paper Markowitz [Ma52]

introduced the idea of using the variance of the total portfolio return as a

measure of portfolio risk. His proposed risk measure has become a standard,

and will also be used in this chapter.

Minimal level of

expected return

Each category has a known level of expected return. These levels, together

with the budget fractions, determine the level of expected return for the entire

portfolio. The investor will demand a minimal level of expected return for the

entire portfolio. This requirement forms the main constraint in the portfolio

model.

Verbal model

statement

The overall approach is to choose budget fractions such that the expected

return of the portfolio is greater than or equal to some desired target, and such

that the level of risk is as small as possible. The model can be summarized as

follows.
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Minimize: the total risk of the portfolio

Subject to:

� minimal level of desired return: the expected return of the

portfolio must be larger than a given minimal desired level.

� definition of budget fractions: all budget fractions are

nonnegative, and must add to 1.

NotationThe following symbols will be used.

Index:

j investment categories

Parameters:

Rj return of category j (random variable)

mj expected value of random variable Rj
M desired (expected) portfolio return

Variable:

xj fraction of the budget invested in category j

Mathematical

model

statement

The mathematical description of the model can be stated as follows.

Minimize:

Var[
∑

j

Rjxj]

Subject to:
∑

j

mjxj ≥M

∑

j

xj = 1

xj ≥ 0 ∀j

Deterministic

equivalent of

objective

Note that the objective function makes reference to random variables, and

is therefore not a deterministic expression. To rewrite this expression, you

need some mathematical concepts that are developed in the next section. It

will be shown that the objective function is equivalent to minimizing added

covariances. That is

Var[
∑

j

Rjxj] =
∑

jk

xj Cov[Rj , Rk]xk

Here, the new deterministic equivalent of the objective is a quadratic function

in terms of the unknown x-variables. The coefficients Cov[Rj , Rk] are known

input data.
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18.3 Required mathematical concepts

This sectionIn this section the statistical concepts of expectation and variance are dis-

cussed, together with their role in the portfolio selection model presented in

the previous section. The corresponding statistical functions are available in

Aimms.

The random

variable R

Consider for a moment the investment in one particular investment category,

and define the random variable R that describes the rate of return on this in-

vestment category after one year. For simplicity, assume that R has a finite set

I of values (outcomes), which are denoted by ri with corresponding probabili-

ties pi for all i ∈ I and such that
∑

i pi = 1.

Concept of

expectation

The concept of expectation (or expected value) corresponds to your intuitive

notion of average. The expected value of the random variable R is denoted by

E[R] and is defined as follows.

E[R] =
∑

i

ripi

Note that whenever ri = c (i.e. constant) for all i ∈ I, then the expected value

E[R] =
∑

i

ripi = c
∑

i

pi = c

is also constant. The following result will be used to advantage in various

derivations throughout the remainder of this chapter. Whenever f is a func-

tion of the random variable R, the expected value of the random variable f(R)

is equal to

E[f(R)] =
∑

i

f(ri)pi

Concept of

variance . . .

The concept of variance corresponds to the intuitive notion of variation around

the expected value. The variance of a random variable R is denoted by Var[R]

and is defined as follows.

Var[R] = E[(R − E[R])2]

Using the result of the previous paragraph, this expression can also be written

as

Var[R] =
∑

i

(ri − E[R])2pi
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. . . as measure

of risk

Variance turns out to be a suitable measure of risk. The main reason is that

variance, just like most other risk measures, is always nonnegative and zero

variance is a reflection of no risk. Note that if R has only one possible value

c, then the return is always constant and thus without risk. In that case, the

expected value E[R] is c and

Var[R] =
∑

i

(Ri − c)2pi = 0

Chebyshev

inequality . . .

A well-known inequality which is closely related to the concept of variance is

the Chebyshev inequality:

P(|R − E[R]| > ασ) < 1

α2
∀α > 0

In this inequality the term

σ =
√

Var[R]

is used, and is called the standard deviation of the random variable R.

. . . supports

variance as risk

measure

The Chebyshev inequality states that the probability of an actual rate of return

differing more than α times the standard deviation from its expected value,

is less than 1 over α squared. For instance, the choice α = 5 gives rise to a

probability of at least 96 percent that the actual rate of return will be between

E[R]− 5σ and E[R]+ 5σ . The smaller the variance, the smaller the standard

deviation, and hence the smaller the distance between the upper and lower

value of this confidence interval. This property of the Chebyshev inequality

also supports the notion of variance as a measure of risk.

Derivation of

the Chebyshev

inequality

By straightforward use of the definition of variance the following derivation

leads to the Chebyshev inequality

σ 2 = Var[R] = E[(R − E[R])2] =
∑

i

(ri − E[R])2pi

=
∑

i
∣

∣|ri−E[R]|≤ασ

(ri − E[R])2pi +
∑

i
∣

∣|ri−E[R]|>ασ

(ri − E[R])2pi

≥
∑

i
∣

∣|ri−E[R]|>ασ

(ri − E[R])2pi

>
∑

i
∣

∣|ri−E[R]|>ασ

(ασ)2pi

= α2σ 2
∑

i
∣

∣|ri−E[R]|>ασ

pi

= α2σ 2P(|R − E[R]| > ασ)

Thus, in summary, σ 2 > α2σ 2P(|R−E[R]| > ασ), which immediately leads to

the Chebyshev inequality.
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Expected value

of portfolio

return

Suppose there are a finite number of investment categories j from which an in-

vestor can select. Let Rj be the random variable that denotes the rate of return

on the j-th category with corresponding values (outcomes) rij and probabili-

ties pij such that
∑

i pij = 1∀j. Let xj be the fraction of the budget invested

in category j. The return of the total portfolio is then equal to
∑

j Rjxj , which,

being a function of random variables, is also a random variable. This implies,

using the previously described identity E[f(R)] =
∑

i f(ri)pi , that the ex-

pected value of the portfolio return equals

E[
∑

j

Rjxj] =
∑

i

(
∑

j

rijxjpij)

=
∑

j

xj(
∑

i

rijpij)

=
∑

j

xj E[Rj]

This last expression is just the weighted sum of the expected values associated

with the individual investment categories.

Variance of

portfolio return

The variance of the portfolio return can now be determined as follows.

Var[
∑

j

Rjxj] = E[(
∑

j

Rjxj − E[(
∑

j

Rjxj)])
2]

= E[(
∑

j

Rjxj −
∑

j

xjE[Rj])])
2]

= E[(
∑

j

xj(Rj − E[Rj]))
2]

= E[(
∑

jk

xj(Rj − E[Rj])xk(Rk − E[Rk]))]

=
∑

jk

xjxk E[(Rj − E[Rj])(Rk − E[Rk])]

Here, the term

E[(Rj − E[Rj])(Rk − E[Rk])]

is called the covariance of the random variables Rj and Rk, and will be denoted

by Cov[Rj , Rk]. Note that Cov[Rj , Rj] = Var[Rj] by definition.

Concept of

covariance

The covariance of two random variables is a measure of the relation between

above and below average values of these two random variables. When both

positive and negative deviations tend to occur simultaneously, their covariance

will be positive. When positive deviations of one of them tends to occur often

with negative deviations of the second, their covariance will be negative. Only

when positive and negative deviations occur randomly, their covariance will

tend to be zero.
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The objective

minimizes

added

covariances

By using the covariance terms, portfolio risk can be written as

Var[
∑

j

Rjxj] =
∑

jk

xj Cov[Rj , Rk]xk

Thus, the objective of the model can be formulated as the minimization of

weighted covariances summed over all possible random pairs (Rj , Rk).

Diversification

as a logical

strategy

From a mathematical point of view, the model shows that it is advisable to in-

vest in categories with negative covariances. The logical explanation for this is

that below average results of one investment category are likely to be offset by

above average results of the other. Hence, the model formulation using covari-

ances can be seen as the formalization of the intuitive concept of spreading

risk by using various securities.

18.4 Properties of the strategic investment model

This sectionIn this section several mathematical properties of the strategic investment

model are investigated. In summary, it is shown that (a ) any optimal solu-

tion of the nonlinear programming model developed in Section 18.2 is also a

global optimum, (b ) the risk-reward curve is nondecreasing and convex, and

(c ) multiple optimal portfolio returns are perfectly correlated.

Optimum is

global

Any optimal solution of the presented portfolio selection model is globally

optimal. This follows from the theory of optimization. The theory states that,

whenever a model has linear constraints and the objective function f(x) to be

minimized is convex, i.e.

f(αx1 + (1−α)x2) ≤ αf(x1)+ (1−α)f(x2) ∀α ∈ [0,1]

then any optimal solution of the model is also a globally optimal solution. In

the portfolio selection model the objective function

f(x) =
∑

jk

xj Cov[Rj , Rk]xk

is a quadratic function, and is convex if and only if the associated matrix of

second-order derivatives is positive semi-definite.

Required matrix

condition is

satisfied

Note that the matrix with second-order derivatives is precisely the covariance

matrix with elements Cov[Rj , Rk]. Such a matrix is positive semi-definite if

and only if
∑

jk

xj Cov[Rj , Rk]xk ≥ 0 ∀xj , xk ∈ R

This mathematical condition, however, happens to be equivalent to the in-

equality Var[
∑

j Rjxj] ≥ 0, which is true by definition.
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Parametric

risk-reward

curve V(M)

The input parameterM characterizes the individual preference of the investor.

Instead of solving the model for one particular value ofM , it will be interesting

for an investor to see what the changes in optimal risk value will be as the

result of changes in M . The optimal risk value is unique for each value of M

due to the global optimality of the solution. Thus the optimal risk value V can

be considered as a function of the desired minimal level of expected return M .

This defines a parametric curve V(M).

Practical levels

of desired

return

The value V(M) is defined for all values of M for which the model is solvable.

It is straightforward to verify that −∞ ≤ M ≤ maxjmj ≡ Mmax. When M is

set to −∞, V(M) obtains its lowest value. An investor will be interested in the

largest feasible value of M that can be imposed such that V(M) remains at its

lowest level. Let Mmin be this level of M . Then, for all practical purposes, M

can be restricted such that Mmin ≤ M ≤ Mmax. Note that the value of Mmin

can be determined experimentally by solving the following penalized version

of the portfolio selection model

Minimize:

Var[
∑

j

Rjxj]− λ(
∑

j

mjxj)

Subject to:
∑

j

xj = 1

xj ≥ 0 ∀j

for a sufficiently small value of λ > 0.

Properties of

risk-reward

curve V(M)

The optimal value V(M) is nondecreasing in M , because any feasible solution

of the model for a particular value of M will also be a solution for smaller

values of M . In addition, it will be shown in the paragraph below that V(M)

is convex. These two properties (nondecreasing and convex), coupled with the

definition of Mmin from the previous paragraph, imply that V(M) is strictly

increasing on the interval [Mmin,Mmax].

Proof that V(M)

is convex

Let M = αM1 + (1 − α)M2 for α ∈ [0,1], and let Mmin ≤ M1 ≤ M2 ≤ Mmax. In

addition, let xM , x1 and x2 be the optimal solutions corresponding to M , M1

and M2, respectively. Furthermore, let Q denote the covariance matrix. Then,

as explained further below,

V(M) = xTM Q xM

≤ (αx1 + (1−α)x2)
T Q (αx1 + (1−α)x2)

≤ αxT1 Q x1 + (1−α)xT2 Q x2

= αV(M1)+ (1−α)V(M2)
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The inequality on the second line of the proof follows from the fact that αx1+
(1 − α)x2 is a feasible but not necessarily optimal solution for M = αM1 +
(1− α)M2. The third line follows directly from the convexity of the quadratic

objective function, which then establishes the desired result that

V(αM1 + (1−α)M2) ≤ αV(M1)+ (1−α)V(M2)

Thus, V(M) is convex in M .

Multiple optimal

portfolios . . .

Consider a fixed value ofM and two distinct optimal portfolios x∗1 and x∗2 with

equal variance V∗(M). Then any convex combination of these two portfolios

will also be a feasible portfolio due to the linearity of the model constraints.

From the convexity of the quadratic objective function the variance of each

intermediate portfolio return can only be less than or equal to V∗(M). How-

ever, it cannot be strictly less than V∗(M), because this would contradict the

optimality of V∗(M). Hence the variance of the return of each intermediate

portfolio is equal to V∗(M) and thus also optimal.

. . . have

perfectly

correlated

returns

As will be shown next, any two distinct optimal portfolios x∗1 and x∗2 for a

fixed value of M have perfectly correlated returns. Let P1 and P2 be the cor-

responding portfolio returns, and consider the variance of the return of an

intermediate portfolio. This variance can be written as a weighted sum of in-

dividual covariances as follows.

Var[αP1 + (1−α)P2]

= α2 Cov[P1, P1]+ 2α(1−α)Cov[P1, P2]+ (1−α)2 Cov[P2, P2]

= α2 Var[P1]+ (1−α)2 Var[P2]+ 2α(1−α)Cov[P1, P2]

From the previous paragraph it is also known that

Var[αP1 + (1−α)P2] = Var[P1] = Var[P2]

Therefore, by substituting the above identities, the term Cov[P1, P2] can be

determined as follows.

Cov[P1, P2] =
1−α2 − (1−α)2

2α(1−α) Var[P1] = Var[P1]

This implies that the correlation coefficient ρ between the portfolio returns P1

and P2, defined as Cov[P1, P2]/(
√

Var[P1]Var[P2]), is equal to 1. Hence, P1 and

P2 are perfectly correlated.

Illustrating

global

optimality

Figure 18.1 gives an example of the feasible region and contours of the objec-

tive function for a portfolio of two securities. Notice that the feasible region

is now restricted to that part of the budget line x1 + x2 = 1 for which the

target return is at least achieved. It is intuitively clear that the optimal combi-

nation of securities is globally optimal, due to the shape of the contours of the

objective.
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x1-axis

x2-axis

0

Contours of

constant risk

x1 + x2 = 1

m1x1 +m2x2 ≥ M

Figure 18.1: The feasible region and two objective function contours

18.5 Example of strategic investment model

This sectionIn this section a small example of the strategic investment approach is pre-

sented. The required input data at this strategic level is usually not directly

obtainable from public sources such as stock exchanges etc. Instead such in-

put data is estimated from statistical data sources in a nontrivial manner, and

is provided in this example without any further explanation.

DataConsider three investment categories: stocks, bonds and real estate. The cor-

responding random variables will be denoted by X1, X2 and X3. The minimal

level of expected return M will be set equal to 9.0. The expected return values,

together with the covariances between investment categories, are displayed in

Table 18.1.

i mi Cov[Xi, Xj]

j 1 2 3

1 10.800 2.250 −0.120 0.450

2 7.600 −0.120 0.640 0.336

3 9.500 0.450 0.336 1.440

Table 18.1: Expected returns and covariances

The optimal

solution . . .

After solving the portfolio model described in Section 18.2, the optimal port-

folio fractions are x1 = 0.3233, x2 = 0.4844, x3 = 0.1923. Therefore, ap-

proximately 32 percent will be invested in stocks, 48 percent in bonds and 19

percent in real estate. The corresponding optimal portfolio risk is equal to

0.5196.
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. . . supports

diversification

Note that the optimal portfolio risk (approximately 0.52) is even smaller than

the variance of bonds (0.64), which is the lowest variance associated with any

particular investment category. In addition, note that the expected portfolio

return (9.00) is higher than if the entire investment had been in bonds only

(namely 7.6). These results clearly illustrate the benefits of portfolio diversifi-

cation.

Risk-reward

characteristic

It is of interest to an investor to see what the change in optimal value V will

be as a consequence of changing the value of desired return M . Below the

function V(M) is presented on the interval [7.6,10.8].

7.6 8.6 9.6 10.6

0

1

2

Minimal level

of expected

return

Portfolio risk

Figure 18.2: Risk-reward characteristic

The smallest level of expected return that is of interest to the investor is

Mmin = 8.4, which can be derived by solving the model with the penalized

objective function from the previous section. Note that this value is larger

than minimi = 7.6. For values of M greater than Mmin, the curve is strictly

increasing and the constraint regarding the minimal level of expected return

is binding. Based on this curve an investor can make his trade-off between risk

and reward.

Unique optimal

portfolios

As explained in the previous section, optimal portfolios need not be unique.

In this example, however, they are unique, because there are no perfectly cor-

related portfolios. You may verify this observation by computing the corre-

lation coefficients between returns on the basis of the covariances listed in

Table 18.1.
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Portfolio

diversification

illustrated

Similar to the parametric curve representing the optimal risk value as a func-

tion of the minimal level of expected return, you may also want to view the

budget fractions of the optimal portfolio as functions of the minimal level of

expected return. These parametric curves illustrate portfolio diversification,

and are presented in Figure 18.3.

7.6 8.6 9.6 10.6

0

1 stocks
bonds
real estate

Minimal level

of expected

return

Budget

fractions

Figure 18.3: Portfolio diversification

18.6 A tactical investment model

This sectionAt the tactical level, there are specialized fund managers to manage a partic-

ular investment category. Each manager receives a specific budget, which is

based on the solution of the strategic investment model. In this section the

tactical investment model is derived from the strategic investment model. The

major difference between the two models is that the much larger covariance

matrix in the tactical model is no longer modeled as an explicit matrix.

From

aggregated

investment

categories . . .

The solution of the strategic investment model in the previous section sug-

gested to invest approximately 32 percent of the overall budget in stocks.

Such a result was based on aggregated data representing the entire stock in-

vestment category, and not on data regarding individual stocks. For individual

stocks the question naturally arises which ones should be selected to spend

the 32 percent of the total budget. This is considered to be a question at the

tactical level.

. . . to numerous

individual

securities

The possibilities to select individual securities from within a particular invest-

ment category are enormous. If the underlying decision model at this level was

the same as the strategic decision model, the corresponding covariance matrix

would become very large. That is why an alternative modeling approach is

proposed to deal with securities at the tactical level
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Observed

returns

determine

scenarios . . .

In the paragraphs to follow, it is shown that the original portfolio variance as

measure of risk can be estimated directly from real-world observed returns

taken at distinct points in time. Each time observation consists of a vector

of returns, where the size of the vector is equal to the number of individual

securities. By considering two subsequent time periods, it is possible to com-

pute the corresponding rate of returns. The resulting vector is referred to as a

scenario.

. . . based on

specific time

steps

By construction, there are as many scenarios as there are time observations mi-

nus one. It is to be expected that the time step size will vary the rate of return

values associated with each scenario. The movements in returns between sub-

sequent time observations are likely to be different when you consider hourly,

daily or monthly changes in return values. The choice of time step in the com-

putation of scenarios should be commensurable with the time unit associated

with the investment decision.

NotationConsider a vector of random variables denoting rates of returns Rj for j. Every

instance of this vector denotes a scenario. Assume that there is a finite set of

scenarios. Let T denote this set with index t ∈ T . Let rt denote a single

scenario, and p(rt) its associated probability. By definition, the sum over all

scenarios of the probabilities (i.e.
∑

t p(rt)) equals 1.

Index:

t scenarios of size |T |

Parameters:

rt vector of particular return rates for scenario t

p(rt) probability of scenario t

rtj particular return rate of security j in scenario t

Note that the symbol r is overloaded in that it is used for both the vector of

return rates (rt) and the individual return rates per scenario (rtj). This is done

to resemble previous notation and is used throughout the remainder of this

section for consistency.

Reformulation

of the objective

Consider the following straightforward algebraic manipulations based on mov-

ing the
∑

-operator, and using the properties of the E-operator.
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Var[
∑

j

Rjxj] = E[((
∑

j

Rjxj)− E[
∑

j

Rjxj])
2]

= E[((
∑

j

Rjxj)−
∑

j

xj E[Rj])
2]

= E[(
∑

j

xj(Rj − E[Rj]))
2]

=
∑

t

(
∑

j

xj(rtj − E[Rj]))
2p(rt)

=
∑

t

p(rt)y
2
t

where yt =
∑

j xj(rtj − E[Rj]) ∀t ∈ T . This results in a compact formula for

the objective function in terms of the new variables yt . These new decision

variables plus their definition will be added to the model.

Comparing the

number of

nonlinear terms

The repetitive calculation of the objective function and its derivatives, required

by a nonlinear programming solver, can be carried out much faster in the

above formulation than in the formulation of Section 18.2. This is because, in

the tactical investment model, |T | (the number of scenarios) is typically much

smaller than |J| (the number of individual securities). Therefore, the number

of nonlinear terms yt
2 is significantly smaller than the number of nonlinear

terms xjxk.

The model

formulation

Let mj = E[Rj] be the expected value of security j, and let dtj = (rtj −mj) be

the deviation from the expected value defined for each scenario. Then using

the approach presented in the previous paragraph, a quadratic optimization

model with xj and yt as the decision variables can be written as follows.

Minimize:

∑

t

p(rt)y
2
t

Subject to:
∑

j

dtjxj = yt ∀t

∑

j

mjxj ≥M

∑

j

xj = 1

xj ≥ 0 ∀j
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Model

properties

unchanged

The properties of the above investment model are the same as the ones asso-

ciated with the strategic investment model, because the above model is just an

equivalent reformulation of the model presented in Section 18.2. Of course, it

is still possible to derive the model properties directly from the mathematical

formulation above. For instance, the verification that the new objective func-

tion is also convex, follows directly from the observation that the matrix with

second-order derivatives is a |T | × |T | diagonal matrix with 2p(rt) ≥ 0 as its

diagonal elements. Such a matrix is always positive semi-definite.

18.7 Example of tactical investment model

This sectionIn this section you find a small example in terms of 5 individual stocks and 51

observations. In a realistic application, the number of observations is usually

in the hundreds, while the number of candidate stocks is likely to be a multiple

thereof.

DataThe stocks that can be part of the portfolio are: RD (Royal Dutch), AKZ (Akzo

Nobel), KLM (Royal Dutch Airline Company), PHI (Philips) and UN (Unilever).

The historical data are weekly closing values from August 1997 to August

1998, and are provided in Table 18.2. The corresponding weekly rates of return

can be computed on the basis of these return values, and have all been given

equal probability.

The resultsAs for the strategic investment model a risk-reward characteristic can be pre-

sented. The expected level of return for the various stocks is: RD -0.28, AKZ

0.33, KLM 0.40, PHI 0.30, UN 0.55. The parametric curve V(µ) is computed

on the interval [0,0.55]. Below both the risk-reward characteristic as well as

the budget fractions of the optimal solutions are presented in Figure 18.4 and

Figure 18.5.
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Figure 18.4: Risk-reward characteristic
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Scena− Valueofstocks Scena− Valueofstocks

rios RD AKZ KLM PHI UN rios RD AKZ KLM PHI UN

t − 0 111.0 82.5 70.0 154.6 110.8 t − 26 112.8 107.0 76.3 155.9 134.2

t − 1 108.1 81.6 73.7 152.4 108.0 t − 27 109.7 110.4 86.0 155.0 140.9

t − 2 107.9 80.1 72.3 146.1 103.7 t − 28 111.7 109.7 88.9 149.9 138.2
t − 3 108.5 83.1 69.7 157.5 106.6 t − 29 120.4 105.9 83.5 153.5 141.6

t − 4 111.4 85.0 69.5 168.4 107.3 t − 30 118.0 105.9 83.4 153.0 140.6

t − 5 115.5 92.6 74.8 166.9 109.5 t − 31 119.7 103.0 84.9 149.9 158.2

t − 6 113.2 91.6 73.8 164.1 108.7 t − 32 116.7 102.4 84.9 153.7 149.6
t − 7 111.9 88.3 70.2 169.0 111.1 t − 33 115.8 107.2 86.1 167.0 152.8

t − 8 99.7 80.8 64.3 143.8 101.0 t − 34 113.7 104.5 78.9 181.0 144.3

t − 9 105.1 86.1 71.8 151.3 105.4 t − 35 115.7 105.8 79.5 189.4 155.5
t − 10 100.9 81.8 71.7 148.3 109.6 t − 36 114.4 104.8 79.1 197.9 154.2

t − 11 105.0 85.6 69.5 140.6 112.8 t − 37 113.8 103.8 79.9 201.7 154.5

t − 12 105.2 84.6 70.5 131.5 113.6 t − 38 114.0 107.0 82.0 196.3 158.0

t − 13 107.0 90.3 74.9 138.0 117.4 t − 39 114.1 107.4 77.2 188.0 163.8
t − 14 109.0 88.3 78.5 135.4 123.1 t − 40 111.5 112.0 78.5 189.9 164.3

t − 15 111.4 85.6 73.0 114.0 124.5 t − 41 109.2 106.8 77.1 172.1 163.9

t − 16 107.2 81.6 74.5 116.1 118.7 t − 42 110.1 105.3 76.1 178.0 165.6

t − 17 111.3 87.4 75.0 121.6 125.0 t − 43 112.8 113.1 82.6 171.0 161.4
t − 18 108.6 87.5 77.0 127.6 127.7 t − 44 111.0 116.6 91.4 179.5 165.4

t − 19 105.6 86.6 72.4 116.2 121.2 t − 45 105.6 126.7 94.5 180.6 160.9

t − 20 105.9 90.0 71.4 128.6 125.1 t − 46 107.3 123.1 90.0 173.5 162.0

t − 21 104.7 91.4 68.9 129.4 119.9 t − 47 103.2 112.3 88.5 164.4 153.0
t − 22 107.7 95.3 69.7 137.1 117.9 t − 48 102.8 103.1 81.8 164.2 141.2

t − 23 107.4 92.9 68.6 134.5 124.6 t − 49 93.9 95.0 80.7 153.0 133.4

t − 24 108.0 97.0 70.2 156.0 124.3 t − 50 93.6 92.7 80.5 164.0 139.3

t − 25 104.7 102.6 74.3 159.5 128.8

Table 18.2: Stock returns for 50 different scenarios

CommentAlthough the stock RD has a negative expected return, it is a major compo-

nent in the optimal portfolio for low values of minimal expected return. This

unexpected result is an artifact of the problem formulation and is addressed

in the next section. The stock is included due to its relative stable behavior

which stabilizes the overall performance of the portfolio and is therefore used

to reduce the overall risk of the portfolio. Only for large values of minimal ex-

pected rates of return (over the 0.02 on a weekly basis, so over the 10 percent

on a yearly basis) the budget fraction of the stock UN will be larger than the

fraction of RD.
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Figure 18.5: Portfolio diversification
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18.8 One-sided variance as portfolio risk

This sectionIn this section, the notion of one-sided variance will be introduced as an exten-

sion of regular variance. Based on this new notion a more realistic reformula-

tion of the basic Markowitz model can be developed.

Main fallacy of

variance as

portfolio risk

A serious drawback of using variance as a measure of risk is that it penal-

izes both high and low portfolio returns. In this sense, it fails to capture an

investor’s basic preference for higher rather than lower portfolio returns.

Concept of

one-sided

variance

The concept of one-sided variance is similar to the concept of variance but

considers only deviations either below (downside variance) or above (upside

variance) of some specific target value. For each random variable Rj consider

the following two definitions of one-sided variance with respect to the desired

expected portfolio return M .

DownVar[Rj ,M] = E[(max[M − Rj ,0])2] =
∑

t|rtj≤M
(M − rtj)2p(rt)

UpVar[Rj ,M] = E[(max[Rj −M,0])2] =
∑

t|rtj≥M
(rtj −M)2p(rt)

Downside

variance of a

portfolio

Reflecting the investor’s preference for higher rather than lower portfolio re-

turns, the focus in this section will be on downside variance of a portfolio as

the risk measure to be minimized.

DownVar[
∑

j

Rjxj ,M] = E[(max[M −
∑

j

Rjxj ,0])
2]

=
∑

t|
∑

j rtjxj≤M
[M −

∑

j

rtjxj]
2
p(rt)

Reformulation

required

The above expression makes reference to the unknown budget fractions xj
inside the condition controlling the summation. Such expressions cannot be

handled by current solution packages, as these require the structure of the

constraints to be known and fixed prior to solving the model. That is why an-

other representation must be found such that the special condition controlling

the summation is no longer present.

Introduce new

variables

Whenever you are required to reference positive and/or negative values of an

arbitrary expression, it is convenient to write the expression as the difference

between two nonnegative variables. This reformulation trick was already in-

troduced in Chapter 6.
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Equivalent

formulation

As indicated before, the focus is on downside variance, and only one new vari-

able needs to be introduced. Let the new variable qt ≥ 0 measure the below

deviations of the target value M . Then,

Minimize
∑

t|
∑

j rtjxj≤M
[M −

∑

j

rtjxj]
2
p(rt)

can be rewritten as

Minimize:

∑

t

p(rt)q
2
t

Subject to:

M −
∑

j

rtjxj ≤ qt ∀t

qt ≥ 0 ∀t

CommentNote that this reformulation does not result in a simple computational for-

mula, but in an optimization model with inequalities. The objective function

will force the nonnegative qt variables to be as small as possible. This results

in qt = M −
∑

j rtjxj whenever M is greater than or equal to
∑

j rtjxj , and

qt = 0 otherwise.

Summary of

model using

downside

variance

Based on the above development concerning the downside risk of a portfolio,

the tactical quadratic optimization model of Section 18.6 can be rewritten with

xj and qt as the decision variables.

Minimize:

∑

t

p(rt)q
2
t

Subject to:
∑

j

rtjxj + qt ≥M ∀t

∑

j

mjxj ≥M

∑

j

xj = 1

xj ≥ 0 ∀j
qt ≥ 0 ∀t
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Global

optimality

guaranteed

Global optimality of any optimal solution to the above model is guaranteed. As

before, the quadratic and minimizing objective function possesses a positive

semi-definite matrix of second-order derivatives, and all constraints are linear.

SolutionTo compare the computational results for the two notions of variance, Ta-

ble 18.3 presents the optimal budget fractions for a minimal level of expected

return of M = 0.2. Note that a lower total risk value associated with down-

sided variance does not necessarily imply a lower risk, because there is no

ordinal relationship between both risk measures.

two-sided variance down-sided variance

RD 0.335 0.337

AKZ 0.066 0.046

KLM 0.214 0.351

PHI 0.091 0.017

UN 0.294 0.250

total risk 8.982 5.189

Table 18.3: Optimal budget fractions for M = 0.2

18.9 Adding logical constraints

This sectionThis section discusses several logical conditions that can be added to the port-

folio selection models in this chapter. The resulting models are mixed-integer

quadratic programming models. When linearized, these models can be suc-

cessfully solved within Aimms.

Imposing

minimum

fractions

Investing extremely small fractions of the budget in an investment category

or individual security is unrealistic in real-life applications. A natural exten-

sion is to introduce an either-or condition. Such a condition specifies for each

investment category or individual security to invest either at least a smallest

positive fraction of the budget or nothing at all.

Fixed fee for

transaction

costs

Some financial institutions may charge a fixed fee each time they execute a

transaction involving a particular type of security. Such a fee may have a

limiting effect on the number of different securities in the optimal portfolio,

and is significant enough in most real-world applications to be considered as

a necessary part of the model.
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Conditional

selections

A portfolio manager may have specific preferences for various types of secu-

rities. Some of these preferences are of the form: if security of type A is to

be included in the optimal portfolio, then also security of type B has to be in-

cluded. Such conditional selections result from practical considerations, and

therefore form a natural extension of the model.

Use logical

variables

The logical conditions described in the previous paragraphs can be translated

into new constraints and new variables to be added to the portfolio models

developed thus far. None of the above logical conditions are worked out in

detail in this chapter, as you have already encountered them in previous chap-

ters. The formulation tricks involving binary decision variables are described

in detail in Chapter 7 with additional illustrations thereof in Chapter 9.

Motivation to

linearize the

objective

Adding binary variables to the quadratic programming model of the previous

section requires the availability of a solver for quadratic mixed-integer pro-

gramming. One way to circumvent the need for this class of algorithms is to

approximate the quadratic terms in the objective by piecewise linear functions,

thus obtaining a linear formulation. Adding binary variables to that formula-

tion causes the entire model to become a mixed-integer linear program, for

which solvers are readily available.

18.10 Piecewise linear approximation

This sectionIn this section the piecewise approximation of the quadratic function f(qt) =
q2
t is explained in detail. Special attention is paid to the determination of the

overall interval of approximation, the quality of the approximation, and the

corresponding division into subintervals.

Illustration of

piecewise

approximation

Figure 18.6 illustrates how a simple quadratic function can be approximated

through a piecewise linear function. The function domain is divided into equal-

length subintervals. By construction, both the true function value and the

approximated function value coincide at the endpoints of each subinterval.

The slopes of the linear segments increase from left to right, which is what

you would expect for a piecewise convex function. Through visual inspection

you might already conclude that the approximation is worst at the midpoints

of each subinterval. As will be shown, the size of the corresponding maximum

approximation error is the same for each interval, as long as intervals are of

equal length.

Components

piecewise

formulation

Recall from the previous section that the quadratic objective function to be

minimized is
∑

t p(rt)q
2
t . The individual quadratic terms f(qt) = q2

t can each

be approximated independently over a finite portion of qt-axis divided into

subintervals indexed with t and l. The length of each subinterval is denoted
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Figure 18.6: Piecewise linear approximation illustrated

with ūtl. For each subinterval, a variable utl is introduced where

0 ≤ utl ≤ ūtl ∀(t, l)

In addition, the slope of the function f(qt) in each subinterval is defined as

stl =
f(qetl)− f(qbtl)

qetl − qbtl
∀(t, l)

where qbtl and qetl denote the beginning and end values of the intervals, respec-

tively. The following three expressions, defining the approximation of each

individual term f(qt), can now be written.

f(qt) =
∑

l

stlutl ∀t

qt =
∑

l

utl ∀t

utl ≤ ūtl ∀(t, l)

CorrectnessThe above approximation only makes sense if the variable utl = ūtl whenever

ut,l+1 > 0. That is, utl must be filled to their maximum in the left-to-right

order of the intervals l, and no gaps are allowed. Fortunately, this condition is

automatically guaranteed for convex functions to be minimized. The slope stl
increases in value for increasing values of l, and any optimal solution in terms

of the utl-variables will favor the variables with the lowest stl-values.

Function

domain

Recall that qt denotes downside variance, which is always greater than or equal

to zero. The largest value that qt can attain is when rtj attains its smallest

value over all investment categories or individual securities j, and the corre-

sponding fraction xj is equal to one. It is highly unlikely that xj will be one,

but this value establishes the proper interval size for qt .

0 ≤ qt ≤ q̄t ≡ min
j
rtj ∀t
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The value of

slope stl

For the special case of quadratic terms f(qt) = q2
t , the general expression for

the slope of the linear approximation

stl =
f(qetl)− f(qbtl)

qetl − qbtl
∀(t, l)

reduces to the following simple expression in terms of endpoints.

stl =
(qetl)

2 − (qbtl)2

qetl − qbtl
=
(qetl + qbtl)(qetl − qbtl)

qetl − qbtl
= qetl + qbtl ∀(t, l)

Approximation

is worst at

midpoint . . .

The function q2
t is convex, and the linear approximation on the interior of any

subinterval of its domain overestimates the true function value. The point

at which the approximation is the worst, turns out to be the midpoint of the

subinterval. The steps required to prove this result are as follows. First write

an error function that captures the difference between the approximated value

and the actual value of q2
t on a particular subinterval. Then, find the point

at which this error function attains its maximum by setting the first derivate

equal to zero.

. . . and can be

derived as

follows

Consider the error function to be maximized with respect to utl

((qbtl)
2 + stlutl)− (qbtl +utl)

2

By taking the first derivative with respect to utl and equating this to zero, the

following expression results.

stl − 2(qbtl +utl) = 0

Using the fact that stl = qetl + qbtl, the value of utl for which the above error

function is maximized, becomes

utl =
qetl − qbtl

2

Note that a maximum occurs at this value of utl, because the second derivative

of the error function is negative (a necessary and sufficient condition). As a

result, the maximum is attained at the midpoint of the subinterval.

qbtl +utl = qbtl +
qetl − qbtl

2
=
qetl + qbtl

2

Maximum

approximation

error

The size of the maximum approximation error ǫǫǫtl can be determined in a

straightforward manner by substituting the optimal utl expression in the error

function. This requires some symbolic manipulations, but finally results in the

following simple compact formula.

ǫǫǫtl =
(qetl − qbtl)2

4
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Number of

subintervals

Note that the above maximum approximation error is a function of the length

of the subinterval, and is in no way dependent on the position of the inter-

val. This implies that the choice of equal-length subintervals is an optimal one

when you are interested in minimizing the maximum approximation error of

the piecewise linear approximation of a quadratic function. In addition, the

number of subintervals nt dividing the overall interval [0, q̄t] can be deter-

mined as soon as the desired value of an overall ǫǫǫ, say ǭǫǫ, is specified by the

user of the model. The following formula for the number of subintervals nt of

equal size guarantees that the maximum approximation error of qt will never

be more than ǭǫǫ.

nt =
⌈

q̄t

2
√
ǭǫǫ

⌉

The piecewise

linear program

Using the notation developed in this section, the following piecewise linear

programming formulation of the portfolio selection model from the previous

section can be obtained.

Minimize:
∑

t

p(rt)
∑

l

stlutl

Subject to: ∑

j

rtjxj +
∑

l

utl ≥M ∀t ∈ T

∑

j

mjxj ≥M

∑

j

xj = 1

xj ≥ 0 ∀j
0 ≤ utl ≤ Ltl ∀(t, l)

18.11 Summary

In this chapter, both a strategic and a tactical portfolio selection problem have

been translated into a quadratic programming model. The relatively small

strategic model uses a covariance matrix as input, whereas the relatively large

tactical model uses historic rates of return as scenarios to estimate the risk

and expected return of a portfolio. Both models can be used to determine the

particular combination of investment categories or securities that is the least

risky for a given lower bound on expected return. Apart from single optimal

solutions, parametric curves depicting the trade-off between risk and return

were also provided. Several properties of the investment model were investi-

gated. It was shown that (a ) any optimal solution is also a global optimum, (b )

the risk-reward curve is nondecreasing and convex, and (c ) multiple optimal

portfolio returns are perfectly correlated. An improvement to the model was

introduced by minimizing only downside risk, thus making the model more

realistic. Further extensions were suggested to take into account such real-

world requirements as minimum investment fractions, transaction costs and
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conditional security selections. Finally, a piecewise linear approximation of the

quadratic objective function was introduced in order to keep the model with

logical constraints within the framework of mixed-integer linear programming.

Exercises

18.1 Implement the strategic investment model presented in Section 18.2

using the example data provided in Table 18.1. Use Aimms to repro-

duce the risk-reward curve illustrated in Figure 18.2.

18.2 Implement the tactical investment model presented in Section 18.6

using the example data presented in Table 18.2. Modify the objective

function to represent downside variance as the measure of portfolio

risk, and compare the result with the solution presented in Table 18.3.

18.3 Implement the piecewise linear formulation of the tactical investment

model as described at the end of Section 18.10. Add the logical re-

quirement that either at least 5% of the total budget is invested in any

particular security or 0%. In addition, add the requirement that when-

ever the percentage invested in security ‘RD’ is greater than 20%, then

the percentage invested in security ‘KLM’ has to be less than 30%. If

the number of intervals becomes too large for a particular t and a par-

ticular ǫǫǫ, design a dynamic scheme to adjust the interval length based

on a previous solution.
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