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Chapter 5

Network Flow Models

This chapterHere, network flow models are introduced as a special class of linear program-

ming models. The Aimms network formulation is also introduced, and some

sensitivity analysis is performed. Furthermore, several classes of network flow

models are described.

ReferencesOverviews of network algorithms can be found in [Go77], [Ke80] and [Or93].

An overview of applications of network flow models can be found in [Gl92] and

[Or93].

5.1 Introduction

What is a

network?

A network is a schematic diagram, consisting of points which are connected by

lines or arrows. An example is given in Figure 5.1. The points are referred to

as nodes and the lines are called arcs. A flow may occur between two nodes, via

an arc. When the flow is restricted to one direction, then the arcs are pointed

and the network is referred to as a directed network.

Figure 5.1: A directed network

What is a

network flow

model?

Network flow models form a class by themselves. They are linear program-

ming models, and can be formulated and solved as such. In practice, however,

network flow models are modeled more naturally in terms of nodes and arcs,

and are solved quicker by special network algorithms. Therefore, a special

type of Aimms formulation is available for network problems.
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The next sectionIn the following section, an example of a network flow model is given. This

example concerns the shipment of goods from factories to customers. The

nodes of the network are the factories and the customers, while the arcs rep-

resent the possible routes over which the goods can be shipped. The amounts

of goods actually shipped form the flows along the various arcs.

5.2 Example of a network flow model

Verbal

description

A Dutch company has two factories, one located at Arnhem and one located

at Gouda. The company sells its products to six customers, located in Lon-

don, Berlin, Maastricht, Amsterdam, Utrecht and The Hague. For reasons of

efficiency, deliveries abroad are only made by one factory: Arnhem delivers to

Berlin, while Gouda ships goods to London. Figure 5.2 illustrates the situation.

Maastricht

Arnhem

Amsterdam

The Hague

Gouda

Utrecht

London

Berlin

Figure 5.2: Factories and customers
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Model dataEach factory has a limited supply of goods: Arnhem has 550 tons, and Gouda

has 650 tons available. Customer demands and transportation costs from fac-

tory to customer are specified in Table 5.1. The goal is to satisfy the customers’

demand while minimizing transportation costs.

from Arnhem Gouda Demand

to [1000 $/ton] [1000 $/ton] [tons]

London 2.5 125

Berlin 2.5 175

Maastricht 1.6 2.0 225

Amsterdam 1.4 1.0 250

Utrecht 0.8 1.0 225

The Hague 1.4 0.8 200

Table 5.1: Transportation costs and customer demands

Index setsThe index sets are the sets of factories and customers. These two quantities

determine the size of the underlying optimization model.

Decision

variables

Since the goal of the model is to answer the question, “How many tons of goods

should be shipped from the various factories to the various customers?”, the

decision variables are the numbers of items to be shipped from each factory

to each customer, and are measured in tons. Notice that there are ten deci-

sion variables, one for each factory-customer pair drawn in Figure 5.2. Models

like this one illustrate the usefulness of index notation, since the number of

variables increases rapidly when the number of factories or customers grows.

ObjectiveThe objective is to minimize the transportation costs of transporting goods

from factories to customers. The costs are measured in thousands of dollars

per ton.

ConstraintsThe constraints follow logically from the problem statement. First, the amount

of goods shipped from a factory must be less than or equal to the supply at

that factory. Second, the amount of goods shipped to customers must meet

their demand. So there are two groups of constraints: supply and demand

constraints, both measured in tons.

The verbal

formulation

Minimize: The total transportation costs,

Subject to:

� for all factories: Total shipment from a factory can at most be

the supply, and

� for all customers: Total shipment to a customer must at least be

the demand.
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Modeling

non-permitted

combinations . . .

In the verbal formulation, no attention has been paid to the fact that not all

combinations of factories and customers are permitted. There are several ways

to model this. The first one is to incorporate non-permitted combinations with

high cost, so that they will never be used. This option is not recommended for

efficiency reasons, since the model contains unwanted variables that unneces-

sarily increase the size of the problem. The second, and recommended, alter-

native is to restrict the domain over which the variables are defined, thereby

eliminating unwanted variables. For example, one could replace the first con-

straint as follows:

� for all factories: Total shipment from a factory to permitted

customers can at most be the supply.

. . . using

nonzero costs

In this example, the nonzero transportation costs from Table 5.1 can be used

as a basis to restrict the index domain of the variables. These costs give an

unambiguous indication of which combinations are permitted. When no cost

figure is supplied, then a particular combination factory-customer is to be ig-

nored.

5.3 Network formulation

Two

formulation

options

There are two possible formulations for network problems. One is the version

of the linear programming model stated above. Another option is to take ad-

vantage of the special structure of the network. Network flow models can be

formulated in a natural way in terms of nodes and arcs. In addition, Aimms

provides a special network flow algorithm, that solves these problems faster

than would a standard linear programming algorithm.

Network

interpretation

Before formulating the example as a network flow model, some comments are

made on the network interpretation of this problem. The basic concepts are

supply and demand. The factories are considered supply nodes. The flow

(of goods) out of the various supply nodes must not exceed the amount of

goods available. This is again the supply constraint. The customers are con-

sidered demand nodes. The flow into the demand nodes must at least match

the amount of goods required. Again, the demand constraint appears. Finally,

the flows must be such that the costs of transportation are minimized.

Network

formulation and

Aimms

In Aimms it is possible to specify a problem by creating a model using arcs

and nodes. ARC and NODE declarations have taken the place of VARIABLES and

CONSTRAINTS, respectively. Furthermore, the keyword NetInflow indicates

the flow into a node minus the flow out of it, whereas the keyword NetOutflow

has the opposite interpretation. These keywords enable one to specify the

balance constraints on each node. For each arc, the associated pair of nodes

is specified, as well as costs attached to it, using the attributes FROM, TO, and

COST. Capacities on arcs are specified using its RANGE attribute.
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Model

declarations

The following symbols are used in the mathematical description of the network

example of the previous section.

Indices:

f factories

c customers

Parameters:

Sf supply at factory f

Dc demand by customer c

Tfc unit transport cost between f and c

Nodes:

FNf factory supply node for f

CNc customer demand node for c

Arcs:

Flowfc transport between f and c

Nodes and arcs

in Aimms

The following declarations mimic the declarations typically found in Aimms

network models. They take the place of the usual algebraic notation to de-

scribe constraints in constraint-based models.

NODES:

identifier : FN

index domain : f

definition : NetOutflow <= S(f)

text : factory supply node for f ;

identifier : CN

index domain : c

definition : NetInflow >= D(c)

text : customer demand node for c ;

ARC:

identifier : Flow

index domain : (f,c) | T(f,c)

range : nonnegative

from : FN(f)

to : CN(c)

cost : T(f,c) ;

No standard

notation

Network models form a special class of mathematical programs for which

there is no generally accepted notation other than the standard flow balances.

This is an instance in which modeling languages such as Aimms have intro-

duced their own keywords to facilitate the description of large-scale symbolic

network models.
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5.4 Solution and sensitivity analysis

The optimal

solution

The optimal solution of the model and data described in the previous sections

could be given in a table, but it is more clearly presented as a picture. The

optimal deliveries are given in Figure 5.3. The optimal total transportation

cost is $1,715,000.

Arnhem

Gouda

Berlin

Maastricht

Amsterdam

Utrecht

The Hague

London

175

225

150

250

75

200

125

Figure 5.3: The optimal network solution

Reduced costsIn Table 5.2, the reduced costs are given for those routes that were not in-

cluded in the optimal solution.

from factory to customer reduced costs

[1000 $/ton]

Arnhem Amsterdam 0.6

The Hague 0.8

Gouda Maastricht 0.2

Table 5.2: Reduced costs

The modified

network model

From this table, it is likely that shipments from Gouda to Maastricht would be

included in the optimal program if the transportation costs were reduced by

approximately $200/ton (from $2000/ton to $1800/ton). Solving the modified

model confirms this prediction . Another optimal solution exists and is given

in Figure 5.4. The total costs are still $1,715,000.
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Arnhem

Gouda

Berlin

Maastricht

Amsterdam

Utrecht

The Hague

London

175

150

225

250

75

200

125

Figure 5.4: An optimal solution of the modified network model

Shadow pricesIn Table 5.3, the shadow prices corresponding to the demand constraints for

the original network model are given. Adjusting the demand in Berlin down-

wards reduces the objective the most. There is a reduction of $2,500 per unit

transport, but there is the extra benefit that Arnhem is then free to supply

Utrecht at a reduction of $200 per unit over Gouda. This gives an overall re-

duction of $2,700 per unit.

shadow price

[$1000/ton]

London 2.5

Berlin 2.7

Maastricht 1.8

Amsterdam 1.0

Utrecht 1.0

The Hague 0.8

Table 5.3: The shadow prices for the demand constraint

5.5 Pure network flow models

This sectionIn this section several generic examples of a pure network flow model are

presented.
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The

transportation

problem

The example from the previous sections is generally referred to as a trans-

portation problem. Transportation problems are characterized by the fact

that the nodes are divided into two distinct sets of supply nodes and demand

nodes. Supply nodes are often referred to as sources, and demand nodes are

known as sinks. All the arcs in the network go from a source to a sink.

The assignment

problem

The assignment problem is a special case of the transportation problem. It

has the same bipartite structure as the transportation problem, but the supply

or demand of each node is exactly one. Several practical problems can be

modeled as an assignment problem. Examples are the assignment of personnel

to tasks and the assignment of jobs to machines.

The

transshipment

problem

A general pure network flow model may also contain intermediate (or trans-

shipment) nodes. These nodes can have both a flow into the node and a flow

out of the node. This type of problem is often referred to as the transshipment

problem. For instance, adding nodes for distribution centers, with arcs from

the factories and arcs to the customers, turns the transportation problem into

a transshipment problem. Transshipment models are used in a wide range of

practical problems, such as distribution problems, scheduling inventory and

production problems, and land allocation problems.

Adding

capacities on

the arcs

In most practical situations, the flow along an arc is not unlimited, but re-

stricted to some finite capacity. Upper bounds on the flow along arcs are easily

handled by the network algorithm. Similarly, lower bounds on the flow along

arcs can also be included.

The general

pure network

flow model

Assuming that the objective is to minimize the total costs associated with the

flow along the arcs, the general pure network flow model can be summarized

as follows.

Minimize: Total costs,

Subject to:

� for each supply node: the net outflow must be (less than or)

equal to the available supply,

� for each demand node: the net inflow must be (greater than or)

equal to the required demand,

� for each transshipment node: the net inflow must be equal to the

net outflow, and

� for each arc: the flow must be within its bounds.

Integer solutionsPure network flow problems have a surprising feature. When all demands are

integer-valued, and all lower and upper bounds on the flows along the arcs are

integer-valued, then the following is true:
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If the network flow model has at least one feasible solution, it has an

integer-valued feasible solution, furthermore if it has an optimal solu-

tion, it has an integer-valued optimal solution.

In this situation, the network simplex algorithm is guaranteed to find such a

solution, and you do not have to resort to an integer programming algorithm.

The gains in computation time are considerable.

5.6 Other network models

This sectionThis section describes two types of problems that can be formulated as pure

network flow models, and also some types of network problems that cannot be

formulated as pure network models. All of these models can be represented

within the Aimms modeling language.

The shortest

path problem

The shortest path problem is a problem that can be formulated as a trans-

shipment model. As the name suggests, the goal is to find the shortest path

between a single origin and a single destination. All one has to do is to place a

supply of one at the origin node and a demand of one at the destination node.

All the intermediate nodes have zero demand and supply. The lengths of the

arcs are used as costs. The shortest path from the origin to the destination is

then determined by the arcs that carry a nonzero flow in the optimal solution

of the transshipment model.

The maximum

flow problem

The objective in a maximum flow problem is to maximize the flow through the

network from a single source to a single sink, while the arcs can only carry a

limited flow. This problem can be stated as a capacitated transshipment prob-

lem by introducing one additional arc from the sink to the source with infinite

capacity. The cost attached to this new arc is −1.0, while the cost attached to

all the original arcs is zero. All nodes in the network (including the source and

sink) have zero demand and supply. By minimizing the total cost, the maxi-

mum flow through the network is found. An example of the maximum flow

problem can be found in a traffic network, where the arcs, representing roads,

have limited traffic capacity. The traffic flows are measured in, for example,

number of cars per hour. There are other examples in which the flows rep-

resent either messages in a telephone network, or cash in a currency trading

network, or water in a pipe transport network.

Generalized

network

problems

In a pure network flow model, the flow along an arc is conserved, while in gen-

eralized network problems gains or losses can be specified for each arc. Gains

and losses can be due to conversion of units, waste, loss in quality, etc. Gener-

alized network models cannot be solved with a pure network flow algorithm.

There are special codes, however, that solve generalized network models, but
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these codes, just as with linear programming solvers, do not necessarily ter-

minate with an integer-valued optimal solution.

Multi-

commodity

network

problems

Multi-commodity network flow problems are just like capacitated transship-

ment or transportation problems, except that there is more than one com-

modity to be shipped. In most applications, the arc capacity restrictions do

not apply to just a single commodity, but to several commodities together. In

this case, the multi-commodity network model cannot be solved with a pure

network flow algorithm. The comments made for generalized network models

apply here as well. There are specialized solvers, but they too do not necessar-

ily terminate with an integer-valued optimal solution. In practice, linear pro-

gramming solvers and constraint generation techniques are frequently used

for the solution of large-scale multi-commodity network models.

5.7 Summary

In this chapter, a transportation problem has been formulated as an optimiza-

tion model. Transportation problems belong to a special class of network flow

problems. Although these problems can be formulated as linear programming

models, it is much more natural to formulate them in terms of nodes and

arcs, taking advantage of the special structure of the problem. Moreover, so-

lution algorithms exist that take advantage of the network structure of the

problem. These algorithms often reach an optimal solution much faster than

would linear programming solvers. Aimms provides facilities for both formu-

lating and solving network models. A special property of many network flow

models is that the optimal solution is integer-valued as long as the supplies

and demands attached to the sources and sinks are integers. Some examples

of different well-known classes of network flow problems were given
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