Chapter 20

A Cutting Stock Problem

This chapter applies a delayed column generation technique to find a set of optimum cutting patterns for a class of cutting stock problems. Each pattern is essentially a column of the underlying linear program. In practical applications, the number of cutting patterns can be extremely large. However, instead of considering the millions of possible cutting patterns, a submodel of the cutting stock problem is systematically built up with new patterns until it contains the optimum solution. The new patterns are added to the submodel by solving an auxiliary integer program, referred to as the column pattern generation model. The chapter begins with a basic model which is then extended.

The methodology for cutting stock problems dates back to work of Gilmore and Gomory ([Gi61, Gi63]). A good exposition on this subject and its underlying theory can also be found in [Ch83].

Keywords: Linear Program, Integer Program, Simplex Method, Column Generation, Mathematical Derivation, Customized Algorithm, Auxiliary Model, Worked Example.

20.1 Problem description

This section introduces a class of cutting stock problems, which are typically encountered in the paper and textile industries.

Materials such as paper and textiles are often produced in long rolls, the length of a truck trailer for instance. These long rolls are referred to as raws. These raws are subsequently cut into smaller portions called finals, with their sizes specified by customers.

A raw can be sliced all the way through so that the diameter of each final has the same diameter as the original raw. This is usually what happens when rolls of paper are cut. The slicing of a raw is illustrated in Figure 20.1.
Assume that a production scheduler has a list which specifies the required number of each final size. He must then develop a production schedule detailing the number of rolls and how they should be cut to meet demand.

The objective of the scheduler is to determine the most economical way to meet the demand. It is assumed that there are no storage space constraints. The objective becomes to minimize the total number of rolls required to make the finals. In this chapter, the more general multi-period inventory case is not addressed. When time periods are considered, the objective is not just to minimize the number of rolls used, but also to consider the storage costs involved.

20.2 The initial model formulation

A natural inclination when initially constructing a model for the cutting stock problem is to consider two sets, namely 'Raws' and 'Finals'. However, on closer inspection, you will note there is only one kind of raw in the problem description. The question then arises: does the set 'Raws' contain only one element (reflecting that only one kind exists), or does this set contain an undetermined number of elements (one for each raw to be cut)? Similarly, should the set 'Finals' contain each final or just the possible sizes of finals? The answer to these questions is not immediately apparent, and further analysis is required.

If you have to write down a model for a small example, it is likely you will develop the concept of a cutting pattern. A cutting pattern is a specific recipe stating for each size of final how many finals are cut from a single raw. Of course, there are several such recipes. For small examples the size of the set of cutting patterns is not exorbitant, but in most real problems the number of possible cutting patterns could be in the millions.

When you have adopted the concept of a cutting pattern as a building block for the model, it is also clear that the set 'Finals' should contain the possible sizes of finals (and not each individual final that is demanded by the customers). This is because the cutting pattern is defined in terms of possible sizes of finals.
Chapter 20. A Cutting Stock Problem

Assume for the duration of this section that the size of the set of cutting patterns is workable. A verbal statement of the model is then as follows.

Verbal model description

Minimize: the number of raws to be used

Subject to:
for all possible sizes of finals: the number of finals produced from cutting raws according to the set of allowable cutting patterns must meet the demand.

The following integer program is a mathematical representation of the verbal model in the previous paragraph.

Mathematical description

Indices:
- \(p \) cutting patterns
- \(f \) finals

Parameters:
- \(d_f \) demand for final \(f \)
- \(a_{fp} \) number of finals \(f \) in cutting pattern \(p \)

Variable:
- \(x_p \) number of raws cut with cutting pattern \(p \)

Minimize:
\[
\sum_p x_p
\]

Subject to:
\[
\sum_p a_{fp} x_p \geq d_f \quad \forall f
\]
\[
x_p \geq 0 \text{ integer} \quad \forall p
\]

As the number of cutting patterns increases, the solution time of the underlying integer programming solver will also increase. In which case, an attractive alternative may be to drop the requirement that \(x_p \) is integer, and just solve the corresponding linear programming model. A straightforward rounding scheme may then be quite sufficient for all practical purposes. The rounded integer solution may not be optimal, but it can easily be made to satisfy the demand requirements.

Relax integer requirement

A simple and useful heuristic is ‘Largest In Least Empty’ (LILE). This heuristic is loosely described in the following four steps.

1. Round the fractional solution values downwards, and determine the unmet demand.
2. Sort the finals in the unmet demand from largest to smallest.
3. Place the largest final from the unmet demand in the least empty raw that can contain this final. If this is not possible, an extra raw must be added.
4. Continue this process until the sorted list of finals from the unmet demand is completely allocated.

It is possible that a pattern generated by this algorithm is one of the patterns used in the relaxed integer programming solution (see Table 20.2 in which pattern 12 is generated again). The LILE algorithm tends to minimize the number of extra raws required, and turns out to work quite well in practice.

Consider an example where the raws are ten meters long, and there are four sizes of finals, namely, 450 cm, 360 cm, 310 cm and 140 cm. The raws can be cut using thirty-seven cutting patterns as shown in Table 20.1.

	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
450 cm	2	1	1	1	1	1	1	1	1	0	1	2	3	4	5	6	7	8	9
360 cm	1	1								2	2	2	1	1	1	1	1	1	1
310 cm		1	1							2	1	1	1						
140 cm	1	1		3	2	1	2	1	1	1	1	1	1	1	1	1	1	1	1

	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	
450 cm	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	
360 cm	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7		
310 cm	3	2	2	2	1	1	1	1	1										
140 cm	1	2	1	4	3	2	1	7	6	5	4	3	2	1					

Table 20.1: Thirty-seven cutting patterns to cut a raw of size 1000

With the use of all thirty-seven cutting patterns, the minimum number of raws required according to the linear programming solution is 452\(\frac{1}{4}\). As expected, the number of times a cutting pattern is used in the optimal solution is fractional. One of the optimal solutions is listed in Table 20.2. Rounding this optimal fractional linear programming solution, using the LILE heuristic, gives an integer objective function value of 453 required raws. This number of 453 is optimal, because the linear programming objective function value of 452\(\frac{1}{4}\) is a lower bound for the integer objective function value, and 453 is the first integer in line.

20.3 Delayed cutting pattern generation

Problems commonly encountered in the paper industry involve raws and finals of arbitrary sizes. The number of possible cutting patterns can then grow into the millions and the approach of the previous section is no longer workable. This section describes an algorithm that makes the problem workable by limiting the number of possible cutting patterns. Instead of going explicitly through millions of cutting patterns, a cutting stock submodel is systematically
Chapter 20. A Cutting Stock Problem

Finals

<table>
<thead>
<tr>
<th></th>
<th>Optimal Patterns</th>
<th>LILE Patterns</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 cm</td>
<td>1 10 12 13</td>
<td>1 2 1</td>
<td>97</td>
</tr>
<tr>
<td>360 cm</td>
<td>2 2 1</td>
<td>1 2</td>
<td>610</td>
</tr>
<tr>
<td>310 cm</td>
<td>2</td>
<td>1 1</td>
<td>395</td>
</tr>
<tr>
<td>140 cm</td>
<td>1</td>
<td>2 1</td>
<td>211</td>
</tr>
<tr>
<td>Fractional Solution</td>
<td>48 1 105 1 100 1 197 1</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>LILE Solution</td>
<td>48 105 100 197</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 20.2: The solutions: linear programming versus LILE

built up to contain the optimum solution by adding patterns identified by solving an auxiliary integer program, referred to as the column pattern generation model.

The first step of the algorithm is to create a submodel of the cutting stock problem which contains a set of cutting patterns which will satisfy the requirements. Clearly, this initial set will not (necessarily) be optimal. This submodel is then solved. Using the resulting shadow prices in conjunction with simplex method theory, it is possible to formulate an auxiliary model (cutting pattern generation model) integer program. Solving this model identifies one cutting pattern which is then added to the cutting stock submodel to improve its objective (i.e. to reduce the number of raws). The cutting stock submodel with this extra pattern, is then solved. The process is repeated (using updated shadow prices) until the submodel contains the set of optimum cutting patterns. In practice, the total number of new cutting patterns generated by the cutting pattern generation model is quite small and so the overall algorithm is very efficient.

Like in Chapter 19, this algorithm is based on the simplex method. However, the approach differs because it takes advantage of the fact that all objective function coefficients in the cutting stock model are identical, while the ones in the file merge model are not. You are referred to Chapter 19 for a discussion of the simplex method and the application of shadow prices and reduced costs.

The iterative solving of the cutting stock submodel and the cutting pattern generation program is summarized below.

Initialize cutting stock submodel
WHILE progress is being made DO
 Solve cutting stock submodel
 Solve cutting pattern generation model
 IF new cutting pattern will lead to improvement
 THEN add it to cutting stock submodel
ENDWHILE

Algorithm description

New approach

Iteration between two models
The cutting stock submodel can be initialized in many ways. The simplest option is to include one pattern for each final size. With each pattern consisting of the maximum number of finals that can be cut from the raw. For example, for the model in the previous section, you could use patterns 1, 12, 22 and 31. By selecting patterns which include all final sizes, then the first solution will be feasible (but not necessarily optimal).

In addition to the four initial patterns, patterns 10 and 13 were generated by the cutting pattern generation program. These six patterns were sufficient to determine an optimal solution of the cutting stock model.

Assume there is some cutting pattern \(y \) which is not part of the cutting stock submodel. Let \(y_f \) be a component of this vector. Each such component corresponds to the number of finals of size \(f \) used in the cutting pattern. In addition to \(y_f \), let \(\lambda_f \) denote the shadow price associated with each demand requirement \(f \) in the cutting stock submodel. Then cutting pattern \(y \) should be added to the submodel whenever

\[
1 - \sum_f \lambda_f y_f < 0
\]

This condition is the reduced cost criterion in the simplex method when applied to the cutting stock model.

An auxiliary cutting pattern generation model can now be proposed based on the following three observations. First of all, the numbers \(y_f \) making up a cutting pattern must be nonnegative integers. Secondly, their values must be such that the cutting pattern does not require more than the total width of a raw. Thirdly, the new cutting pattern values should offer the opportunity to improve the objective function value of the reduced cutting stock problem as discussed in the previous paragraphs. Let \(w_f \) denote the required width of final \(f \), and let \(W \) denote the total width of a raw. Then the three observations can be translated into the following model constraints.

\[
\begin{align*}
y_f & \geq 0, \text{ integer } \forall f \quad (1) \\
\sum_f w_f y_f & \leq W \quad (2) \\
1 - \sum_f \lambda_f y_f & < 0 \quad (3)
\end{align*}
\]

The above model formulation contains a strict inequality and it must be manipulated before using a solver which is based on inequalities. There is one observation that makes it possible to rewrite the above system as a mixed-integer linear programming model. Whenever the term \(\sum_f \lambda_f y_f \) is greater than one, the last inequality is satisfied. You could write this term as an objective function to be maximized subject to the first two constraints. Whenever the optimal value of this mathematical program is greater than one, you have found an interesting cutting pattern. Whenever this optimal value is less than
or equal to one, you know that there does not exist a cutting pattern that can improve the objective value of the reduced cutting stock problem expressed as $\sum_f \lambda_f y_f$. This observation results in the following cutting pattern generation model.

\[
\text{Maximize:} \quad \sum_f \lambda_f y_f
\]

\[
\text{Subject to:} \quad \sum_f w_f y_f \leq W
\]

\[
y_f \geq 0, \quad \text{integer} \quad \forall f
\]

The implementation of this model in AIMMS is straightforward since the λ_f’s are calculated during each solve iteration and can be directly accessed. It is important to allow numerical inaccuracies in the computed shadow prices. For this reason, it is generally advisable to use a small tolerance $\delta > 0$ when verifying whether a new pattern will lead to improvement. The mathematical condition to be verified for progress then becomes

\[
\sum_f \lambda_f y_f \geq 1 + \delta
\]

The value of δ is typically in the order of 10^{-4}. When δ is too small, the overall algorithm may not converge. In that case the cutting pattern generation model produces the same new pattern every time it is solved.

The transformation of the initial auxiliary model into a MIP model is strongly dependent on the property that all objective function coefficients are identical. Without this property, it is not meaningful to translate a strict inequality of the form $c_y - \sum_f \lambda_f y_f < 0$ into an objective function of the form $\sum_f \lambda_f y_f$ as has been done. Without identical coefficients, the stopping criterion in the delayed column generation algorithm is no longer correct. The reason is that when $c_{y^*} - \sum_f \lambda_f y_{f^*} \geq 0$ holds for an optimal solution y^* (indicating termination), it is still possible that $c_\hat{y} - \sum_f \lambda_f \hat{y}_f < 0$ holds for some other solution \hat{y} due to a smaller value of $c_{\hat{y}}$.

\[
\text{Identical objective coefficients}
\]

\[
\text{Allowing inaccuracies}
\]
20.4 Extending the original cutting stock problem

In this section three possible extensions to the original cutting stock model are introduced and subsequently incorporated into a single new cutting stock model.

One extension is to include several types of raws. Each type with its own length. This will result in a large increase in the overall number of cutting patterns to be considered when solving the underlying model.

Another extension is to include the purchase cost of each type of raw. This changes the objective function of the underlying model. Rather than minimizing the number of raws to be used, the objective is to minimize the cost of raws.

The third extension is to introduce machine capacity restrictions. It is assumed that there is an upper bound on the number of raws of each type that can be cut on the available machines during a fixed period of time. It is assumed that these upper bounds are not dependent on each other.

The resulting extended cutting stock problem can be translated into the following mathematical model.

Indices:
- \(r \) : types of raws
- \(p \) : cutting patterns
- \(f \) : finals

Parameters:
- \(c_r \) : unit cost of raws of type \(r \)
- \(d_f \) : required demand for final \(f \)
- \(a_{fp} \) : number of finals \(f \) in pattern \(p \) for raws of type \(r \)
- \(k_r \) : available capacity for raws of type \(r \)

Variable:
- \(x_{pr} \) : number of raws of type \(r \) cut with pattern \(p \)

Minimize:
\[
\sum_{p,r} c_r x_{pr}
\]

Subject to:
\[
\sum_{p} a_{fp} x_{pr} \geq d_f \quad \forall f
\]
\[
\sum_{p} x_{pr} \leq k_r \quad \forall r
\]
\[
x_{pr} \geq 0, \ \text{integer} \quad \forall (p,r)
\]
With the extension of multiple raws and varying cost coefficients, it is no longer clear whether the delayed column generation algorithm of the previous section is applicable. The previous auxiliary model, finds a cutting pattern for just a single size of raw, and the contribution of a new cutting pattern is compared to the constant value of 1.

Observe, however, that the cost coefficients are constant for all patterns belonging to a single type of raw. This implies that the idea of cutting pattern generation can still be applied as long as each type of raw is considered separately. The resulting generalized delayed pattern generation algorithm is summarized below.

\[
\text{WHILE progress is being made DO}
\]
\[
\text{Solve cutting stock submodel}
\]
\[
\text{FOR each type of raw DO}
\]
\[
\text{Solve cutting pattern generation model}
\]
\[
\text{IF new cutting pattern will lead to improvement}
\]
\[
\text{THEN add it to cutting stock submodel}
\]
\[
\text{ENDFOR}
\]
\[
\text{ENDWHILE}
\]

As a result of the extra capacity constraints, the condition to check whether a new pattern will lead to improvement needs to be modified. Let \(\pi_r \) denote the shadow price associated with the capacity constraint for raws of type \(r \) obtained after solving the cutting stock submodel. Then any cutting pattern \(y^r \) produced by the auxiliary pattern generation model for raws of type \(r \) will lead to an improvement only if

\[
 c_r - \pi_r - \sum_f \lambda_f y^r_f < 0
\]

This condition is the reduced cost criterion in the simplex method applied to the extended cutting stock model developed in this section.

Recall from the previous section that the inaccuracies in the shadow price computation need to be taken into account. By again introducing a \(\delta > 0 \), the above condition can be rewritten as

\[
\sum_f \lambda_f y^r_f \geq c_r - \pi_r + \delta
\]

In the above delayed pattern generation algorithm summary, the auxiliary model is solved for every type of raw \(r \) before solving the next cutting stock submodel. An alternative approach is to solve the cutting stock model as soon as one new interesting pattern has been found. You might want to investigate this alternative when the time required to solve the cutting pattern generation model is large relative to the time required to solve the cutting stock submodel.
Consider three types of raws (600 cm, 800 cm and 1000 cm) and the same four final sizes as in Section 20.2 (140 cm, 310 cm, 360 cm and 450 cm). The corresponding demand for these finals is 100, 300, 500 and 200 respectively. The unit cost and the available capacity associated with each raw type is presented in Table 20.3.

<table>
<thead>
<tr>
<th>Raw</th>
<th>(c_r)</th>
<th>(k_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 cm</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>800 cm</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>1000 cm</td>
<td>40</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 20.3: Raw type data

20.5 Summary

In this chapter a cutting stock problem was translated into a mathematical formulation based on the concept of cutting patterns. Due to the large number of cutting patterns in practical applications, a delayed column generation approach using a cutting stock submodel was introduced. This approach solves an auxiliary integer programming model to produce a single new cutting pattern which is then added to the cutting stock submodel. The auxiliary model has been developed in detail, and the overall solution approach has been outlined. The algorithm can easily be implemented in AIMMS.

Exercises

20.1 Implement the cutting stock model described in Section 20.2 using the example data presented in Table 20.1. Write a small procedure in AIMMS to round the optimal linear programming solution using the Largest-In-Least-Empty heuristic.

20.2 Implement the delayed cutting pattern generation approach described in Section 20.3 in AIMMS as an iteration between two models. Check whether the optimal solution found is the same as the one found previously.

20.3 Implement the extension of the initial cutting stock model, which is described in Section 20.4. Verify that the optimal objective function value equals 15,600 using the example data from Section 20.4.
Bibliography

