AIMMS Modeling Guide - Facility Location Problem

This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com.
Chapter 22

A Facility Location Problem

This chapter considers the problem of selecting distribution centers along with their associated customer zones. For small and medium-sized data sets, the mathematical model is a straightforward mixed-integer programming formulation and can easily be solved with standard solvers. However for large data sets, a decomposition approach is proposed. This chapter explains the Benders’ decomposition technique and applies it to the facility location problem.

The example in this chapter is based on "Multicommodity Distribution System Design by Benders Decomposition" ([Ge74]) by Geoffrion and Graves.

Keywords: Integer Program, Mathematical Reformulation, Mathematical Derivation, Customized Algorithm, Auxiliary Model, Constraint Generation, Worked Example.

22.1 Problem description

A commonly occurring problem in distribution system design is the optimal location of intermediate distribution centers between production plants and customer zones. These intermediate facilities (temporarily) store a large variety of commodities that are later shipped to designated customer zones.

Consider the situation where several commodities are produced at a number of plants with known production capacities. The demands for each commodity at a number of customer zones are also known. This demand is satisfied by shipping via intermediate distribution centers, and for reasons of administration and efficiency, each customer zone is assigned exclusively to a single distribution center. For each center there is a lower as well as an upper limit on the total throughput (of all commodities). There is also a fixed rental charge and a per unit throughput charge associated with each distribution center. In addition, there is a variable unit cost of shipping a commodity from a plant to a customer zone through a distribution center. This cost usually includes the unit production cost.
Chapter 22. A Facility Location Problem

The facility location problem is shown schematically in Figure 22.1. It has the property that the main decisions are of type yes/no. The problem is to determine which distribution centers should be selected, and what customer zones should be served by the selected distribution centers. The optimum solution is clearly dependent on the pattern of transportation flows for all commodities. It is assumed that the time frame under consideration is sufficiently long to motivate good decision making.

The decisions described in the previous paragraphs are to be made with the objective to meet the given demands at minimum total distribution and production cost, subject to plant capacities and distribution center throughput requirements.

This chapter formulates and solves the above problem description. However in real-world applications, there may be additional constraints which require some specialized formulation. Some possibilities are mentioned below.

- The throughput capacity in a particular distribution center can be treated as a decision variable with an associated cost.
- Top management could impose an a priori limit on the number of distribution centers, or express preferences for particular logical combinations of such centers (not A unless B, not C and D, etc.).
- Similarly, there could be an a priori preference for certain logical combinations of customer zones and distribution centers (if Center A is open, then Zone 2 must be assigned, etc.).
- If distribution centers happen to share common resources or facilities, there could be joint capacity constraints.

You are referred to Chapter 7 for ideas on how to model these special logical conditions.

22.2 Mathematical formulation

This section presents the mathematical description of the facility location problem discussed in the previous section.

The objective and the constraints are described in the following qualitative model formulation.

Minimize: total production and transport costs,

Subject to:

- for all commodities and production plants: transport must be less than or equal to available supply,
- for all commodities, distribution centers and customer zones: transport must be greater than or equal to required demand,
- for all distribution centers: throughput must be between specific bounds, and
- for all customer zones: supply must come from exactly one distribution center.

The following notation will be used in this chapter:

Indices:

- c: commodities
- p: production plants
- d: distribution centers
- z: customer zones

Parameters:

- S_{cp}: supply (production capacity) of commodity c at plant p
- D_{cz}: demand for commodity c in customer zone z
- M_d: maximum throughput at distribution center d
- M_{d}: minimum throughput at distribution center d
- R_d: per unit throughput charge at distribution center d
- F_d: fixed cost for distribution center d
- K_{cpdz}: variable cost for production and shipping of commodity c, from plant p via distribution center d to customer zone z

Variables:

- x_{cpdz}: nonnegative amount of commodity c shipped from plant p via distribution center d to customer zone z
Chapter 22. A Facility Location Problem

\[v_d \quad \text{binary to indicate selection of distribution center } d \]
\[y_{dz} \quad \text{binary to indicate that customer zone } z \text{ is served by distribution center } d \]

The supply constraint specifies that for each commodity \(c \) and each production plant \(p \), the total amount shipped to customer zones via distribution centers cannot be more than the available production capacity,

\[\sum_{dz} x_{cpdz} \leq S_{cp} \quad \forall c, p \]

The demand constraint specifies that the demand for each commodity \(c \) in each zone \(z \) should be supplied by all plants, but only through the chosen distribution center \(y_{dz} \),

\[\sum_{p} x_{cpdz} \geq D_{cz} y_{dz} \quad \forall c, d, z \]

The throughput constraints make sure that for each distribution center \(d \) the total volume of commodities to be delivered to its customer zones remains between the minimum and maximum allowed throughput,

\[M_d v_d \leq \sum_{cpdz} x_{cpdz} = \sum_{cz} D_{cz} y_{dz} \leq M_d v_d \quad \forall d \]

The allocation constraint ensures that each customer zone \(z \) is allocated to exactly one distribution center \(d \).

\[\sum_{d} y_{dz} = 1 \quad \forall z \]

The objective function that is to be minimized is essentially the addition of production and transportation costs augmented with the fixed and variable charges for distribution centers and the throughput of commodities through these centers.

\[\text{Minimize: } \sum_{cpdz} K_{cpdz} x_{cpdz} + \sum_{d} [F_d v_d + R_d \sum_{cz} D_{cz} y_{dz}] \]

22.3 Solve large instances through decomposition

The facility location problem can be solved for small to medium sized data sets using any of the mixed integer programming solvers that are available through AIMMS. However, its solution process is based on a branch-and-bound approach and this can sometimes be improved if you add some constraints.
These constraints are redundant for the integer formulation but tighten the associated relaxed linear program solved at each node of the underlying branch-and-bound tree.

Two examples of such redundant constraints are:

\[y_{dz} \leq v_d \quad \forall d, z, \text{ and} \]
\[\sum_d v_d \leq L \]

where \(L \) is a heuristically determined upper limit on the number of distribution centers to be opened (based on total demand). For your application, you may want to test if adding these constraints does indeed improve the solution process. In general, the benefit increases as the data set becomes larger.

In some practical applications, it is not unusual for the number of commodities and customer zones to be in the order of 100’s to 1000’s. Under these conditions, it is possible that the internal memory required by the solver to hold the initial data set is insufficient. If there is enough memory for the solver to start the underlying branch-and-bound solution process, the number of nodes to be searched can be extremely large, and inefficient search strategies (such as depth-first search) may be required to keep the entire search tree in memory.

When your model uses an extremely large data set, you may consider re-examining your approach to the problem. One option is to decompose the problem into several smaller subproblems that are solved sequentially rather than simultaneously. The next section explains one such approach, namely Benders’ decomposition. The technique is a powerful algorithmic-based approach and its application to solve large instances of the facility location problem will be detailed.

22.4 Benders’ decomposition with feasible subproblems

This section presents the mathematical description of Benders’ decomposition for the case with feasible subproblems. It is based on an abstract model that has been partitioned into an easy linear portion and a difficult nonlinear/integer portion. Once you understand the underlying decomposition theory plus the basic rules for writing dual linear programs described in the next section, you will be able to apply the Benders’ decomposition approach to the facility location problem.
Consider the following minimization problem, which is referred to as \(P(x, y) \):

Initial problem

\[P(x, y) \]

Minimize:

\[c^T x + f(y) \]

Subject to:

\[Ax + F(y) = b \]
\[x \geq 0 \]
\[y \in Y \]

with \(A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m, \) and \(y \in Y \subset \mathbb{R}^p \). Here, \(f(y) \) and \(F(y) \) may be nonlinear. \(Y \) can be a discrete or a continuous range.

First, it is important to observe that for a fixed value of \(y \in Y \) the problem becomes a linear program in terms of \(x \). This is represented mathematically as \(P(x|y) \). Next, it is assumed that \(P(x|y) \) has a finite optimal solution \(x \) for every \(y \in Y \). This may seem to be a rather restrictive assumption, but in most real-world applications this assumption is already met or else you can modify \(Y \) in such a way that the assumption becomes valid.

The expression for \(P(x, y) \) can be written in terms of an equivalent nested minimization statement, \(P_1(x, y) \):

\[\min_{y \in Y} \{ f(y) + \min_x [c^T x \mid Ax = b - F(y), \ x \geq 0] \} \]

This statement can be rewritten by substituting the dual formulation of the inner optimization problem (see Section 22.6), to get an equivalent formulation, \(P_2(u, y) \):

\[\min_{y \in Y} \{ f(y) + \max_u [[b - F(y)]^T u \mid A^T u \leq c] \} \]

The main advantage of the latter formulation is that the constraint set of the inner problem is independent of \(y \). Furthermore, the optimal solution of the inner maximization problem is finite because of the explicit assumption that \(P(x|y) \) has a finite optimal solution for every \(y \in Y \). Such an optimal solution will always be at one of the extreme points \(u \in U \). Therefore, the following equivalent formulation, \(P_3(u, y) \), may be obtained:

\[\min_{y \in Y} \{ f(y) + \max_{u \in U} [b - F(y)]^T u \} \]
This nested formulation of $P_3(x, y)$ can finally be re-written as a single mini-
mimization problem which is referred to as the full master problem, $P_4(y, m)$:

Minimize:

$$f(y) + m$$

Subject to:

$$[b - F(y)]^T u \leq m \quad u \in U$$
$$y \in Y$$

In the full master problem it is important to observe that there is one con-
straint for each extreme point. It is true that there may be an enormous num-
ber in a problem of even moderate size. However, only a small fraction of
the constraints will be binding in the optimal solution. This presents a natu-
ral setting for applying an iterative scheme in which a master problem begins
with only a few (or no) constraints while new constraints are added as needed.
This constraint generation technique is dual to the column generation scheme
described in Chapter 20.

From the full master problem, it is possible to define a relaxed master problem
$M(y, m)$ which considers a subset B of the constraints U.

Minimize:

$$f(y) + m$$

Subject to:

$$[b - F(y)]^T u \leq m \quad u \in B$$
$$y \in Y$$

where B is initially empty and m is initially 0.

The Benders subproblem is $S(u|y)$, which solves for an extreme point u given
a fixed value of $y \in Y$, can be written as the following maximization problem:

Maximize:

$$[b - F(y)]^T u$$

Subject to:

$$A^T u \leq c$$

with $u \in \mathbb{R}^m$. $S(u|y)$ has a finite optimal solution, because of the assumption
that $P(x|y)$ has a finite optimal solution for every $y \in Y$.

$P_3(y, m)$
Figure 22.2 presents a flowchart of Benders’ decomposition algorithm for the case when all subproblems are feasible.

Figure 22.2: Benders’ decomposition algorithm flowchart

Summarizing Benders’ decomposition algorithm in words, the subproblem is solved for u given some initial $y \in Y$ determined by the master. Next, there is a simple test to determine whether a constraint involving u must be added to the master. If so, the master is solved to produce a new y as input to the subproblem which is solved again. This process continues until optimality (within a tolerance level) can be concluded.

Since B is a subset of U, the optimal value of the objective function of the relaxed master problem $M(y, m)$ is a lower bound on the optimal value of the objective function of the full master problem $P_4(y, m)$ and thus of $P(x, y)$. Each time a new constraint is added to the master, the optimal value of its objective function can only increase or stay the same.
The optimal solution \(u \) plus the corresponding value of \(y \) of the subproblem \(S(u|y) \), when substituted in the constraints of \(P_3(u,y) \), produces an upper bound on the optimal value of \(P_3(u,y) \) and thus of \(P(x,y) \). The best upper bound found during the iterative process, can only decrease or stay the same.

As soon as the lower and upper bounds of \(P(x,y) \) are sufficiently close, the iterative process can be terminated. In practice, you cannot expect the two bounds to be identical due to numerical differences when computing the lower and upper bounds. It is customary to set a relative sufficiently small tolerance typically of the order 1 to \(1 \times 10^{-3} \) of a percent.

When the iterative process is terminated prematurely for whatever reason, the latest \(y \)-value is still feasible for \(P(x|y) \). The current lower and upper bounds on \(P(x,y) \) provide an indication on how far the latest solution \((x,y) \) is removed from optimality.

22.5 Convergence of Benders’ decomposition

For the moment, assume that for every iteration the extreme point \(u \) produced by solving the subproblem \(S(u|y) \) is unique. Each such point will then result in the addition of a new constraint to the relaxed master problem.

As a result of the uniqueness assumption the iterative process will terminate in a finite number of steps. After all, there are only a finite number of extreme points. In the event that they have all been generated by solving \(S(u|y) \) repeatedly, the resulting relaxed master problem \(M(y,m) \) becomes equivalent to the full master problem \(P_4(y,m) \) and thus the original problem \(P(x,y) \).

The sequence of relaxed master problems \(M(y,m) \) produces a monotone sequence of lower bounds. In the event that after a finite number of steps the relaxed master problem \(M(y,m) \) becomes the full master problem \(P_4(y,m) \), the set \(B \) becomes equal to the set \(U \). The corresponding lower bound is then equal to the original objective function value of \(P_4(y,m) \) and thus of the original problem \(P(x,y) \). At that moment both the optimal value of \(f(y) \) and the optimal \(u \)-value of the subproblem make up the original solution of \(P_3(u,y) \). As a result, the upper bound is then equal to the optimal objective function value of \(P_3(u,y) \) and thus of the original problem \(P(x,y) \).

Based on the uniqueness assumption and the resulting convergence of lower and upper bounds in a finite number of steps, the overall convergence of Benders’ decomposition is guaranteed. Termination takes place whenever the lower bound on the objective function value of \(P(x,y) \) is equal to its upper bound.
The entire convergence argument of the Benders’ decomposition algorithm so far hinges on the uniqueness assumption, i.e. the assumption that all extreme points \(u \) produced by solving the subproblems \(S(u|y) \) during the iterative process are unique as long as termination has not been reached. Assume that at some point during the iteration process prior to termination, the \(u \)-value produced by solving the subproblem is not unique. In this case, the lower bound is still strictly less than the upper bound, but the relaxed master problem will produce the same \(y \) value as in the previous iteration. The Benders’ algorithm then cycles from here on and produces the same solution tuple \((\hat{u}, \hat{y})\) each solution. This tuple has the property that the current lower bound \(LB \) (obtained from the relaxed master problem) is

\[f(\hat{y}) + m \]

and that the current upper bound \(UB \) (with \(\hat{u} \) obtained from the subproblem and substituted in the objective function of \(P_3(\hat{u}, \hat{y}) \)) is at least as large as

\[f(\hat{y}) + [b - F(\hat{y})]^T \hat{u} \]

Note that

\[m \geq [b - F(\hat{y})]^T u, \quad \text{for } u \in B \]

by construction. Note also that \(\hat{u} \) is already in \(B \) due to cycling, which implies that

\[m \geq [b - F(\hat{y})]^T \hat{u} \]

Combining the above leads to

\[LB = f(\hat{y}) + m \geq f(\hat{y}) + [b - F(\hat{y})]^T \hat{u} \geq UB \]

which is a contradiction to the fact that prior to termination the lower bound is strictly less than the upper bound. This shows that the uniqueness assumption is true and that Benders’ decomposition with feasible subproblems as described in this chapter will always converge.

22.6 Formulating dual models

In order to apply the Benders’ decomposition scheme, it is necessary to formulate the dual of \(P(x|y) \). The rules for this step can be found in books on linear programming. For purposes of completeness and later reference these rules are summarized in this section in the form of typical examples.

If a primal problem is stated as:

Minimize:

\[c_1x_1 + c_2x_2 \]
Subject to:
\begin{align*}
 a_{11}x_1 + a_{12}x_2 & \geq b_1 \\
 a_{21}x_1 + a_{22}x_2 & = b_2 \\
 a_{31}x_1 + a_{32}x_2 & \leq b_3 \\
 x_1 & \geq 0, x_2 \geq 0
\end{align*}
then its dual problem is:

Maximize:
\[u_1b_1 + u_2b_2 + u_3b_3 \]

Subject to:
\begin{align*}
 a_{11}u_1 + a_{21}u_2 + a_{31}u_3 & \leq c_1 \\
 a_{12}u_1 + a_{22}u_2 + a_{32}u_3 & \leq c_2 \\
 u_1 & \geq 0, u_2 \text{ free }, u_3 \leq 0
\end{align*}

If a primal problem is stated as:

Maximize:
\[c_1x_1 + c_2x_2 \]

Subject to:
\begin{align*}
 a_{11}x_1 + a_{12}x_2 & \geq b_1 \\
 a_{21}x_1 + a_{22}x_2 & = b_2 \\
 a_{31}x_1 + a_{32}x_2 & \leq b_3 \\
 x_1 & \geq 0, x_2 \geq 0
\end{align*}
then its dual problem is:

Minimize:
\[u_1b_1 + u_2b_2 + u_3b_3 \]

Subject to:
\begin{align*}
 a_{11}u_1 + a_{21}u_2 + a_{31}u_3 & \geq c_1 \\
 a_{12}u_1 + a_{22}u_2 + a_{32}u_3 & \geq c_2 \\
 u_1 & \leq 0, u_2 \text{ free }, u_3 \geq 0
\end{align*}
22.7 Application of Benders’ decomposition

Using the decomposition and duality theory of the previous sections, the facility location example can now be divided into a master problem and a dual subproblem.

The original facility location problem can be summarized as follows.

Minimize:

\[
\sum_{cpdz} K_{cpdz} x_{cpdz} + \sum_d \{ F_d v_d + R_d \sum_{cz} D_{cz} y_{dz} \}
\]

Subject to:

\[
\sum_{dz} x_{cpdz} \leq S_{cp} \quad \forall (c, p) \quad (1)
\]

\[
\sum_{p} x_{cpdz} = D_{cz} y_{dz} \quad \forall (c, d, z) \quad (2)
\]

\[
\sum_{d} y_{dz} = 1 \quad \forall z \quad (3)
\]

\[
M_d v_d \leq \sum_{cz} D_{cz} y_{dz} \leq M_d v_d \quad \forall d \quad (4)
\]

\[
v_d, y_{dz} \in \{0, 1\} \quad (5)
\]

\[
x_{cpdz} \geq 0 \quad (6)
\]

To conduct a Benders’ decomposition, it is first necessary to divide the variables and constraints into two groups. The binary variables \(v_d\) and \(y_{dz}\), together with the constraints (3), (4) and (5) represent the set \(Y\). The continuous variable \(x_{cpdz}\), together with the constraints (1), (2) and (6) represent the linear part to be dualized. As detailed soon, \(\sigma\) and \(\pi\) are two dual variables introduced for constraints (1) and (2).

In the description of the Benders’ decomposition algorithm, the various models are indicated by \(P(x, y)\), \(M(y, m)\) and \(S(u|y)\). The correspondence between the variables used here and those defined for the facility location problem is as follows.

- \(x\) used previously is equivalent to \(x\) used above,
- \(y\) used previously is equivalent to \(v\) and \(y\) used above, and
- \(u\) used previously is equivalent to \(\sigma\) and \(\pi\) used above.

As a result, the equivalent model indicators become \(P(x, v, y)\), \(M(v, y, m)\) and \(S(\sigma, \pi|v, y)\), respectively.
The initial master model $M(v, y, m = 0)$ can be stated as follows.

Minimize:

$$\sum_d \left[F_d v_d + R_d \sum_{cz} D_{cz} y_{dz} \right]$$

Subject to:

$$\sum_d y_{dz} = 1 \quad \forall z \quad (3)$$

$$M_d v_d \leq \sum_{cz} D_{cz} y_{dz} \leq M_d v_d \quad \forall d \quad (4)$$

$$v_d, y_{dz} \in \{0, 1\} \quad (5)$$

Note that the initial master model does not yet contain any Benders’ cuts (i.e. $m = 0$) and that it corresponds to solving:

$$\min_{y \in Y} f(y)$$

previously introduced in the original Benders’ decomposition algorithm.

The problem to be dualized, namely the equivalent of the inner optimization problem in $P_1(x, y)$ of Section 22.4, can now be stated as follows.

Minimize:

$$\sum_{cpdz} K_{cpdz} x_{cpdz}$$

Subject to:

$$\sum_d x_{cpdz} \leq S_{cp} \quad \forall (c, p) \mid S_{cp} > 0 \quad (1)$$

$$\sum_p x_{cpdz} = D_{cz} y_{dz} \quad \forall (c, d, z) \mid y_{dz} = 1 \quad (2)$$

$$x_{cpdz} \geq 0 \quad (6)$$

By introducing two dual variables σ_{cp} and π_{cdz} corresponding to the two constraints (1) and (2) respectively, the dual formulation of the problem from the previous paragraph can be written in accordance with the rules mentioned in Section 22.6. Note that the dual variable σ_{cp} is only defined when $S_{cp} > 0$, and the dual variable π_{cdz} is only defined when $y_{dz} = 1$.

Resulting subproblem

$S(\sigma, \pi | v, y)$
Maximize:
\[
\sum_{cp} \sigma_{cp} S_{cp} + \sum_{cdz} \pi_{cdz} D_{cz} y_{dz}
\]
Subject to:
\[
\sigma_{cp} + \pi_{cdz} \leq K_{cpdz} \quad \forall (c, p, d, z)
\]
\[
\sigma_{cp} \leq 0
\]
\[
\pi_{cdz} \text{ free}
\]

The question arises whether the above subproblem \(S(\sigma, \pi | v, y)\) is always feasible for any solution of the initial master problem \(M(v, y, m = 0)\). If this is the case, then the Benders’ decomposition algorithm described in this chapter is applicable to the original facility location problem. Note that,
\[
\sum_{p} S_{cp} \geq \sum_{z} D_{cz} \quad \forall c
\]
is a natural necessary requirement, and that
\[
\sum_{z} D_{cz} = \sum_{dz} D_{cz} y_{dz} \quad \forall c
\]
is an identity, because \(\sum_{d} y_{dz} = 1\). These together imply that there is enough supply in the system to meet the demand no matter which distribution center \(d\) is used to serve a particular customer zone \(z\).

The Benders’ cut to be added each iteration is directly derived from the objective function of the above subproblem \(S(\sigma, \pi | v, y)\) evaluated at the original solution \((\sigma, \pi)\). This new constraint is of the form
\[
\sum_{cp} \sigma_{cp} S_{cp} + \sum_{cdz} \pi_{cdz} D_{cz} y_{dz} \leq m
\]
where \((\sigma_{cp}, \pi_{cdz})\) are parameters and \(y_{dz}\) and \(m\) are unknowns.

By adding the Bender’s cuts to the initial master problem \(M(v, y, m = 0)\), the following regular master problem \(M(v, y, m)\) can be obtained after introducing the set \(B\) of Benders’ cuts generated so far. Note that the optimal dual variables \(\sigma\) and \(\pi\) have been given an extra index \(b \in B\) for each Benders’ cut.
Minimize:
\[\sum_d \left(F_d v_d + R_d \sum_{cz} D_c z y_d z \right) + m \]

Subject to:
\[\sum_d y_d z = 1 \quad \forall z \]
\[M_d v_d \leq \sum_{cz} D_c z y_d z \leq M v_d \quad \forall d \]
\[\sum_{cp} \sigma_{bcp} S_{cp} + \sum_{cdz} \pi_{bcdz} D_c z y_d z \leq m \quad \forall b \]
\[v_d, y_d z \in \{0, 1\} \]

At this point all relevant components of the original facility location problem to be used inside the Benders' decomposition algorithm have been presented. These components, together with the flowchart in Section 22.4, form all necessary ingredients to implement the decomposition algorithm in AIMMS.

22.8 Computational considerations

The presentation thus far has mainly focussed on the theory of Benders' decomposition and its application to the particular facility location problem. Implementation issues have barely been considered. This section touches on two of these issues, namely subproblem splitting aimed at preserving primary memory, and use of first-found integer solution aimed at diminishing computational time. Whether or not these aims are reached, depends strongly on the data associated with each particular model instance.

The dual subproblem can be broken up and solved independently for each commodity \(c \). This gives the advantage that the LP model is divided into \(|c|\) smaller models which can all be solved independently. This can reduce memory usage, which is especially true when \(K_{c p d z} \) is stored on disk or tape. In this case, it is sufficient to read data into primary memory for only one \(c \) at the time. For each fixed commodity \(\sigma \) the problem then becomes
Maximize:
\[\sum_p \sigma_p S_p + \sum_{dz} \pi_{dz} D_{dz} y_{dz} \]

Subject to:
\[\sigma_{dp} + \pi_{dz} \leq K_{pdz} \quad \forall (p, d, z) \]
\[\sigma_{dp} \leq 0 \]
\[\pi_{dz} \text{ free} \]

After solving the above problem for each fixed commodity \(\tau \), the objective function value of the overall problem \(S(\sigma, \pi | v, y) \), is then the sum over all commodities of the individual objective function values.

The Benders’ cut is derived after finding the optimal integer solution to the master problem. In practice, finding optimal integer solutions can be extremely time consuming as most solution algorithms have difficulty proving that a perceived optimal solution is indeed the optimal solution. Finding a first integer solution is in general easier than finding an optimal integer solution. That is why an alternative implementation of Benders’ decomposition can be proposed to take advantage of such a first integer solution.

Consider the objective function value of the relaxed master problem for the first integer solution found. This value is not necessarily optimal and therefore cannot be considered as a valid lower bound for the original problem. Nevertheless, it will be treated as such. Now, the Benders’ algorithm can terminate prematurely whenever this fake lower bound exceeds the current upper bound. In order to avoid premature termination in the presence of these fake lower bounds, the following constraint should be added:
\[f(y) + m \leq UB - \epsilon, \quad \epsilon \geq 0, \text{ small} \]

This constraint makes sure that any fake lower bound resulting from the use of a first integer solution of the master problem cannot be greater than or equal to the current upper bound, and thus will never cause unwanted premature termination.

New Benders’ cuts are added every iteration. Their presence together with the above constraint on the fake lower bound will eventually result in an empty integer solution space. This happens when the generated Benders’ cuts are such that the true lower bound is greater than or equal to the upper bound minus \(\epsilon \). From original Benders’ algorithm it follows that convergence has occurred and that the current upper bound provides equals the optimal objective function value. Thus, the alternative approach based on first integer solutions terminates when the modified master problem becomes infeasible and no longer produces a first integer solution.
22.9 A worked example

In this section you will find a small and somewhat artificial example to illustrate the computational results of applying the Benders’ decomposition approach to the facility location problem described in this chapter.

In this example there are two production plants, three customer zones, and seven potential sites for distribution centers. Their coordinates are presented in Table 22.1, and are used to determine the transport cost figures as well as the map in Figure 22.3.

<table>
<thead>
<tr>
<th>City</th>
<th>Type</th>
<th>X-coord.</th>
<th>Y-coord.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnhem</td>
<td>Production plant</td>
<td>191</td>
<td>444</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>Production plant</td>
<td>92</td>
<td>436</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>Distribution center</td>
<td>121</td>
<td>488</td>
</tr>
<tr>
<td>The Hague</td>
<td>Distribution center</td>
<td>79</td>
<td>454</td>
</tr>
<tr>
<td>Utrecht</td>
<td>Distribution center</td>
<td>136</td>
<td>455</td>
</tr>
<tr>
<td>Gouda</td>
<td>Distribution center</td>
<td>108</td>
<td>447</td>
</tr>
<tr>
<td>Amersfoort</td>
<td>Distribution center</td>
<td>155</td>
<td>464</td>
</tr>
<tr>
<td>Zwolle</td>
<td>Distribution center</td>
<td>203</td>
<td>503</td>
</tr>
<tr>
<td>Nijmegen</td>
<td>Distribution center</td>
<td>187</td>
<td>427</td>
</tr>
<tr>
<td>Maastricht</td>
<td>Customer zone</td>
<td>175</td>
<td>318</td>
</tr>
<tr>
<td>Haarlem</td>
<td>Customer zone</td>
<td>103</td>
<td>489</td>
</tr>
<tr>
<td>Groningen</td>
<td>Customer zone</td>
<td>233</td>
<td>582</td>
</tr>
</tbody>
</table>

Table 22.1: Considered cities and their coordinates

A total of two commodities are considered. The corresponding supply and demand data for the production plants and the customer zones are provided in Table 22.2, and are specified without units.

<table>
<thead>
<tr>
<th>City</th>
<th>Product A</th>
<th>Product B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(s_{cp})</td>
<td>(d_{cz})</td>
</tr>
<tr>
<td>Arnhem</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Maastricht</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Haarlem</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Groningen</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 22.2: Supply and demand data
For each distribution center the minimal and maximal throughput data, together with the associated throughput cost figures, are displayed in Table 22.3.

<table>
<thead>
<tr>
<th></th>
<th>Md</th>
<th>Md</th>
<th>Rd</th>
<th>Fd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>20</td>
<td>5.0</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>The Hague</td>
<td>20</td>
<td>7.0</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Utrecht</td>
<td>14</td>
<td>3.0</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Gouda</td>
<td>20</td>
<td>5.5</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Amersfoort</td>
<td>21</td>
<td>6.0</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Zwolle</td>
<td>17</td>
<td>7.0</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Nijmegen</td>
<td>16</td>
<td>3.5</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 22.3: Distribution throughput data

The transport cost values $K_{c,p,d,z}$ are based on distance according to the following formula:

$$K_{c,p,d,z} = \frac{\sqrt{(X_p - X_d)^2 + (Y_p - Y_d)^2} + \sqrt{(X_z - X_d)^2 + (Y_z - Y_d)^2}}{100}$$

Note that these cost values are the same for both products, and could have been written as K_{pdz}.

In the optimal solution 'The Hague', 'Gouda' and 'Amersfoort' are selected as distribution centers. 'Haarlem' is served from 'The Hague', 'Maastricht' is served from 'Gouda', and 'Groningen' is served from 'Amersfoort'. The optimal flows through the network are presented in Table 22.4. The graphical representation of the optimal flows is displayed in Figure 22.3. The corresponding total production and transport costs amount to 828,940.8. This optimal solution was obtained with an optimality tolerance of $\varepsilon = 0.0001$ and a total of 15 Benders' cuts.

<table>
<thead>
<tr>
<th>c</th>
<th>p</th>
<th>d</th>
<th>z</th>
<th>$X_{c,p,d,z}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Arnhem</td>
<td>Gouda</td>
<td>Maastricht</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Arnhem</td>
<td>Amersfoort</td>
<td>Groningen</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>Rotterdam</td>
<td>The Hague</td>
<td>Haarlem</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>Rotterdam</td>
<td>Gouda</td>
<td>Maastricht</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>Arnhem</td>
<td>Amersfoort</td>
<td>Groningen</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>Rotterdam</td>
<td>The Hague</td>
<td>Haarlem</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>Rotterdam</td>
<td>Gouda</td>
<td>Maastricht</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 22.4: Optimal flows
Final comments

The computational performance of the Benders’ decomposition method in terms of solution times is inferior when compared to solving the model as a single mathematical program. Nevertheless, the decomposition method provides a solution approach for extremely large model instances, with the added advantage that a feasible solution is available at any iteration. A premature termination of the algorithm (for instance, when the upper bound remains nearly constant) may very well lead to a good near-optimal solution. This observation applies to the data instance provided in this section.

22.10 Summary

In this chapter a facility location problem was translated into a mixed-integer mathematical program. A Benders’ decomposition approach was introduced to support the solution of large model instances. The theory underlying the decomposition method with feasible subproblems was first introduced, and subsequently applied to the facility location model. A flowchart illustrating the general Benders’ decomposition algorithm was presented as the basis for an implementation in AIMMS. A small data set was provided for computational purposes.
Exercises

22.1 Implement the facility location model described in Section 22.2 using the example data presented in Tables 22.1, 22.2 and 22.3.

22.2 Implement the same model by using the Benders’ decomposition approach described in Section 22.4 and further applied in Section 22.7. Verify whether the solution found with AIMMS is the same as the one found without applying Benders’ decomposition.

22.3 Implement the Benders’ decomposition approach based on using the first integer solution found during the solution of the relaxed master model as described in Section 22.8. In AIMMS you need to set the option Maximal number of integer solutions to 1 in order for the MIP solver to stop after it has found the first feasible integer solution.