
AIMMS Language Reference - Stochastic Programming

This file contains only one chapter of the book. For a free download of the

complete book in pdf format, please visit www.aimms.com.

Aimms 4

http://www.aimms.com


Copyright c© 1993–2018 by AIMMS B.V. All rights reserved.

AIMMS B.V.

Diakenhuisweg 29-35

2033 AP Haarlem

The Netherlands

Tel.: +31 23 5511512

AIMMS Inc.

11711 SE 8th Street

Suite 303

Bellevue, WA 98005

USA

Tel.: +1 425 458 4024

AIMMS Pte. Ltd.

55 Market Street #10-00

Singapore 048941

Tel.: +65 6521 2827

AIMMS

SOHO Fuxing Plaza No.388

Building D-71, Level 3

Madang Road, Huangpu District

Shanghai 200025

China

Tel.: ++86 21 5309 8733

Email: info@aimms.com

WWW: www.aimms.com

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

http://www.aimms.com


Chapter 19

Stochastic Programming

Deterministic

vs. stochastic

models

The mathematical programming types discussed so far have a common as-

sumption that all the input data used in the formulation of the mathematical

program is known with certainty. This is known as “decision making under cer-

tainty,” and the corresponding models are called deterministic models. Models

that account for uncertainty in the input data are called stochastic models, and

the theory and techniques used to solve stochastic models is commonly re-

ferred to as stochastic programming. You can find an introduction to stochas-

tic programming in Chapters 16 and 17 of the Aimms Optimization Modeling

Guide. A more in-depth discussion of stochastic programming and its solution

methods can be found, for instance, in [Bi97] and [Ka05].

Stochastic

programming

in Aimms

In this chapter, you will find a description of the facilities built into Aimms

for creating and solving stochastic models. From any existing deterministic

linear (LP) or mixed-integer (MIP) model, Aimms is able to automatically create

a stochastic model as well, without the need for you to reformulate any of the

constraint definitions. The only steps necessary to create a stochastic model

are

� to indicate which parameters and variables in your deterministic model

are to become stochastic in a declarative manner, and

� to provide the scenario tree and the stochastic input data.

Single

formulation

Being able to generate both a deterministic and stochastic model from an iden-

tical symbolic formulation allows for any changes you make in the determin-

istic formulation to automatically propagate to the stochastic model. This

significantly reduces the effort involved with maintaining a stochastic model

associated with a given deterministic model.

This chapterSection 19.1 discusses a number of basic concepts in stochastic programming.

These provide a common understanding necessary for the introduction of the

stochastic programming facilities of Aimms discussed in Section 19.2. Sec-

tion 19.3 describes the facilities available in Aimms for the generation of a sce-

nario tree, while Section 19.4 discusses the steps necessary to solve a stochas-

tic model in Aimms.



Chapter 19. Stochastic Programming 308

19.1 Basic concepts

Basic conceptsIn this section you will find a number of basic concepts that are commonly

used in stochastic programming. They will help you to unambiguously under-

stand the stochastic programming facilities in Aimms.

StagesIn stochastic programming stages define a collection of consecutive periods of

time. Stages are usually identified through positive integers 1,2, . . . , and are

characterized as follows:

� during each stage one or more stochastic (i.e. uncertain) events take

place, and

� at the end of a stage decisions are taken, taking into account the specific

outcomes of the stochastic events of this and previous stages.

Stochastic events may be such quantities as the demand realized during a

period. They are usually represented as input data used in the deterministic

model. Any variables in the deterministic model that are modeled conceptually

to take their value at the beginning of a period (for instance, the stock at the

beginning of a period), should be considered as decisions taken at the end of

the previous period/stage within the stage concept.

Stages versus

model periods

If the deterministic model already contains a Horizon (see Section 33.3) or any

other set of time periods, the stages of the stochastic model may naturally

coincide with the time periods from the deterministic model, but this certainly

needs not be the case. A single period model, possibly even without an explicit

period set, but with variables representing decisions taken at the beginning

and at the end of the period, may still constitute a two-stage stochastic model.

For a multi-period model, a single stage in the stochastic model may consist

of multiple time periods from the deterministic model, and hence one can

always construct a mapping from the deterministic period set to stages in the

stochastic model.

Variables and

stages

Every individual stochastic variable in a stochastic model should be uniquely

associated with a single stage. This stage represents the period at the end of

which the variable conceptually takes it value

� taking into consideration the specific outcomes of stochastic events tak-

ing place during the stage at hand and during prior stages,

� but only taking into account the distribution of possible outcomes of the

stochastic events taking place in any further stage.

Even if model periods of the deterministic model and the stages of the stochas-

tic model coincide, variables with an index into the period set do not have to

be associated with the stage corresponding to the value of that index. As dis-

cussed above, variables that conceptually take their value at the beginning of a



Chapter 19. Stochastic Programming 309

period, provide a first example of this behavior as they must be associated with

the stage corresponding to the previous period within the stochastic model.

ExamplesOther examples may arise, for instance, when the monthly productions of Jan-

uary, February and March should be decided upon prior to the beginning of

January, regardless of the specific outcomes for the demands during these

months. Conversely, if market research has delivered good estimates for the

demand in January, February and March, the decisions for the production in

these months should take into consideration the demand estimates of all three

months. Hence the production variables for January, February and March

should be part of the stage associated with March.

ScenariosA scenario for a stochastic model is a collection of outcomes for all the stochas-

tic events taking place in the model, along with the associated probability of

the scenario to occur. For the event values associated with each scenario, one

could solve a deterministic model, which would yield the optimal decisions

for that particular scenario. For different scenarios, however, the decisions

resulting from solving such deterministic models individually are, in general,

completely unrelated, even if the event outcomes of the scenarios are exactly

the same up to a certain stage. To address this problem, the scenarios of a

stochastic model must be organized into a scenario tree.

Scenario treesA single scenario can be graphically represented as a simple tree illustrated in

Figure 19.1.

stage 1 2 n− 1 n
sc1

Figure 19.1: A tree representing a single scenario sc1

For multiple scenarios, the specific outcomes of the stochastic events up to

a certain stage usually coincide for a subset of the scenarios. This gives rise

to a scenario tree as illustrated in Figure 19.2. In such a scenario tree, the

path from the root node of the tree to each of its leaf nodes corresponds to

a single scenario, and the event outcomes for scenarios that pass through the

same intermediate node are identical for all stages up to that node. If a stage

consists of multiple time periods in the deterministic model, this means that

the stochastic events taking place during all periods associated with the stage

should coincide. The solution process of a stochastic model will make sure

that the decisions that are to be taken at the end of these stages are identical

for all the scenarios passing through the node, as one would intuitively expect.



Chapter 19. Stochastic Programming 310

stage 1 2 3 4

sc8

sc7

sc6

sc5

sc4

sc3

sc2

sc1

Figure 19.2: A scenario tree with 8 scenarios

Scenario

generation

The scenarios and the scenario tree used in a stochastic model are usually

generated by using one of the following two techniques

� generate scenarios by incrementally creating a scenario tree according to

a given distribution for each stochastic event, or

� given an externally created set of scenarios, create a scenario tree by

grouping identical or similar scenarios at every level of the tree.

Distribution-

based scenario

generation

Given a leaf node in an intermediate scenario tree, for every stochastic event

that occurs during the stage directly following that node, a fixed number of val-

ues is computed according to a given distribution (each with its own relative

probability of taking place). For each of these values a new branch is added to

the node. The process starts by adding branches to the root node of the tree

and ends when a tree is generated for all stages. The total number of scenar-

ios generated by the process is the final number of leaf nodes generated. The

probability of a scenario is the multiplication of the relative probabilities as-

sociated with each branch along the path from root to leaf node. The scenario

tree in Figure 19.2 could be generated in this way, for example, by choosing, at

every intermediate node, a high or a low level for the demand during the stage

following that particular node.

Scenario-based

tree generation

Another approach is to start from a given collection of scenarios with proba-

bilities adding up to 1. Such a collection of scenarios can either be randomly

generated or be the result of some external process. As a tree, they can be

represented as a trivial scenario tree, as illustrated in Figure 19.3. This tree

can be transformed into a scenario tree by bundling together identical or sim-

ilar scenarios into a fixed or dynamic number of branches. The group of sce-

narios passing through a particular intermediate node in the scenario tree is

analyzed and grouped into subgroups of scenarios with similar or identical

outcomes of the stochastic events during the stage following that node. For

every subgroup, the existing branches are bundled into a single branch, and



Chapter 19. Stochastic Programming 311

stage 1 2 n− 1 n

sc1

sc2

scm−1

scm

Figure 19.3: An initial disconnected scenario tree

the stochastic event outcomes are made identical for all scenarios in the sub-

group. The process starts by analyzing all scenarios at the root node of the

tree, and ends when every scenario is associated with a single leaf node.

Basic procedure

for solving

stochastic

models

The implementation of stochastic programming in Aimms closely follows the

concepts described in this section. The basic procedure to create and solve a

stochastic model in Aimms is as follows:

� indicate in your model which parameters and variables are to become

stochastic,

� for every stochastic variable in your model specify during which stage of

the stochastic model the decision is to be taken,

� generate scenarios, their stochastic data, and a scenario tree, using one

of the techniques described above, and

� generate and solve the stochastic model using the special methods avail-

able for this purpose in Aimms.

Each of these steps is explained in more detail in the sections to follow. Note

that changing parameters and variables in your model into stochastic parame-

ters and variables, does in no way influence the possibility to solve the under-

lying deterministic model in its original form. Thus, the stochastic program-

ming facilities in Aimms always form a true extension of the functionality of

the existing Aimms application.



Chapter 19. Stochastic Programming 312

19.2 Stochastic parameters and variables

The set All-

Stochastic-

Scenarios

To allow the storage of scenario-dependent parameter and variable data for

multiple scenarios in a stochastic model, all such scenarios should be added

to the predefined set AllStochasticScenarios. If your application contains mul-

tiple stochastic models—each with different scenario sets—the set AllStoch-

asticScenarios should be the union of all these scenario sets. For each stochas-

tic model you can then define an associated subset of AllStochasticScenarios

to use with that particular stochastic model.

Stochastic

parameters

Stochastic events are modeled in Aimms as numeric Parameters for which the

Stochastic property has been set (see also Section 4.1). For stochastic param-

eters Aimms provides an additional .Stochastic suffix, which you can use to

store scenario-dependent stochastic event outcomes. The data stored in the

suffix is used by Aimms when generating the stochastic model. The index do-

main of the .Stochastic suffix is, therefore, the set AllStochasticScenarios plus

the original domain of the parameter.

ExampleConsider the following declarations

Set MyScenarios {

SubsetOf : AllStochasticScenarios;

Index : sc;

}

Parameter Demand {

IndexDomain : (c,t);

Property : Stochastic;

}

These declarations will cause Aimms to create a .Stochastic suffix for the pa-

rameter Demand(c,t). To use, or assign values to, Demand.Stochastic, you must

use an additional index into (a subset of) AllStochasticScenarios. The follow-

ing statement provides an example of such a statement.

Demand.Stochastic(sc,c,t) := Uniform(10,20);

If a constraint contains a reference to the parameter Demand, Aimms will use the

data in Demand.Stochastic to generate the appropriate demand constraint for

every scenario.

Stochastic

variables

By setting the Stochastic property for a Variable in your model, you indicate

to Aimms that this variable may have multiple, scenario-dependent, solutions

when used in a stochastic model. Consequently, when generating a matrix for

the stochastic model, a column will be generated conceptually for every single

scenario.



Chapter 19. Stochastic Programming 313

The Stage

attribute

For stochastic variables you must also specify the mandatory Stage attribute.

Through the Stage attribute you specify the stage at the end of which the de-

cision corresponding to the stochastic variable is to be taken. The value of

the Stage attribute must be an explicit positive integer value, or a parameter

reference involving some or all of the indices on the index list of the declared

variable.

Non-anti-

cipativity

constraints. . .

As discussed in the previous section, for every scenario s0, a stochastic vari-

able x gets its value xs0 at the end of stage n as specified in the Stage at-

tribute of the variable. In addition, its value is based on the specific outcomes

of the stochastic events for that scenario taking place during stages 1, . . . , n,

but only on the distribution of the stochastic event outcomes for any further

stages. Therefore, the value xs must be equal to xs0 for every other scenario

s that passes through the same node in the scenario tree at the end of stage

n as s0. The constraints enforcing this equality are called non-anticipativity

constraints—they do not allow the solution to anticipate on stochastic out-

comes that lie beyond the stage as specified by the Stage suffix.

. . . enforced

explicitly or

implicitly

When generating a stochastic model, Aimms will automatically enforce the non-

anticipativity constraints, either by explicitly adding them to the generated

matrix, or implicitly by substituting a single representative xs0 for every other

variable xs . While enforcing non-anticipativity in an implicit manner will dras-

tically reduce the matrix size, an explicit representation may be helpful for

solvers able to decompose the generated matrix.

Non-stochastic

variables

If a variable in a stochastic model has not been declared stochastic, it is deter-

ministic in the sense that it assumes the same value for every scenario, as is

the case with first stage variables.

The .Stochastic

suffix for

variables

Variables can also have a .Stochastic suffix in Aimms. It follows the same rules

for its index domain as the .Stochastic suffix of parameters. Aimms uses the

.Stochastic suffix of variables to store the solution data of a stochastic model

after solving it. However, contrary to stochastic parameters, Aimms will not

only create the .Stochastic suffix for stochastic variables, but for all variables

that are involved in a stochastic model.

Contents of

.Stochastic

suffix

The values stored in the .Stochastic suffix after solving a stochastic model for

each type of variable are as follows:

� for stochastic variables, the .Stochastic suffix will contain the solution

of the variable for each scenario,

� for the objective variable, the .Stochastic suffix will contain the contri-

bution to the objective of each scenario, as well as the weighted objective

value of the stochastic model itself,



Chapter 19. Stochastic Programming 314

� for any other non-stochastic variable, the .Stochastic suffix will contain

the deterministic solution of that variable for the stochastic model.

As the solution of a stochastic model is entirely stored in the .Stochastic suf-

fix, the solution of the underlying deterministic model remains completely in-

tact after solving the stochastic model. This makes it easy to visually, and/or

programmatically, compare the solutions of the deterministic and stochastic

model.

Non-stochastic

solution data

As the objective value and solution of the non-stochastic variables of the

stochastic model cannot be coupled directly with one specific scenario in the

scenario set, Aimms creates an extra element in the set AllStochasticScenarios

for this purpose. You must specify the name of this element when solving the

stochastic model (see also Section 19.4).

19.3 Scenario generation

Scenario

generation

To support you in creating scenarios and a scenario tree, Aimms provides a sys-

tem module which provides a customizable scenario generation framework.

For each of the two basic methods for scenario generation discussed in Sec-

tion 19.1, the module contains a generic procedure to implement that method.

To use these scenario generation procedures to generate scenarios and/or a

scenario tree, you only have to implement some callback procedures to supply

the necessary data for your specific stochastic model.

Importing the

system module

To import the generation module into your model, select Install System Mod-

ule. . . from the Settings menu, and select the Scenario Generation Module

from the dialog box that appears. The module will be added at the end of

the model tree of your model. By default, the module prefix of the Scenario

Generation Module is ScenGen.

19.3.1 Distribution-based scenario generation

Distribution-

based scenario

generation

The basic procedure in the scenario generation module for distribution-based

scenario generation is

� CreateScenarioTree(Stages, Scenarios, ScenarioProbability,

ScenarioTreeMapping).

Input

arguments

The procedure has a single input argument:

� the set of Stages in your stochastic model. This set must be a subset of

the predefined set Integers.



Chapter 19. Stochastic Programming 315

Output

arguments

The outputs of this procedure are:

� the set of Scenarios (which must be a subset of AllStochasticScenarios)

generated by the procedure,

� the ScenarioProbability, a one-dimensional parameter indexed over the

set Scenarios, and

� the ScenarioTreeMapping, a two-dimensional element parameter defined

over Scenarios×Stages to Scenarios, providing a mapping from every sce-

nario during every stage to a single representative scenario for the sce-

nario bundle in which the given scenario is contained during this stage.

Distribution-

based callback

functions

The contents of the outputs of the procedure CreateScenarioTree is completely

based on the results of the problem-specific callbacks that you have to supply.

The following callbacks are expected by CreateScenarioTree:

� InitializeNewScenarioCallback(CurrentStage, Scenario,

RepresentativeScenario),

� InitializeStochasticDataCallback(CurrentStage, Scenario,

ChildBranch, ChildBranchName), and

� InitializeChildBranchesCallback(CurrentStage, Scenario,

ChildBranches, ChildBranchNames).

Initializing a

new scenario

When building up the scenario tree, Aimms creates new scenarios on the fly.

In order for you to refer to data from previous stages for this scenario, Aimms

will call the callback InitializeNewScenarioCallback for every Stage prior to the

current stage, and supply the RepresentativeScenario from the scenario bundle

for CurrentStage which also contains the newly created Scenario. By copying

the stochastic data for this stage from this representative scenario, you make

it available both to you and Aimms. To properly generate the stochastic model,

Aimms needs the stochastic parameter values for every stage and every sce-

nario.

Supplying

stochastic event

data

In the procedure InitializeStochasticDataCallback you can provide values to

all stochastic parameter values for the ChildBranch during CurrentStage for

the Scenario. Because Aimms has called the InitializeNewScenarioCallback

prior to calling InitializeStochasticDataCallback you also have access to the

stochastic parameter values of this scenario prior to the current stage. Based

on the value of ChildBranch and the prior stochastic parameter values, you

should have sufficient information to generate new stochastic parameter val-

ues for the current stage. You should pass the relative weight of this branch

compared to the other child branches through the return value of the call-

back. Note that the relative weights you return may, but need not, add up to

one. After creating scenarios for all branches, Aimms will scale the sum of the

returned relative weights of all branches to one.



Chapter 19. Stochastic Programming 316

Generating new

child branches

Finally, to extend the scenario tree to a next stage, Aimms calls the callback

InitializeChildBranchesCallback. In this callback, you should fill the Integer

subset ChildBranches with integers 1,2, . . . for every child branch that you

want to add to Scenario at CurrentStage. Through the element parameter

ChildBranchNames you should provide a short representative name for ev-

ery child branch (for instance, "H" and "L" when child branches represent high

and low demand). From the branch names you supply, Aimms will generate

the full names of the final element names of the scenarios generated by the

scenario generation procedure (for instance ’[H,L,H,H,L]’ for a scenario with

high, low, high, high, and low demand values during the successive stages of

the scenario).

Setting the

callbacks

The scenario generation module contains templates for each of the callbacks

described above. Rather than changing these template callbacks in the module,

you are advised to copy the template callbacks to your core model, and change

the bodies of the copied callbacks. Finally, you should notify Aimms of the

names of your callback functions by, prior to calling the procedure CreateSce-

narioTree, assigning the names of your callback procedures to the element

parameters

� ScenGen::InitializeNewScenarioCallbackFunction,

� ScenGen::InitializeStochasticDataCallbackFunction, and

� ScenGen::InitializeChildBranchesCallbackFunction.

ExampleThe following callbacks will cause the procedure CreateScenarioTree to gen-

erate a tree with 2 branches "H" and "L" (for high and low demand) at every

intermediate node, and initialize Demand.Stochastic for every period. The ex-

ample assumes the existence of a mapping PeriodToStage(st,t).

Initializing a

new scenario

To initialize a new scenario, we have to copy the stochastic demand data for

the newly created Scenario during Stage from the scenario RepresentativeSce-

nario. Thus, the body of the InitializeNewScenarioCallback would read

for ( t | PeriodToStage(CurrentStage,t) ) do

Demand.Stochastic(Scenario,t) := Demand.Stochastic(RepresentativeScenario,t);

endfor;

Generating new

child branches

To generate two child branches to any intermediate node in the scenario tree

representing high ("H") and low ("L") demand, the implementation of the Init-

ializeChildBackBranchesCallback should be

ChildBranches := { 1, 2 };

ChildBranchNames(’1’) := "H";

ChildBranchNames(’2’) := "L";



Chapter 19. Stochastic Programming 317

Initializing

stochastic

demand

For each newly added child branches, the following implementation of Initial-

izeStochasticDataCallback assigns a high (20) or low (10) stochastic demand

value to the Scenario during the CurrentStage

for ( t | PeriodToStage(CurrentStage,t) ) do

Demand.Stochastic(Scenario,t) := if ( ChildBranch = 1 ) then 20 else 10 endif;

endfor;

return 1;

By returning 1 for all branches, we just indicate that every branch has equal

relative weight. For two branches, this will result in a relative probability for

each branch of 0.5.

19.3.2 Scenario-based tree generation

Scenario-based

tree generation

The basic procedure in the scenario generation module for scenario-based tree

generation is

� CreateScenarioData(Stages, Scenarios, ScenarioProbability,

ScenarioTreeMapping).

Input

arguments

The procedure has a single input argument:

� the set of Stages in your stochastic model. This set must be a subset of

the predefined set Integers.

Output

arguments

The outputs of the procedure are:

� the set of Scenarios for which you have provided stochastic parameter

values,

� the ScenarioProbability, a one-dimensional parameter indexed over the

set Scenarios, and

� the ScenarioTreeMapping, a two-dimensional element parameter defined

over Scenarios×Stages to Scenarios, providing a mapping from every sce-

nario during every stage to a single representative scenario for the sce-

nario bundle in which the given scenario is contained during this stage.

Algorithm

outline

The procedure CreateScenarioData will help you construct a scenario tree as

follows:

� initially, Aimms will request you to generate a set of scenarios with their

relative weights,

� next, Aimms will ask you, to divide a given group of scenarios at the

current stage into a number of subgroups of equal or similar scenarios

at the next stage,



Chapter 19. Stochastic Programming 318

� Aimms will request you to reassign a single unique value to each stochas-

tic event parameter for all scenarios in a scenario group (e.g. the mean

over all scenarios in the group), and

� finally, Aimms will remove scenarios which you identify as identical.

Scenario-based

callbacks

For each of the steps outlined in the previous paragraph, you must supply a

callback procedure:

� InitializeStochasticScenarioDataCallback(Scenario, Scenarios),

� DetermineScenarioGroupsCallback(CurrentStage, ScenarioGroup,

ScenarioGroupOrder),

� AssignStochasticDataForScenarioGroupCallback(CurrentStage,

ScenarioGroup), and

� CompareScenariosCallback(Scenario1, Scenario2, Stages,

FirstDifferentStage)

Initializing

scenarios

Through the InitializeStochasticScenarioDataCallback you must supply the

stochastic event data during all stages for a Scenario generated by Aimms. The

function should return the relative weight of the scenario compared to all other

scenarios you supply. If you are done adding scenarios, the callback should

return the value 0.

Dealing with

existing

scenario data

If you have already read scenario data from a database, for instance, you can

overwrite the generated value of Scenario argument with an existing scenario

name read from the database. In that case, if you have read the stochastic data

directly into the .Stochastic suffix of the stochastic parameters in your model,

you only have to return the relative weight.

Supplying new

scenario data

If you do not have existing scenario data, you should generate stochastic data

for the Scenario element generated by Aimms for all stochastic parameters in

your model. If you want to change the name of the generated Scenario, you

can do so using the function SetElementRename.

Creating

scenario

subgroups

In the DetermineScenarioGroupsCallback, you must divide the scenarios in Sce-

narioGroup created during a previous stage (or the group of all scenarios to

start with during the first stage) into subgroups, based on the equality or sim-

ilarity of the stochastic event values associated with the scenarios during Cur-

rentStage. You must specify the subgroups by assigning a ScenarioGroupOrder

to every scenario in the ScenarioGroup, where scenarios with the same as-

signed order form a subgroup during the current stage.



Chapter 19. Stochastic Programming 319

Assigning

stochastic event

values

If the stochastic event parameters in ScenarioGroup during CurrentStage are

similar, but not equal, you must make sure to assign identical event parameter

values to every scenario when Aimms calls the AssignStochasticDataForSce-

narioGroupCallback. Failure to do so may result in infeasible stochastic models

generated by Aimms.

Removing

identical

scenarios

Finally, Aimms will probe for identical scenarios through the CompareScenario-

Callback, remove duplicate scenarios when encountered, and adjust the sce-

nario probabilities accordingly. When the stochastic event values of Scenario1

and Scenario2 are identical during Stages, the callback should return 0. If the

scenarios are not identical the callback should have a nonzero return value,

and set the output argument FirstDifferentStage equal to the first stage during

which the event parameters differ for both scenarios.

Setting the

callbacks

The scenario generation module contains templates for each of the callbacks

described above. Rather than changing these template callbacks in the module,

you are advised to copy the template callbacks to your core model, and change

the bodies of the copied callbacks. Finally, you should notify Aimms of the

names of your callback functions by, prior to calling the procedure CreateSce-

narioData, assigning the names of your callback procedures to the element

parameters

� ScenGen::InitializeStochasticScenarioDataCallbackFunction,

� ScenGen::DetermineScenarioGroupsCallbackFunction,

� ScenGen::AssignStochasticDataForScenarioGroupCallbackFunction, and

� ScenGen::CompareScenariosCallbackFunction.

ExampleThe callbacks for scenario-based tree generation, are usually more problem-

specific, and hence less instructive, than the callbacks for the tree-based sce-

nario generation scheme. Therefore, rather than including a lengthy example

here, we refer to the example models for stochastic programming that come

with your Aimms system.

Scenario

generation can

be modified

The scenario generation module is completely implemented in the Aimms lan-

guage itself, and contains basic implementations of both scenario generation

methods, which will provide a good starting point for most stochastic models.

If neither of these implementations fits your needs, you can copy the module

to your project directory, replace the system module with the copy, and make

the algorithms in the copied module more advanced to better fit the needs of

your stochastic model.



Chapter 19. Stochastic Programming 320

19.4 Solving stochastic models

Solving

stochastic

models

After generating stochastic event data and a scenario tree, you can generate

and solve the stochastic model by using methods from the GMP library dis-

cussed in Chapter 16. Aimms supports two methods for solving a stochastic

model:

� by solving its deterministic equivalent, or

� for purely linear mathematical programs only, through the stochastic

Benders algorithm, or

� using the Benders decomposition algorithm in Cplex 12.7 or higher.

Both Benders algorithms will decompose the stochastic model into multiple

smaller models, and thus is better suited to solve stochastic models where

the deterministic equivalent, either by the size of the deterministic model or

because of a huge number of scenarios, becomes too big or time-consuming to

solve at once. The Benders decomposition algorithm in Cplex can be used to

solve stochastic models with integer variables, as long as all integer variables

are assigned to the first stage. For more information see the Cplex option

Benders strategy.

19.4.1 Generating and solving the deterministic equivalent

Generating a

stochastic model

The method for generating a stochastic model for a MathematicalProgram MP is

� GMP::Instance::GenerateStochasticProgram(

MP, StochasticParameters, StochasticVariables,

Scenarios, ScenarioProbability, ScenarioTreeMap,

DeterministicScenarioName[, GenerationMode][, Name])

The function returns an element into the set AllGeneratedMathematicalPro-

grams. This generated math program instance contains a memory-efficient rep-

resentation of the technology matrix of the stochastic model and the stochas-

tic event data, and can be used to create a deterministic equivalent of the

stochastic model, as well as the submodels necessary for a stochastic Benders

approach.

Specifying

stochastic

identifiers

Through the arguments StochasticParameters and StochasticVariables you indi-

cate to Aimms which stochastic parameters and variables you want to take into

consideration when generating this stochastic model. These arguments must

be subsets of the predefined sets AllStochasticParameters and AllStochastic-

Variables, respectively. You may want to use real subsets, for instance, when

your Aimms project contains multiple stochastic models, each referring only

to a subset of the stochastic parameters and variables.



Chapter 19. Stochastic Programming 321

Specifying

scenarios

Through the Scenarios, ScenarioProbability and ScenarioTreeMap arguments

you specify the set of scenarios, their probabilities and the mapping defin-

ing the scenario tree for which you want to generate the stochastic model to

Aimms. Through the string argument DeterministicScenarioName, you supply

the name of the artificial element that Aimms will add to the predefined set

AllStochasticScenarios (if not created already), and use to store the solution

of non-stochastic variables in their respective .Stochastic suffices as explained

in Section 19.2.

Enforcing non-

anticipativity

constraints

Using the GenerationMode argument you can specify whether you want Aimms

to explicitly add the non-anticipativity constraints to your stochastic model,

or whether you want non-anticipativity to be enforced implicitly by substitut-

ing the representative scenario for every non-representative scenario at every

stage. GenerationMode is an element parameter into the predefined set All-

StochasticGenerationModes, with possible values

� ’CreateNonAnticipativityConstraints’, and

� ’SubstituteStochasticVariables’ (the default value).

Name argumentWith the optional Name argument you can explicitly specify a name for the

generated mathematical program. If you do not choose a name, Aimms will use

the name of the underlying MathematicalProgram as the name of the generated

mathematical program as well. Please note, that Aimms will also use this name

as the default name for solving the deterministic model. Therefore, if you do

not want the generated mathematical program of the deterministic model to

be deleted, then you have to choose a non-default name.

Solving the

deterministic

equivalent of a

stochastic model

You can solve a stochastic model by using the regular gmp procedure

� GMP::Instance::Solve(gmp)

By applying this function to a generated mathematical program associated

with a stochastic model, Aimms will create the deterministic equivalent and

pass it to the appropriate LP/MIP solver. The GMP::Instance::Solve method is

discussed in full detail in Section 16.2.

Changing the

model input

Note that, when you adjust the scenario tree map, the stochastic data, the

scenario probabilities, or the value of the Stage attribute of some variables

after you generated the stochastic model, you should regenerate the stochastic

model again to reflect these changes.

ExampleConsider the following call to GMP::Instance::GenerateStochasticProgram

GMP::Instance::GenerateStochasticProgram(

TransportModel, AllStochasticParameters, AllStochasticVariables,

MyScenarios, MyScenarioProbability, MyScenarioTreeMap,

"TransportModel", ’SubstituteStochasticVariables’, "StochasticTransportModel");



Chapter 19. Stochastic Programming 322

After solving the generated stochastic model, its solution will be stored as

follows, where sc is an index into MyScenarios

� the per-scenario solution of a stochastic variable Transport(i,j) will be

stored in Transport.Stochastic(sc,i,j),

� the deterministic solution of a non-stochastic variable InitialStock(i)

will be stored in InitialStock.Stochastic(’TransportModel’,i),

� the weighted objective value for the objective variable TotalCost will be

stored in TotalObjective.Stochastic(’TransportModel’), while the contri-

bution by every scenario is available through TotalCost.Stochastic(sc).

19.4.2 Using the stochastic Benders algorithm

Using the

stochastic

Benders

algorithm

Instead of solving the deterministic equivalent of a stochastic model, Aimms

also allows you to solve linear stochastic models using a stochastic Benders

algorithm. The stochastic Benders algorithm is based on a reformulation of

the original model as a sequence of models outlined below. The solution of the

original model can be achieved by solving the sequence of models iteratively

until a terminating condition is reached. A more detailed discussion of the

stochastic Benders algorithm can be found in [De98] or [Al03].

DefinitionsAll nodes in the scenario tree are numbered starting at 1 (the root node).

Indices:

i index for the set of nodes N

t index for the set of stages T

Parameters:

qi probability belonging to node i

pi parent of node i

Sets:

Ii set with children of node i

Nt set of nodes belonging to stage t

ConventionIn the algorithmic outline below we identify the problem names with their

associated solutions. That is, if a problem is, for instance, identified as Fi(xpi),

we will also use this name to denote its solution in other sub- problems.

The original

model

The nested Benders algorithm can be used for problems of the form

Minimize: ∑

t∈T

∑

i∈Nt

qic
T
i xi

Subject to:
W1x1 = h1

Aixpi +Wixi = hi ∀i ∈ Nt , t ∈ T\{1}

xi ≥ 0 ∀i ∈ Nt , t ∈ T



Chapter 19. Stochastic Programming 323

A reformulation

as a sequence of

models

This problem corresponds to the following sequence of problems. For node

i = 1, the problem F1 is defined as

Minimize:
cT1 x1 +

∑

j∈I1

qiFj(x1)

Subject to:
W1x1 = h1

x1 ≥ 0

For all other nodes i ∈ Nt in stage t ∈ T\{1}, the problem Fi(xpi) is defined

as follows (note that
∑
j∈Ii qj = qi)

Minimize:
cTi xi +

∑

j∈Ii

qj

qi
Fj(xi)

Subject to:
Wixi = hi −Aixpi

xi ≥ 0

For the leaf nodes in the scenario tree, the term
∑
j∈Ii

qj
qi
Fj(xi) is omitted.

Formulated

differently

If we now introduce an upper bound θi to replace the term
∑
j∈Ii

qj
qi
Fj(xi), we

can rewrite the subproblem Fi(xpi) as

Minimize:
cTi xi + θi

Subject to:
Wixi = hi −Aixpi

θi ≥
∑

j∈Ii

qj

qi
Fj(xi)

xi ≥ 0

Because of the linear nature of the original problem, the terms
∑
j∈Ii

qj
qi
Fj(xi)

are piecewise linear and convex. Therefore there exists an (a priori unknown)

set of equations

Dlixi = d
l
i

that describes such a term and for which

Dlixi + θi ≥ d
l
i.

Moreover, we are only interested in those xi such that Fj(xi) are feasible for

all j ∈ Ii. This requirement can be enforced by an (a priori unknown) set of

constraints

Elixi ≥ e
l
i.

By substituting these constraints we obtain the following reformulation of

problem Fi(xpi)



Chapter 19. Stochastic Programming 324

Minimize:

cTi xi + θi

Subject to:

Wixi = hi −Aixpi

Dlixi + θi ≥ d
l
i ∀l ∈ 1, . . . , Ri

Elixi ≥ e
l
i ∀l ∈ 1, . . . , Si

xi ≥ 0

The relaxed

master problem

The actual problem that is solved at node i is the following relaxed master

problem Ñi(xpi) defined as follows:

Minimize:

cTi xi + θi

Subject to:

Wixi = hi −Aixpi

Dlixi + θi ≥ d
l
i ∀l ∈ 1, . . . , ri

Elixi ≥ e
l
i ∀l ∈ 1, . . . , si

xi ≥ 0

At the start of the Benders algorithm ri and si will be 0 for all i ∈ N. The

constraints Dlixi+θi ≥ d
l
i are optimality cuts obtained from the children. That

is, if Ñj(xi) is feasible for all j ∈ Ii (but not optimal) then an optimality cut

is added to Ñi(xpi). The optimality cut is constructed by using a combination

of the dual solutions of Ñj(xi) for all j ∈ Ii. Adding an optimality cut does

not make a feasible relaxed master problem infeasible. The Benders algorithm

fails if one of the subproblems is unbounded. This can be avoided by giving

all variables, except the objective variable, finite bounds.

Adding

feasibility cuts

The constraints Elixi ≥ eli are feasibility cuts obtained from a child. If some

child problem Ñj(xi) is not feasible then the following problem Ẽj(xi) is

solved

Minimize:

wj = e
Tu+j + e

Tu−j

Subject to:

Wjxj + Iu
+
j − Iu

−
j = hj −Ajxi

Eljxj ≥ e
l
j ∀l ∈ 1, . . . , sj

xj ≥ 0

u+j ≥ 0

u−j ≥ 0



Chapter 19. Stochastic Programming 325

This feasibility problem can only be formulated for linear problems, is always

feasible, and bounded from below by 0. Its dual solution is used to construct a

new feasibility constraint for Ñi(xpi). Note that node j in its turn obtains op-

timality and/or feasibility cuts from its children for Ñj(xi) and Ẽj(xi), unless

j refers to a leaf node.

Terminating

condition

If (xi, θi) is an optimal solution of Ñi(xpi) and

θi ≥ Ñi(xpi)

then (xi, θi) is an optimal solution of Fi(xpi). If this holds for all non-leaf

nodes then we have found an optimal solution of our original problem. For

the leaf nodes, xi only needs to be an optimal solution of Ñi(xpi).

Implementation

in Aimms

The stochastic Benders algorithm outlined above is implemented in Aimms as

a system module that you can include into your model, together with a number

of supporting functions in the gmp library to perform a number of algorithmic

steps that cannot be performed in the Aimms language itself, for instance, to

actually generate the stochastic sub-problems, and to generate feasibility and

optimality cuts.

Adding the

module

You can add the system module implementing the stochastic Benders algo-

rithm to your model through the Settings-Install System Module. . . menu. By

selecting the Stochastic Decomposition Module in the Install System Module

dialog box, Aimms will add this system module to your model.

Using the

stochastic

Benders module

The main procedure for using the stochastic Benders algorithm is DoStochas-

ticDecomposition. Its inputs are:

� a stochastic gmp,

� the set of stages to consider, and

� the set of scenarios to consider.

The procedure implements the algorithm outlined above. The supporting gmp

functions for the stochastic Benders algorithm are described in Section 16.7.

Modifying the

algorithm

Because the stochastic Benders algorithm is written in the Aimms language,

you have complete freedom to modify the algorithm in order to tune it for

your stochastic programs. Also, the basic algorithm solves all sub-problems

sequentially. If your Aimms license permits parallel solver sessions, you can

also speed up the algorithm by solving multiple sub-problems in parallel using

the gmp function GMP::SolverSession::AsynchronousExecute.



Bibliography

[Al03] F. Altenstedt, Memory consumption versus computational time in nested

benders decompostion for stochastic linear programmings, Tech. report,

Chalmers University of Technology, Göteborg, Sweden, 2003.

[Bi97] J.R. Birge and F. Louveaux, Introduction to stochastic programming,

Springer, New York, 1997.

[De98] M. Dempster and R. Thompson, Parallelization and aggregation of

nested benders decomposition, Annals of Operations Research 81

(1998), 163–187.

[Ka05] P. Kall and J. Mayer, Stochastic linear programming: Models, theory,

and computation, Springer, New York, 2005.


	AIMMS Language Reference - Stochastic Programming
	Stochastic Programming
	Basic concepts
	Stochastic parameters and variables
	Scenario generation
	Distribution-based scenario generation
	Scenario-based tree generation

	Solving stochastic models
	Generating and solving the deterministic equivalent
	Using the stochastic Benders algorithm


	Bibliography

