Part V

Optimization Modeling Components
Chapter 14

Variable and Constraint Declaration

The word variable does not have a uniform meaning. In general, programmers view a variable as a known but varying quantity that receives its value through direct assignments. However, in the context of constraints in AIMMS, the word variable denotes an unknown quantity. Constraints can be grouped together to form a system of simultaneous equations and/or inequalities, which is referred to as a mathematical program. Variables in a mathematical program are assigned values when a solver (a solution algorithm) finds a solution for the unknowns in the system.

When used outside the scope of constraints and the solution of mathematical programs, variables in AIMMS behave essentially the same as parameters in AIMMS. Like parameters, variables can be initialized, used as known quantities in assignment statements, and be referred to as data from within the graphical user interface.

14.1 Variable declaration and attributes

Variables have some additional attributes above those of parameters. These extra attributes are used to steer a solver, or to hold additional information about solution values provided by the solver. The possible attributes of variables are given in Table 14.1.

By specifying the IndexDomain attribute you can restrict the domain of a variable in the same way as that of a parameter. For variables, however, the domain restriction has an additional effect. During the generation of individual constraints AIMMS will reduce the size of the generated mathematical program by including only those variables that satisfy all domain restrictions.

The values of the Range attribute of variables determine the bounds that are passed on to the solver. In addition, during an assignment, the Range attribute restricts the range of allowed values that can be assigned to a particular interval (as for parameters). The possible values for the Range attribute are:

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Similarity of parameters and variables</th>
<th>Declaration and attributes</th>
<th>Index domain for variables</th>
<th>The Range attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>The word variable does not have a uniform meaning. In general, programmers view a variable as a known but varying quantity that receives its value through direct assignments. However, in the context of constraints in AIMMS, the word variable denotes an unknown quantity. Constraints can be grouped together to form a system of simultaneous equations and/or inequalities, which is referred to as a mathematical program. Variables in a mathematical program are assigned values when a solver (a solution algorithm) finds a solution for the unknowns in the system.</td>
<td>When used outside the scope of constraints and the solution of mathematical programs, variables in AIMMS behave essentially the same as parameters in AIMMS. Like parameters, variables can be initialized, used as known quantities in assignment statements, and be referred to as data from within the graphical user interface.</td>
<td>Variables have some additional attributes above those of parameters. These extra attributes are used to steer a solver, or to hold additional information about solution values provided by the solver. The possible attributes of variables are given in Table 14.1.</td>
<td>By specifying the IndexDomain attribute you can restrict the domain of a variable in the same way as that of a parameter. For variables, however, the domain restriction has an additional effect. During the generation of individual constraints AIMMS will reduce the size of the generated mathematical program by including only those variables that satisfy all domain restrictions.</td>
<td>The values of the Range attribute of variables determine the bounds that are passed on to the solver. In addition, during an assignment, the Range attribute restricts the range of allowed values that can be assigned to a particular interval (as for parameters). The possible values for the Range attribute are:</td>
</tr>
</tbody>
</table>
Chapter 14. Variable and Constraint Declaration

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value-type</th>
<th>See also page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndexDomain</td>
<td>index-domain</td>
<td>44</td>
</tr>
<tr>
<td>Range</td>
<td>range</td>
<td>45</td>
</tr>
<tr>
<td>Default</td>
<td>constant-expression</td>
<td>46</td>
</tr>
<tr>
<td>Unit</td>
<td>unit-expression</td>
<td>47, 508</td>
</tr>
<tr>
<td>Priority</td>
<td>expression</td>
<td></td>
</tr>
<tr>
<td>NonvarStatus</td>
<td>expression</td>
<td></td>
</tr>
<tr>
<td>RelaxStatus</td>
<td>expression</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>NoSave, numeric-storage-property, Inline</td>
<td>34, 47</td>
</tr>
<tr>
<td></td>
<td>SemiContinuous, Basic, Stochastic, Adjust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ReducedCost, ValueRange, CoefficientRange,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>constraint-related-sensitivity-property</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>string</td>
<td>19</td>
</tr>
<tr>
<td>Comment</td>
<td>comment string</td>
<td>19</td>
</tr>
<tr>
<td>Definition</td>
<td>expression</td>
<td>34, 47</td>
</tr>
<tr>
<td>Stage</td>
<td>expression</td>
<td>220, 312</td>
</tr>
<tr>
<td>Dependency</td>
<td>expression</td>
<td>220, 339</td>
</tr>
</tbody>
</table>

Table 14.1: Variable attributes

- one of the predefined ranges Real, Nonnegative, Nonpositive, Integer or Binary,
- any one of the interval expressions \([a, b], [a, b), (a, b)\) or \((a, b)\), where \(a\) and \(b\) can be a constant number, \(\text{inf}, -\text{inf}\) or a parameter reference involving some or all of the indices on the index list of the declared variable,
- any enumerated integer set expression, e.g. \(\{a .. b\}\) with \(a\) and \(b\) as above, or
- an integer set identifier.

If you specify Real, Nonnegative, Nonpositive, or an interval expression, AIMMS will interpret the variable as a continuous variable. If you specify Integer, Binary or an integer set expression, AIMMS will interpret the variable as a binary or integer variable.

The following example illustrates a simple variable declaration.

Example

Variable Transport {
 IndexDomain : (i,j) in Connections;
 Range : [MinTransport(i), Capacity(i,j)];
}

The declaration of the variable Transport(i,j) sets its lower bound equal to \(\text{MinTransport}(i)\) and its upper bound to \(\text{Capacity}(i,j)\). When generating the mathematical program, the variable Transport will only be generated for those
tuples \((i,j)\) that lie in the set \(\text{Connections}\). Note that the specification of the lower bound only uses a subdomain \((i)\) of the full index domain of the variable \((i,j)\).

Besides using the \textit{Range} attribute to specify the lower and upper bounds, you can also use the \textit{.Lower} and \textit{.Upper} suffixes in assignment statements to accomplish this task. The \textit{.Lower} and \textit{.Upper} suffixes are attached to the name of the variable, and, as a result, the corresponding bounds are defined for the entire index domain. This may lead to increased memory usage when variables share their bounds for slices of the domain. For this reason, you are advised to use the \textit{Range} attribute as much as possible when specifying the lower and upper bounds.

You can only make a bound assignment with either the \textit{.Lower} or \textit{.Upper} suffix when you have not used a parameter reference (or a non-constant expression) at the corresponding position in the \textit{Range} attribute. Bound assignments via the \textit{.Lower} and \textit{.Upper} suffixes must always lie within the range specified in the \textit{Range} attribute.

Consider the variable \textit{Transport} declared in the previous example. The following assignment to \textit{Transport.Lower}(i,j) is not allowed, because you have already specified a parameter reference at the corresponding position in the \textit{Range} attribute.

\[
\text{Transport.Lower}(i,j) := \text{MinTransport}(i) ;
\]

On the other hand, given the following declaration,

\begin{verbatim}
Variable Shipment {
 IndexDomain : (i,j) in Connections;
 Range : Nonnegative;
}
\end{verbatim}

the following assignment is allowed:

\[
\text{Shipment.Lower}(i,j) := \text{MinTransport}(i);
\]

\texttt{AIMMS} will produce a run-time error message if any value of \textit{MinTransport}(i) is less than zero, because this violates the bound in the \textit{Range} attribute of the variable \textit{Shipment}.

Variables that have not been initialized, evaluate to a default value automatically. These default values are also passed as initial values to the solver. You can specify the default value using the \textit{Default} attribute. The value of this attribute \textit{must} be a constant expression. If you do not provide a default value, \texttt{AIMMS} will use a default of 0.
Providing a `Unit` for every variable and constraint in your model will help you in a number of ways.

- AIMMS will help you to check the consistency of all your constraints and assignments in your model, and
- AIMMS will use the units to scale the model that is sent to the solver.

Proper scaling of a model will generally result in a more accurate and robust solution process. You can find more information on the definition and use of units to scale mathematical programs in Chapter 32.

It is not unusual that symbolic constraints in a model are equalities defining just one variable in terms of others. Under these conditions, it is preferable to provide the definition of the variable through its `Definition` attribute. As a result, you no longer need to specify extra constraints for just variable definitions. In the constraint listing, the constraints associated with a defined variable will be listed with a generated name consisting of the name of the variable with an additional suffix “.definition”.

The following example defines the total cost of transport, based on unit transport cost and actual transport taking place.

```aimms
Variable TransportCost {
    Definition : sum((i,j), UnitTransportCost(i,j)*Transport(i,j));
}
```

14.1.1 The `Priority`, `Nonvar` and `RelaxStatus` attributes

With the `Priority` attribute you can assign priorities to integer variables (or continuous variables when using the solver BARON). The value of this attribute must be an expression using some or all of the indices in the index domain of the variable, and must be nonnegative and integer. All variables with priority zero will be considered last by the branch-and-bound process of the solver. For variables with a positive priority value, those with the highest priority value will be considered first.

Alternatively, you can specify priorities through assignments to the `.Priority` suffix. This is only allowed if you have not specified the `Priority` attribute. In both cases, you can use the `.Priority` suffix to refer to the priority of a variable in expressions.
The solution algorithm (i.e., solver) for integer and mixed-integer programs initially solves without the integer restriction, and then adds this restriction one variable at a time according to their priority. By default, all integer variables have equal priority. Some decisions, however, have a natural order in time or space. For example, the decision to build a factory at some site comes before the decision to purchase production capacity for that factory. Obeying this order naturally limits the number of subsequent choices, and could speed up the overall search by the solution algorithm.

You can use the NonvarStatus attribute to tell AIMMS which variables should be considered as parameters during the execution of a SOLVE statement. The value of the NonvarStatus attribute must be an expression in some or all of the indices in the index list of the variable, allowing you to change the nonvariable status of individual elements or groups of elements at once.

The sign of the NonvarStatus value determines whether and how the variable is passed on to the solver. The following rules apply.

- If the value is 0 (the default value), the corresponding individual variable is generated, along with its specified lower and upper bounds.
- If the value is negative, the corresponding individual variable is still generated, but its lower and upper bounds are set equal to the current value of the variable.
- If the value is positive, the corresponding individual variable is no longer generated but passed as a constant to the solver.

When you specify a negative value, you will still be able to inspect the corresponding reduced cost values. In addition, you can modify the nonvariable status to zero without causing AIMMS to regenerate the model. When you specify a positive value, the size of the mathematical program is kept to a minimum, but any subsequent changes to the nonvariable status will require regeneration of the model constraints.

Alternatively, you can change the nonvariable status through assignments to the .NonVar suffix. This is only allowed if you have not specified the NonvarStatus attribute. In both cases, you can use the .NonVar suffix to refer to the variable status of a variable in expressions.

By altering the nonvariable status of variables you are essentially reconfiguring your mathematical program. You could, for instance, reverse the role of an input parameter (declared as a variable with negative nonvariable status) and an output variable in your model to observe what input level is required to obtain a desired output level. Another example of temporary reconfiguration is to solve a smaller version of a mathematical program by first discarding selected variables, and then changing their status back to solve the larger mathematical program using the previous solution as a starting point.
With the `RelaxStatus` attribute you can tell AIMMS to relax the integer restriction for those tuples in the domain of an integer variable for which the value of the relax status is nonzero. AIMMS will generate continuous variables for such tuples instead, i.e. variables which may assume any real value between their bounds.

Alternatively, you can relax integer variables by making assignments to the `.Relax` suffix. This is only allowed if you have not specified the `RelaxStatus` attribute. In both cases, you can use the `.Relax` suffix to refer to the relax status of a variable in expressions.

When solving large mixed integer programs, the solution times may become unacceptably high with an increase in the number of integer variables. You can try to resolve this by relaxing the integer condition of some of the integer variables. For instance, in a multi-period planning model, an accurate integer solution for the first few periods and an approximating continuous solution for the remaining periods may very well be acceptable, and at the same time reduce solution times drastically.

As you will see in Chapter 15, there are several types of mathematical programs. By changing the nonvariable and/or relax status of variables you may alter the type of your mathematical program. For instance, if your constraints contain a nonlinear term $x \cdot y$, then changing the nonvariable status of either x or y will change it into a linear term. Eventually, this may result in a nonlinear mathematical program becoming a linear one. Similarly, changing the nonvariable or relax status of integer variables may at some point change a mixed integer program into a linear program.

14.1.2 Variable properties

Variables can have one or more of the following properties: `NoSave`, `Inline`, `SemiContinuous`, `ReducedCost`, `CoefficientRange`, `ValueRange`, `Stochastic`, and `Adjustable`. They are described in the paragraphs below.

You can also change the properties of a variable during the execution of your model by calling the `PROPERTY` statement. Identifier properties are changed by adding the property name as a suffix to the identifier name in a `PROPERTY` statement. When the value is set to `off`, the property no longer holds.

With the property `NoSave` you indicate that you do not want to store data associated with this variable in a case. This property is especially suited for those identifiers that are intermediate quantities in the model, and that are not used anywhere in the graphical end-user interface.
With the property Inline you can indicate that AIMMS should substitute all references to the variable at hand by its defining expression when generating the constraints of a mathematical program. Setting this property only makes sense for defined variables, and will result in a mathematical program with less rows and columns but with a (possibly) larger number of nonzeros. After the mathematical program has been solved, AIMMS will compute the level values of all inline variables by evaluating their definition. However, no sensitivity information will be available.

To any continuous or integer variable you can assign the property SemiContinuous. This indicates to the solver that this variable is either zero, or lies within its specified range. Not all solvers support semi-continuous variables. In the latter case, AIMMS will automatically add the necessary constraints to the model.

14.1.3 Sensitivity related properties

With the Basic property you can instruct AIMMS to retrieve basic information of a specific variable from the solver. If retrieved, basic information can be accessed through the .Basic suffix. The basic information is presented as an element in the predefined AIMMS set AllBasicValues (i.e. {Basic, Nonbasic, Superbasic}). In linear programming a variable will either be basic or nonbasic, while in nonlinear programming the number of variables with zero reduced cost can be larger than the number of constraints. The solution algorithm then divides these variables into so-called basics and superbasics. The basic variables define a square system of nonlinear equations which is solved for fixed values of the remaining variables. The superbasics are assigned a fixed value between their bounds, while the nonbasics take their value at a bound.

You can use the ReducedCost property to specify whether you are interested in the reduced cost values of the variable after each SOLVE step. Storing the reduced costs of all variables may be very memory consuming, therefore, the default in AIMMS is not to store these values. If reduced costs are requested, the stored values can be accessed through the suffices .ReducedCost or .m.

The reduced cost indicates by how much the cost coefficient in the objective function should be reduced before the variable becomes active (off its bound). By definition, the reduced cost value of a variable between its bounds is zero. The precise mathematical interpretation of reduced cost is discussed in most text books on mathematical programming. Note: if a basic or superbasic variable has a reduced cost of zero then it will be displayed as 0.0, but if a nonbasic variable has a reduced cost of zero then it will be displayed as ZERO.
When the variables in your model have an associated unit (see Chapter 32), special care is required in interpreting the values returned through the .ReducedCost suffix. To obtain the reduced cost in terms of the units specified in the model, the values of the .ReducedCost suffix must be scaled as explained in Section 32.5.1.

With the property CoefficientRange you request AIMMS to conduct a first type of sensitivity analysis on this variable during a SOLVE statement of a linear program. The result of this sensitivity analysis are three parameters, representing the smallest, nominal, and largest values for the objective coefficient of the variable so that the optimal basis remains constant. Their values are accessible through the suffices .SmallestCoefficient, .NominalCoefficient and .LargestCoefficient.

With the property ValueRange you request AIMMS to conduct a second type of sensitivity analysis during a SOLVE statement of a linear program. The result of the sensitivity analysis are two parameters, representing the smallest and largest values that the variable can take while holding the objective value constant. Their values are accessible through the .SmallestValue and .LargestValue suffices.

AIMMS only supports the sensitivity analysis conducted through the properties CoefficientRange and ValueRange for linear mathematical programs. If you want to apply these types of analysis to the final solution of a mixed-integer program, you should fix all integer variables to their final solution (using the .NonVar suffix) and re-solve the resulting mathematical program as a linear program (e.g. by adding the clause WHERE type:='lp' to the SOLVE statement).

Setting any of the properties ReducedCost, CoefficientRange or ValueRange may result in an increase of the memory usage. In addition, the computations required to compute the ValueRange may considerably increase the total solution time of your mathematical program.

Whenever a defined variable (which is not declared Inline) is part of a mathematical program, AIMMS implicitly adds a constraint to the generated model expressing this definition. In addition to the variable-related sensitivity properties discussed in this section, you can specify the constraint-related sensitivity properties ShadowPrice, RightHandSideRange and ShadowPriceRange (see also Section 14.2) for such variables to obtain the sensitivity information that can be related to these constraint. You can access the requested sensitivity information by appending the associated suffices to the name of the defined variable.
14.1.4 Uncertainty related properties and attributes

The AIMMS modeling language offers facilities for both stochastic programs and robust optimization models. For both types of models you can specify special variable properties and attributes to define uncertainty-related relationships.

Through the Stochastic property you can indicate that, within a stochastic model, the variable can hold scenario-dependent solutions. AIMMS will add a Stage attribute for every variable for which the Stochastic property has been set.

The value of the Stage attribute must be a numerical expression evaluating to an integer number indicating the stage at the end of which the variable takes its value during the solution process of a stochastic model. Stochastic programming, and the Stochastic property and Stage attribute are discussed in full detail in Section 19.2.

By setting the Adjustable property for a variable, you indicate that a variable in a robust optimization model has a functional dependency on some or all of the uncertain parameters in the model. If you declare a variable to be adjustable, the Dependency attribute also becomes available for that variable.

Through the Dependency attribute you specify the precise collection of uncertain parameters on which the variable at hand depends. At this moment, AIMMS only supports affine relations between uncertain parameters and adjustable variables. The precise semantics of the Dependency attribute is discussed in Section 20.4.

14.2 Constraint declaration and attributes

Constraints form the major mechanism for specifying a mathematical program in AIMMS. They are used to restrict the values of variables with interlocking relationships. Constraints are numerical relations containing expressions in terms of variables, parameters and constants.

The possible attributes of constraints are given in Table 14.2.

Restricting the domain of constraints through the IndexDomain attribute influences the matrix generation process. Constraints are generated only for those tuples in the index domain that satisfy the domain restriction.
Chapter 14. Variable and Constraint Declaration

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value-type</th>
<th>See also page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndexDomain</td>
<td>index-domain</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>unit-valued expression</td>
<td>44, 47, 508</td>
</tr>
<tr>
<td>Text</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>comment string</td>
<td></td>
</tr>
<tr>
<td>Definition</td>
<td>expression</td>
<td>19, 19</td>
</tr>
<tr>
<td>Property</td>
<td>NoSave, Sos1, Sos2, IndicatorConstraint, Level, Bound, Basic, ShadowPrice, RightHandSideRange, ShadowPriceRange, IsDiversificationFilter, IsRangeFilter, IncludeInLazyConstraintPool, IncludeInCutPool, Chance</td>
<td>34, 47, 217</td>
</tr>
<tr>
<td>SosWeight</td>
<td>sos-weights</td>
<td></td>
</tr>
<tr>
<td>ActivatingCondition</td>
<td>expression</td>
<td></td>
</tr>
<tr>
<td>Probability</td>
<td>expression</td>
<td>229, 337</td>
</tr>
<tr>
<td>Aproximation</td>
<td>element-expression</td>
<td>229, 338</td>
</tr>
</tbody>
</table>

Table 14.2: Constraint attributes

With the Definition attribute of a constraint you specify a numerical relationship between variables in your model. Without a definition a constraint is indeterminate. Constraint definitions consist of two or three expressions separated by one of the relational operators “=”, “>=” or “<=”.

The following constraints express the simultaneous requirements that the sum of all transports from a city \(i \) must not exceed \(\text{Supply}(i) \), and that for each city \(j \) the \(\text{Demand}(j) \) must be met.

```plaintext
Constraint SupplyConstraint {
    IndexDomain : i;
    Unit : kton;
    Definition : sum( j, Transport(i,j) ) <= Supply(i);
}

Constraint DemandConstraint {
    IndexDomain : j;
    Unit : kton;
    Definition : sum( i, Transport(i,j) ) >= Demand(j);
}
```

If \(a \) and \(b \) are expressions consisting of only parameters and \(f(x,...) \) and \(g(x,...) \) are expressions containing parameters and variables, the following two kinds of relationships are allowed.

\[
a \leq f(x,...) \leq b \quad \text{or} \quad f(x,...) \geq g(x,...)
\]
where \geq denotes any of the relational operators "=" "\geq" or "\leq". Either a or b can be omitted if there is no lower or upper bound on the expression $f(x,\ldots)$, respectively. When both a and b are present, the constraint is referred to as a ranged constraint. The expressions may have linear and nonlinear terms, and may utilize the full range of intrinsic functions of AIMMS except for the random number functions.

You must take extreme care to ensure continuity when the constraints in your model contain logical conditions that include references to variables. Such constraints are viewed by AIMMS as nonlinear constraints, and thus can only be passed to a solver that can handle nonlinearities. It is possible that the outcome of a logical condition, and thus the form of the constraint, changes each time the underlying solver asks AIMMS for function values and gradients. For example, if $x(i)$ is a decision variable, and a constraint contains the expression

$$\sum[i, \text{if } (x(i) > 0) \text{ then } x(i)^2 \text{ endif }]$$

it may or may not contain the term $x(i)^2$, depending on the current value of $x(i)$. In this example, both the expression and its gradient are continuous functions at $x(i) = 0$.

14.2.1 Constraint properties

With the Property attribute you can specify further characteristics of the constraint at hand. The possible properties of a constraint are NoSave, Sos1, Sos2, Level, Bound, Basic, ShadowPrice, RightHandSideRange, and ShadowPriceRange.

When you specify the NoSave property you indicate that you do not want AIMMS to store data associated with the constraint in a case, regardless of the specified case identifier selection.

14.2.2 SOS properties

The constraint types Sos1 and Sos2 are used in mixed integer programming, and mutually exclusive. In the context of mathematical programming SOS is an acronym for Special Ordered Sets. A SOS set is associated with every (individual) constraint of type Sos1 or Sos2.

When you specify that a constraint is of type Sos1 or Sos2, an additional SOS-specific attributes becomes available, namely the SosWeight attributes. With this attributes, you can provide further information to the solver about the contents and ordering of the SOS set to be associated with the constraint.
A type Sos1 constraint specifies to the solver that at most one of the variables within the SOS set associated with the constraint is allowed to be nonzero, while all other variables in the SOS set must be zero. Inside a Sos1 constraint all variables in the SOS set must have a lower bound of zero and an upper bound greater than zero.

A type Sos2 constraint specifies to the solver that at most two consecutive variables within the SOS set associated with the constraint are allowed to be nonzero, while all other variables within the SOS set must be zero. All individual variables within the SOS set must have a lower bound of zero and an upper bound greater than zero. The order of the individual variables within the SOS set is determined by their weights (as specified in the SosWeight attribute), where the ordering is from low to high weight.

With the SosWeight attribute you must specify the contents of the SOS set to be associated with a Sos1 or Sos2 constraint, as well the ordering of its elements. Section 7.5 of the AIMMS book on Optimization Modeling describes how these weights are used during the branch-and-bound process. The syntax of the SosWeight attribute is as follows.

\[\text{sos-weights} : \]

Within the SosWeight attribute you can (but need not) specify a weight for every variable occurring in the constraint. Each weight must be an expression using all the indices in the index domain of the variable plus some or all of the indices in the index domain of the constraint. All weights specified for a particular constraint must be unique, i.e. you cannot specify the same weight for two (individual) variables. The SOS set to be associated with the constraint will be constructed from all variables—within the domain of both the constraint and variable—for which a nonzero weight has been specified in the SosWeight attribute, i.e. if the value of the specified weight is 0.0 for a particular tuple, the corresponding individual variable will not be included in the SOS set. The ordering of variables within the SOS set is from low to high weight.

If you do not specify SOS weights, AIMMS will make sure that ordering of variables in each SOS set is consistent over all SOS sets. If you specify SOS weights yourself, you have to make sure that the variable orderings of all SOS sets of type Sos2 are consistent, or your model might become infeasible if feasibility requires that two adjacent variables in one SOS set become nonzero, which are ordered inconsistently in another SOS set. Therefore, AIMMS requires that you
specify the SosWeight attributes for all SOS constraints in your model, whenever you specify it for one SOS constraint.

The following is specification of Sos2 constraint to determine the variable \(y \) piece-wise linearly from a variable \(x(i) \).

```plaintext
Constraint DetermineY {
    Property   : Sos2;
    Definition : y = sum[ i, x(i)*c(i) ];
    SosWeight  : x(i) : XWeight(i);
}
```

14.2.3 Solution pool filtering

During the solution process of a MIP problem, the solvers CPLEX and GUROBI are capable of storing multiple feasible integer solutions in a solution pool, for instance, to capture solutions with attractive properties that are hard to express in a linear fashion.

While populating the solution pool, CPLEX offers advanced filtering capabilities, allowing you to control which solutions end up in the solution pool. CPLEX provides two predefined ways to filter solutions:

- if you want to filter solutions based on their difference as compared to a reference solution, use a diversity filter, or
- if you want to filter solutions based on their validity in an additional linear constraint, use a range filter.

To enable filters the CPLEX option Do_Populate need to be on.

A diversity filter allows you to generate solutions that are similar to (or different from) a set of reference values that you specify for a set of binary variables. In particular, you can use a diversity filter to generate more solutions that are similar to an existing solution or to an existing partial solution. Several diversity filters can be used simultaneously, for example, to generate solutions that share the characteristics of several different solutions.

In AIMMS, a constraint is used as a diversity filter if the constraint property IsDiversificationFilter has been set. In a diversification filter, the Abs function is used to measure the distance from a given binary variable, and all variables should only occur as the argument of an Abs function.
This following diversification filter forces the solutions to have a distance of at least 1 from variable x.

Example

Constraint filter1 {
 Property : IsDiversificationFilter;
 Definition : Abs(x - 1) >= 1;
}

A range filter allows you to generate solutions that obey a new constraint, specified as a linear expression within a range. Range filters can be used to express diversity constraints that are more complex than the standard form implemented by diversity filters. In particular, range filters also apply to general integer variables, semi-integer variables, continuous variables, and semi-continuous variables, not just to binary variables.

Range filters

In AIMMS, a constraint is used as a range filter if the constraint property IsRangeFilter has been set for the constraint.

The IsRangeFilter property

The following range filter specifies that any solution to be added to the solution pool should satisfy the following constraint.

Example

Constraint filter2 {
 Property : IsRangeFilter;
 Definition : x + y + z >= 2;
}

14.2.4 Indicator constraints, lazy constraints and cut pools

An indicator constraint is a new way of controlling whether or not a constraint takes effect, based on the value of a binary variable. Traditionally, such relationships are expressed by so-called big-M formulations. Big-M formulations, however, can introduce unwanted side-effects and numerical instabilities into a mathematical program. Using indicator constraints, such relationships between a constraint and a variable can be directly expressed in the constraint declaration. Indicator constraints are supported by the solvers CPLEX, GUROBI and ODH-CPLEX.

Indicator constraints

You can specify that a constraint is an indicator constraint by settings it IndicatorConstraint property. For indicator constraints, a new attribute called ActivatingCondition will become available in the constraint declaration.

The IndicatorConstraint property
Through the ActivatingCondition attribute you can specify under which condition the constraint definition should become active during the solution process. Its value should be an expression of the form

\[
\text{binary-variable} = \text{expression}
\]

where the expression must take one of the values 0 or 1.

Consider the following big-M constraint

```
Constraint BigMConstraint {
    Definition : x1 + x2 <= M*y;
}
```

where \(y\) is a binary variable. Using the IndicatorConstraint property, the constraint can be reformulated as an indicator constraint as follows

```
Constraint NonBigMConstraint {
    Property : IndicatorConstraint;
    ActivatingCondition : y = 0;
    Definition : x1 + x2 = 0;
}
```

The constraint only becomes effective, whenever the binary variable \(y\) takes the value 0. To solve the model with the indicator constraint, you need the Cplex, GUROBI or ODH-CPLEX solver.

Lazy constraints

Sometimes, for a MIP formulation, a user can already identify a group of constraints that are unlikely to be violated (lazy constraints). Simply including these constraints in the original formulation could make the LP subproblem of a MIP optimization very large or too expensive to solve. CPLEX, GUROBI and ODH-CPLEX can handle problems with lazy constraints more efficiently, and therefore AIMMS allows you to identify lazy constraints in your model.

You can specify that a constraint should be added to the pool of lazy constraints considered by CPLEX, GUROBI or ODH-CPLEX by setting the property IncludeInLazyConstraintPool. You need the CPLEX, GUROBI or ODH-CPLEX solver to use this constraint property. When solving your MIP model, CPLEX, GUROBI and ODH-CPLEX will only consider these constraints when they are violated.

As discussed in Section 15.2, AIMMS allows you to add cuts to your mathematical program on the fly during the solution process by using the CallbackAddCut callback. However, when the set of cuts you want to generate is fixed and known upfront, using the CallbackAddCut may add significant overhead to the solution process of your model while you don’t need its flexibility. For those situations, CPLEX allows you to specify a fixed pool of user cuts during the generation of your mathematical program.
By setting the constraint property IncludeInCutPool you can indicate that this constraint should be included in the pool of user cuts associated with your mathematical program. You need the CPLEX solver to use this constraint property. When solving your MIP model, CPLEX will consider the user cuts added in this manner when appropriate.

14.2.5 Constraint levels, bounds and marginals

A constraint in AIMMS can conceptually be divided such that one side consists of all variable terms, whereas the other side consists of all remaining constant terms. The level value of a constraint is the accumulated value of the variable terms, while the constant terms make up the bound of the constraint.

With the Level, Bound, Basic and ShadowPrice properties you indicate whether you want to store (and have access to) particular parametric data associated with the constraint.

- When you specify the Level property AIMMS will retain the level values of the constraint as provided by the solver. You can access the level values of a constraint by using the constraint name as if it were a parameter.
- By specifying the Bound property, AIMMS will store the upper and lower bound of the constraint as employed by the solver. You get access to the bounds by using the .Lower and .Upper suffixes with the constraint identifier.
- If the Basic property has been specified, AIMMS stores basic information is available through the .Basic suffix as an element in of the predefined AIMMS set AllBasicValues. A constraint is said to be basic (nonbasic or superbasic) if its associated slack variable is basic (nonbasic or superbasic).
- With the ShadowPrice property you indicate that you want to store the shadow prices as computed by the solver. You can access these shadow prices by means of the .ShadowPrice attribute.

The shadow price (or dual value) of a constraint is the marginal change in the objective value with respect to a change in the right-hand side (i.e. the constant part) of the constraint. This value is determined by the solver after a SOLVE statement has been executed. The precise mathematical interpretation of the shadow price is discussed in detail in many textbooks on mathematical programming. Note: if a basic or superbasic constraint has a shadow price of zero then it will be displayed as 0.0, but if a nonbasic constraint has a shadow price of zero then it will be displayed as ZERO.
When the variables and constraints in your model have an associated unit (see Chapter 32), special care is required in interpreting the values returned through the .ShadowPrice suffix. To obtain the shadow price in terms of the units specified in the model, the values of the .ShadowPrice suffix must be scaled as explained in Section 32.5.1.

By specifying the RightHandSideRange property you request AIMMS to conduct a first type of sensitivity analysis on this constraint during a SOLVE statement of a linear program. The result of the sensitivity analysis are three parameters defined over the domain of the constraint. The values assigned to the parameters will be the smallest, nominal, and largest values for the right- or left-hand side of the constraint so that the basis remains constant. There are three cases:

- if the constraint is single sided (i.e. \(f(x) \leq a \)) then the smallest, nominal, and largest value for the constraint side are reported (both when constraint is binding and not binding)
- if the constraint is of range type (i.e. \(a \leq f(x) \leq b \)) and it is binding at one side, then the smallest, nominal, and largest value for the binding side of the constraint are reported
- if the constraint is of range type (i.e. \(a \leq f(x) \leq b \)) and it is not binding at neither side, then the lowest upper bound and the highest lower bound are reported.

The values are accessible through the suffixes .SmallestRightHandSide, .NominalRightHandSide, and .LargestRightHandSide.

With the ShadowPriceRange property you request AIMMS to conduct a second type of sensitivity analysis on this constraint during a SOLVE statement of a linear program. The result of the sensitivity analysis are two parameters defined over the domain of the variable. The values assigned to the parameters will be the smallest and largest values that the shadow price of the constraint can take while holding the objective value constant. The smallest and largest values of the constraint marginals are accessible through the suffixes .SmallestShadowPrice and .LargestShadowPrice.

As with the advanced sensitivity properties of variables (see Section 14.1.2), AIMMS also supports the advanced sensitivity analysis conducted through the properties RightHandSideRange and ShadowPriceRange for linear mathematical programs only. Again, if you want to apply these types of analysis to the final solution of a mixed-integer program, you should fix all integer variables to their final solution (using the .NonVar suffix) and re-solve the resulting mathematical program as a linear program.
Setting any of the properties ShadowPrice, ShadowPriceRange or RightHandSideRange may result in an increase of the memory usage. In addition, the computations required to compute the ShadowPriceRange may considerably increase the total solution time of your mathematical program.

14.2.6 Constraint suffices for global optimization

AIMMS provides a number of constraint suffices especially for the global optimization solver BARON. They are:

- the `.Convex` suffix, and
- the `.RelaxationOnly` suffix.

By providing additional knowledge, that cannot be determined automatically by BARON itself, about the constraints in your model through these suffices, the BARON solver may be able to optimize your global optimization model in a more efficient manner. For more detailed information about the specific capabilities of the BARON solver, you are referred to the BARON website http://www.theoptimizationfirm.com/.

The algorithm of the BARON solver exploits convexity—either identified automatically by BARON itself or explicitly supplied in the model formulation—in order to generate polyhedral cutting planes and relaxations for multivariate non-convex problems. Through the `.Convex` suffix you can explicitly indicate that a particular constraint is convex if BARON is unable to determine its convexity automatically.

Using the `.RelaxationOnly` suffix, you can considerably enhance the convexification capabilities of BARON. Some nonlinear problem reformulations can often tighten the relaxation process of BARON’s branch-and-bound algorithm while making local search considerably more difficult. By assigning a nonzero value to the `.RelaxationOnly` suffix, you indicate to BARON that the constraint at hand should only be included as a relaxation to the branch-and-bound algorithm, while it should be excluded from the local search.

14.2.7 Chance constraints

The AIMMS modeling language offers facilities for robust optimization models, including support for chance constraints (see also Section 20.3). By setting the Chance property of a constraint, the constraint will become a chance constraint when solving a mathematical program using robust optimization, using the distributions specified for the random parameters contained in its definition. When setting the Chance property, two new attributes will become available, the Probability attribute and the Approximation attribute.
Note that setting the Chance property does not influence the availability and use of the constraint outside the context of robust optimization. In that case, AIMMS will just use the original, deterministic, constraint definition, completely disregarding the uncertainty of the parameters used in the constraint.

Through the Probability attribute, you can specify the probability with which you want the constraint to be satisfied for any feasible solution to the robust counterpart of a robust optimization model. Its value must be a numerical expression in the range $[0, 1]$.

When constructing the robust counterpart, AIMMS can use several types of approximations to approximate the chance constraint at hand. You can use the Approximation attribute to specify the type of approximation you want to be applied. The chosen type of approximation may lead to a robust counterpart which is easier or harder to solve (see also Section 20.3). The value of the attribute must be an element expression into the predefined set AllChanceApproximationTypes.