
AIMMS Language Reference - Robust Optimization

This file contains only one chapter of the book. For a free download of the

complete book in pdf format, please visit www.aimms.com.

Aimms 4

http://www.aimms.com

Copyright c© 1993–2018 by AIMMS B.V. All rights reserved.

AIMMS B.V.

Diakenhuisweg 29-35

2033 AP Haarlem

The Netherlands

Tel.: +31 23 5511512

AIMMS Inc.

11711 SE 8th Street

Suite 303

Bellevue, WA 98005

USA

Tel.: +1 425 458 4024

AIMMS Pte. Ltd.

55 Market Street #10-00

Singapore 048941

Tel.: +65 6521 2827

AIMMS

SOHO Fuxing Plaza No.388

Building D-71, Level 3

Madang Road, Huangpu District

Shanghai 200025

China

Tel.: ++86 21 5309 8733

Email: info@aimms.com

WWW: www.aimms.com

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

http://www.aimms.com

Chapter 20

Robust Optimization

IntroductionRobust optimization is a rather new modeling methodology for decision mak-

ing under uncertainty. Robust optimization is designed to meet some major

challenges associated with uncertainty-affected optimization problems:

� to operate under lack of full information on the nature of uncertainty,

� to model the problem in a form that can be solved efficiently, and

� to provide guarantees about the performance of the solution.

Robustness of decisions is defined in terms of the best performance in the

worst case possible state-of-the-world (min-max optimization). A more in-

depth discussion of robust optimization can be found, for instance, in [BT09].

Robust opti-

mization in

Aimms

In this chapter, you will find a description of the facilities built into Aimms

for creating and solving robust optimization models. From any existing deter-

ministic linear program (LP) or mixed-integer program (MIP), Aimms is able to

automatically create a robust optimization model as well, without the need for

you to reformulate any of the constraint definitions. The only steps necessary

to create a robust optimization model are

� to indicate which parameters in your deterministic model are to become

uncertain in a declarative manner,

� to indicate which variables in your deterministic model are to become

adjustable to the uncertain parameters (if any), and

� to specify possible realizations of the uncertain parameters.

Single

formulation

Being able to generate both a deterministic and robust optimization model

from an identical symbolic formulation allows for any changes you make in the

deterministic formulation to automatically propagate to the robust optimiza-

tion model. This significantly reduces the effort involved with maintaining a

robust optimization model associated with a given deterministic model.

Robust Opti-

mization

Add-On

required

To be able to run an robust optimization model, you need to make sure you

have the Robust Optimization Add-On licensed. Without the RO Add-On, you

can still define your robust optimization models, but will be unable to solve

them (an execution error will occur).

Chapter 20. Robust Optimization 327

Acknowledge-

ments

The Robust Optimization Add-On in Aimms has been developed in close co-

operation with Professor Aharon Ben-Tal and Boris Bachelis of the Technion,

Israel Institute of Technology. We would like to express our gratitude for our

partnership in developing the Robust Optimization Add-On in Aimms and for

their continuous support to get the details right, which allowed us to make

Robust Optimization a natural and intuitive extension to our existing func-

tionality.

This chapterSection 20.1 discusses a number of basic concepts in robust optimization.

These provide a common understanding necessary for the introduction of the

robust optimization features of Aimms discussed in the sections to follow. Sec-

tion 20.2 describes the facilities available in Aimms for specifying uncertain

parameters, while Section 20.3 discusses chance constraints as another means

to introduce uncertainty into your robust optimization model. Section 20.4

discusses the facilities available to declare variables to be adjustable to uncer-

tain parameters. Section 20.5, finally, describes the steps how to actually solve

a robust optimization model.

20.1 Basic concepts

Basic conceptsIn this section you will find a number of basic concepts that are commonly

used in robust optimization. They will help you to unambiguously understand

the robust optimization facilities in Aimms.

Robust

counterpart

In robust optimization the model with uncertain data is translated into the so-

called robust counterpart. Consider the following linear programming prob-

lem:

max{cTx : ATx ≤ b} (P)

in which c ∈ Rm, b ∈ Rn and A ∈ Rm×n. Suppose that the actual technology

matrix A is in fact uncertain and it is only known to belong to a bounded

uncertainty set UA ⊂ R
m×n. Similarly assume that right hand side b belongs to

an uncertainty set Ub ⊂ R
n, and the objective coefficients c to an uncertainty

set Uc ⊂ R
m. The robust counterpart (RC) for the nominal problem (P) is then

defined as follows:

max{cTx : ATx ≤ b, ∀A ∈ UA, c ∈ Uc , b ∈ Ub}. (RC)

Uncertainty setThe sets UA, Uc and Ub specify all possible realizations of the uncertain data

and are collectively called the uncertainty set. The main questions associated

with the uncertainty set are:

� When and how can the robust counterpart of an uncertain problem be

reformulated as a computationally tractable optimization problem?

Chapter 20. Robust Optimization 328

� How to specify a reasonable uncertainty set, i.e., meaningful for a partic-

ular application and yielding a tractable robust counterpart?

It can be shown that when the uncertainty set is a multi-dimensional interval

or described by linear constraints, then the robust counterpart can be refor-

mulated as a linear problem. Furthermore, when the uncertainty set is an

ellipsoid, then the robust counterpart is still tractable, i.e., it can be reformu-

lated as a second-order cone program (SOCP), for which efficient (polynomial

time) solution methods exist. The reformulation of the robust counterpart

is an automated process performed by Aimms during the generation of your

mathematical program.

Integer

programming

If the uncertainty set is a multi-dimensional interval or described by linear con-

straints, then the robust counterpart of a mixed-integer robust optimization

problem can also be reformulated as a mixed-integer optimization problem.

If the uncertainty set is described by ellipsoidal constraints then the robust

counterpart becomes a mixed-integer second-order cone program. This class

of problems is more difficult to solve than mixed-integer optimization prob-

lems.

ScenariosA special situation to consider is when the uncertainty set consists of a finite

number of points representing a collection of scenarios. This discrete case

resembles the situation in multi-stage stochastic programming with discrete

data realizations. More precisely, in this case hard constraints are imposed for

every scenario s, while the objective is to optimize a worst-case performance

measure with respect to the set of scenarios. This performance measure can

be, for example, the objective value of the original (deterministic) model as-

sociated with an uncertain scenario. Another possibility is to define this per-

formance measure as a deviation of the objective for a decision with respect

to the absolutely optimal objective for each scenario. In the latter case, the

optimal robust solution will be the one with the minimum maximum deviation

across scenarios.

Chance

constraints

Another manner to account for uncertainty into your model is by specifying

so-called chance constraints. In order to introduce chance constraints, you

have to declare some of the parameters in your model to take random values

from a distribution with given characteristics. Subsequently, you can specify

that some of the constraints in your model be satisfied with a given probabil-

ity with respect to the specified data distributions. For example, if a chance

constraint has a probability of 95%, this means that the constraint should be

satisified for (at least) 95% of the realizations drawn from specified distribu-

tions of the random parameters contained in it. Compared to using uncertain

parameters, specifying random parameters with the same range and formulat-

ing the existing constraints as chance constraints may lead to solutions that

put less emphasis on worst-case scenarios that only occur occasionally.

Chapter 20. Robust Optimization 329

Multistage

optimization

All decision variables in problem (P) represent “here and now” decisions; they

get specific numerical values as a result of solving the problem before the

actual data “reveals itself” and as such are independent of the actual values

of the data. There are situations where this is too restrictive, since “in reality”

some of the decision variables can adjust themselves, to some extent, to the

true values of the uncertain data.

Adjustable

variables

For that reason, it is possible to specify both non-adjustable and adjustable

variables in Aimms, similar to first-stage and second-stage (or multi-stage) de-

cisions in stochastic programming, where the solution of a variable in stage

n depends on the specific solution of variables in stage n − 1 in a scenario-

dependent manner. Please note that, while non-adjustable variables can be

integer, adjustable variables must be continuous.

Basic procedure

for solving

robust opti-

mization models

The implementation of robust optimization in Aimms closely follows the con-

cepts described in this section. The basic procedure to create and solve a

robust optimization model in Aimms is as follows:

� indicate in your model which parameters are to become uncertain or

random,

� for every constraint in your model that you want to become a chance

constraint, specify the probability with which it must hold,

� for every adjustable variable in your model specify on which uncertain

parameters it depends, and

� specify possible realizations of the uncertain parameters in terms of pre-

defined regions or using specialized uncertainty constraints.

Each of these steps is explained in more detail in the sections to follow. Note

that changing parameters, variables and constraints in your model into uncer-

tain or random parameters, adjustable variables and chance constraints does

in no way influence the possibility to solve the underlying deterministic model

in its original form. Thus, the robust optimization facilities in Aimms always

form a true extension of the functionality of the existing Aimms application. It

is even possible to extend an existing deterministic model to both a stochastic

model and a robust optimization model, all of which can be solved indepen-

dently.

20.2 Uncertain parameters and uncertainty constraints

Uncertain

parameters

Uncertain parameters are modeled in Aimms as numeric Parameters for which

the Uncertain property has been set (see also Section 4.1). When a parameter

has been declared Uncertain Aimms will create two new attributes Region and

Uncertainty.

Chapter 20. Robust Optimization 330

The Region

attribute

The Region attribute of an uncertain parameter offers an easy way to define the

uncertainty set without the need to introduce additional uncertain parameters.

Aimms supports a number of predefined regions which you can enter here:

� Box(l,u),

� Ellipsoid(c, r), and

� ConvexHull(s, v(s)).

Box exampleIf we want to specify that parameter A is uncertain and constrained as follows:

l(i, j) ≤ A(i, j) ≤ u(i, j)

then it suffices to specify the uncertainty set of A using its Region attribute as

follows

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : Box(l(i,j), u(i,j));

}

where l(i,j) and u(i,j) are ordinary parameters in your model.

Ellipsoid

example

It is also possible to specify the region using an Ellipsoid region

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : Ellipsoid(A.level(i,j), r(i,j));

}

which leads to an uncertainty set for A defined as an ellipsoid around the nom-

inal value of A as follows:

∑

i,j

(

A(i, j)−A.level(i, j)

r(i, j)

)2

≤ 1.

ConvexHull

example

The region can also be defined as a ConvexHull region

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, A_s(s,i,j));

}

which says that the uncertain parameter A belongs to an uncertainty set that

is described by the convex hull of the values of a collection of values A_s for a

given set of scenarios, i.e.,

A(i, j) =
∑

s

λsAs(s, i, j)

1 =
∑

s

λs , λs ≥ 0.

Chapter 20. Robust Optimization 331

DependenciesIf there are two parameters A and B that both depend on scenario-dependent

data, then those scenarios can either be dependent or independent. To differ-

entiate between these two possibilities, Aimms uses the name of the binding

index used in the ConvexHull operator. If the names of the binding indices are

identical, then Aimms assumes that the scenarios are dependent. If the index

names are different, even if they refer to the same scenario set, Aimms assumes

the scenarios to be independent.

Dependent

scenarios

example

Consider the following two declarations of uncertain parameters

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, A_s(s,i,j));

}

Parameter B {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, B_s(s,i,j));

}

Based on these declarations Aimms will generate a single convex hull as follows

[

A(i, j)

B(i, j)

]

=
∑

s

λs

[

As(s, i, j)

Bs(s, i, j)

]

∑

s

λs =1, λs ≥ 0.

If A and B consist of a single value each, and there are two scenarios for s, then

the combined convex hull for A and B is depicted in Figure 20.1.

A

B

Figure 20.1: Combined convex hull for dependent scenarios

Chapter 20. Robust Optimization 332

Independent

scenarios

example

If, on the other hand, both declarations are given as

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, A_s(s,i,j));

}

Parameter B {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(t, B_t(t,i,j));

}

then Aimms will generate two separate convex hulls as follows

[

A(i, j)

B(i, j)

]

=

[

∑

s λsAs(s, i, j)
∑

t µtBt(t, i, j)

]

∑

s

λs =
∑

t

µt = 1, λs ≥ 0, µt ≥ 0.

If A and B consist of a single value each, and there are two scenarios for s and

t each, then the combined convex hull for A and B is depicted in Figure 20.2.

A

B

Figure 20.2: Combined convex hull for independent scenarios

ConvexHullExThe ConvexHull operator Aimms can be used to express that an uncertain pa-

rameter is defined as the convex combination of a certain parameter on some

set of scenarios. The ConvexHullEx operator is an extension for which the user

explicitly has to define the “lambda” parameter as an uncertain parameter. For

example:

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHullEx(s, A_s(s,i,j), L(s,i));

}

which says that the uncertain parameter A belongs to an uncertainty set that

is described by the convex hull of the values of a collection of values A_s for a

Chapter 20. Robust Optimization 333

given set of scenarios using the uncertain parameter L, i.e.,

A(i, j) =
∑

s

Ls(i)As(s, i, j)

1 =
∑

s

Ls(i), Ls(i) ≥ 0.

More flexibilityThe ConvexHullEx operator offers more flexibility as demonstrated by the above

example in which the lambda parameter L depends on the indices s and i while

the implicitly generated lambda parameter in case of the ConvexHull operator

only depends on the index s. Moreover, the lambda parameter can be used in

the Dependency attribute of an adjustable variable (see Section 20.4). The same

lambda parameter can be used in ConvexHullEx in regions of different uncertain

parameters to define a dependency between the uncertain parameters. As the

lambda parameter is not an ordinary uncertainty parameter, it cannot be used

in uncertainty constraints.

The Uncertainty

attribute

Through the Uncertainty attribute of an uncertain parameter you can define

a relation in term of other ordinary and uncertain parameters in your model

which must hold for the uncertain value of that parameter.

ExampleConsider the following declaration

Parameter Demand {

IndexDomain : (c,t);

Property : Uncertain;

Uncertainty : Demand.level(c,t) + Sum[k, D(c,t,k) * xi(k)];

}

where D(c,t,k) is an ordinary parameter and xi an uncertain parameter. The

reference to Demand.level in the Uncertainty attribute refers to the determinis-

tic (or nominal) value of Demand. The uncertain value of Demand is defined as its

nominal value plus a linear combination of some other uncertain parameter

xi(k).

Non-exclusive

attributes

Note that the Region and Uncertainty attributes are non-exclusive, i.e., you can

use them in conjuction to each other. In such a case, Aimms will make sure

that the solution is robust with respect to both relations.

Uncertainty

constraints

The Region and the Uncertainty attribute of a uncertain parameter can be used

to specify possible realizations of the uncertain parameters. In some cases,

however, more flexibility is needed in specifying special relations for one or

more uncertain parameters. For this purpose Aimms allows you to specify

UncertaintyConstraints. An UncertaintyConstraint is a constraint that speci-

fies the relation between uncertain parameters. It is similar to an ordinary

constraint in which the uncertain parameters play the role for variables; the

Chapter 20. Robust Optimization 334

definition of an UncertaintyConstraint may only refer to normal and uncertain

parameters, and not to variables.

ExampleThe following example specifies a condition on an uncertain parameter that

cannot be expressed through its Region or Uncertainty attributes.

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

}

UncertaintyConstraint ConditionOnA {

IndexDomain : i;

Definition : Sum(j, A(i,j)) <= 1;

}

The Constraints

attribute

Through the Constraint attribute of an UncertaintyConstraint you can specify

to which (normal) constraints the UncertaintyConstraint should apply. In this

way it is possible to use different uncertainty sets for different constraints. If

the Constraints attribute is empty then the UncertaintyConstraint will be active

for all constraints.

ExampleConsider the following declarations

UncertaintyConstraint ConditionOnA {

IndexDomain : i;

Constraints : CapacityRestriction(j) : UncertaintyDependency(i,j);

Definition : Sum(j, A(i,j)) <= 1;

}

Constraint CapacityRestriction {

IndexDomain : j;

Definition : Sum(i, A(i,j) * Transport(i,j)) <= Capacity(j);

}

Parameter UncertaintyDependency {

IndexDomain : (i,j);

Definition : 1 $ (i = j);

}

These declarations yield that the uncertainty constraint ConditionOnA(i) is only

active for constraint CapacityRestriction(j) for all elements j equal to i.

Generalized

ellipsoid

Besides linear uncertainty constraints, Aimms also allows you to formulate the

following uncertainty set for a uncertain parameter ξ, that generalizes the

ellipsoidal uncertainty sets that can be defined by using the Ellipsoid region:

ξTQ0ξ +

M
∑

m=1

√

ξTQmξ ≤ b,

where Q0 and Qm should be positive semidefinite matrices. If your model

contains an ellipsoidal uncertainty constraint then the robust counterpart will

become a second-order cone program, except if the ellipsoidal uncertainty con-

straints are of the form
∑

i

√

ξ2
i ≤ b,

Chapter 20. Robust Optimization 335

in which case the robust counterpart will be a linear program.

20.3 Chance constraints

Chance

constraints

In the previous sections we assumed that each constraint with uncertain data

was satisfied with probability 1. In many situations, however, such a require-

ment may lead to solutions that over-emphasize the worst-case. In such cases,

it is more natural to require that a candidate solution has to satisfy a con-

straint with uncertain data for “nearly all” realizations of the uncertain data.

More specifically, in this approach one requires that the robust solution has

to satisfy the constraint with probability at least 1 − ǫ, where ǫ ∈ [0,1] is a

pre-specified small tolerance. Instead of the deterministic constraint

aTx ≤ b

we now require that the chance constraint

Prob
(

x : a(ξ)Tx ≤ b
)

≥ 1− ǫ

be satisfied, where the probability is associated with the specific distribution

of the uncertain parameter(s) ξ.

ApproximationIn general, (linear) problems with chance constraints are very hard to solve

even if the probability distribution of the uncertain data is completely known.

It is, however, possible to construct safe tractable approximations of chance

constraints using robust optimization (see, for instance, Chapter 2 of [BT09]).

The way a chance constraint is approximated depends merely on the general

characteristics of the data distribution, rather than on precise specification of

the distribution. If more information is available about the distribution, this

will generally result in a tighter approximation. A tighter approximation, how-

ever, could result in a more difficult solution process (for instance, requiring

second-order cone programming instead of just linear programming).

Chance

constraints in

Aimms

The procedure to introduce chance constraints into your robust optimization

model is as follows:

� indicate which parameters in your model should become random, and

specify the properties of their distributions, and

� specify which constraints should be considered chance constraints, and

specify their probability and method of approximation.

Chapter 20. Robust Optimization 336

Random

parameters

A probability distribution is modeled in Aimms as a numeric Parameter for

which the Random property has been set (see also Section 4.1). If the property

Random is set, Aimms will create the mandatory Distribution attribute for this

parameter which must be used to specify the characteristics of the distribution

to be used for that parameter. All random parameters for which a distribution

has been specified are considered to be independent.

ExampleConsider the following declaration

Parameter Demand {

IndexDomain : i;

Property : Random;

Distribution : Bounded(Demand(i).level,0.1);

}

This declaration states that parameter Demand corresponds to a bounded prob-

ability distribution with a mean equal to the nominal value of Demand and a

support of 0.1.

Supported

distributions

Aimms supports the distribution types listed in Table 20.1 All distributions

Distribution Meaning

Bounded(m, s) mean m with range [m− s,m+ s]

Bounded(m, l,u) range [l,u] and mean m not in the center of

the range

Bounded(ml,mu, l, u) range [l,u] and mean in interval [ml,mu]

Bounded(ml,mu, l, u, v) range [l,u] and mean in interval [ml,mu],

and variance bounded by v

Unimodal(c, s) unimodal around c with range [c − s, c + s]

Symmetric(c, s) symmetric around c with range [c − s, c + s]

Symmetric(c, s, v) symmetric around c with range [c − s, c + s],

and variance bounded by v

Support(l,u) range [l,u] (and no information about the

mean)

Gaussian(ml,mu, v) Gaussian with mean in interval [ml,mu] and

variance bounded by v

Table 20.1: Supported distribution types for robust optimization

in this table are bounded except the Gaussian distribution. The distribu-

tions Bounded(ml,mu, l, u), Bounded(ml,mu, l, u, v) and Symmetric(c, s, v)

are currently not implemented.

Chapter 20. Robust Optimization 337

Symmetric

unimodal

distribution

A distribution is called unimodal if its density function is monotonically in-

creasing up to a certain point c and monotonically decreasing afterwards. For

symmetric distribution Aimms offers the possibility to mark it as unimodal by

using the unimodal keyword:

Parameter Demand {

IndexDomain : i;

Property : Random;

Distribution : Symmetric(Demand(i).level,0.1), unimodal;

}

The unimodal keyword can only be used in combination with a symmetric dis-

tribution.

Linear relationIn addition to specifying a random parameter using an independent distribu-

tion, Aimms also allows you to define a random parameter as a linear com-

bination of other random parameters (but not as combination of uncertain

parameters). For example,

Parameter Demand {

Property : Random;

Distribution : Sum(i, xi(i));

}

where xi is an random parameter. To avoid cyclic definitions, Aimms requires

that the distributions of random parameters cannot be specified as an expres-

sion of other random parameters which are themselves defined as an expres-

sion of random parameters.

Chance

constraints

A constraint in your mathematical program becomes a chance constraint in the

context of robust optimization by setting its Chance property. The definition

of a chance constraint may only contain random parameters, normal param-

eters and variables. Uncertain parameters are not allowed inside a chance

constraint. When setting the Chance property for a constraint, you must spec-

ify two new attributes for the constraint, the Probability attribute and the Ap-

proximation attribute. It is allowed to use chance constraints in a mixed-integer

program.

The Probability

attribute

The Probability attribute specifies the probability with which the chance con-

straint should be satisfied when solving a robust optimization model. The

value of the Probability attribute should be a numerical expression in the

range [0,1]. If the probability is 0, then Aimms will not generate the chance

constraint. If the probability is 1, then Aimms will generate an uncertainty

constraint.

Chapter 20. Robust Optimization 338

The

Approximation

attribute

The Approximation attribute is used to define the approximation that should

be used to approximate the chance constraint. Its value should be an element

expression into the predefined set AllChanceApproximationTypes.

Supported

approximation

types

The approximations supported by Aimms are:

� Ball,

� Box,

� Ball-box,

� Budgeted, and

� Automatic.

A detailed mathematical definition of these approximation types can be found

in Chapter 2 of [BT09]. Whether or not a particular approximation type is

possible, depends on the characteristics of the distributions used in the chance

constraint, as explained below. By specifying approximation type Automatic

the most accurate approximation possible will be used. In some cases it might

be beneficial to use a less tight approximation because it leads to a robust

counterpart that is easier to solve.

ExampleConsider the declaration

Constraint ChanceConstraint {

IndexDomain : i;

Property : Chance;

Definition : Demand(i) * X(i) <= 10;

Probability : prob(i);

Approximation : ’Ball’;

}

This declaration states that ChanceConstraint is a chance constraint with prob-

ability prob(i), and that approximation type Ball is used to approximate the

chance constraint.

Possible

approximations

per distribution

Table 20.2 shows for each (supported) distribution which approximation types

are possible. It also shows whether the approximation will result in a linear

or a second-order cone robust counterpart. For the Bounded(m, s) distribu-

Distribution Automatic Ball Box Ball-box Budgeted

Bounded(m, s) linear conic linear conic linear

Bounded(m, l,u) conic linear

Unimodal(c, s) conic linear

Symmetric(c, s) (unimodal) conic conic linear conic linear

Support(l,u) linear linear

Gaussian(ml,mu, v) conic

Table 20.2: Allowed approximations and their resulting problem type

Chapter 20. Robust Optimization 339

tion the automatic approximation equals the Budgeted approximation, and the

automatic approximation of the Support(l,u) distribution equals the Box ap-

proximation. The non-unimodal Symmetric(c, s) distribution is treated as a

Bounded(m, s) distribution.

Combining

distributions

A chance constraint cannot contain both bounded random parameters and

Gaussian random parameters. Different types of bounded random parameters

can be combined, in which case only a part of the available information will be

used. The possible combinations of bounded random parameters are given in

Table 20.3.

Distribution 1 2 3 4 5

1 Bounded(m, s) 1 2 – 1 5

2 Bounded(m, l,u) 2 2 – 2 5

3 Unimodal(c, s) – – 3 3 5

4 Symmetric(c, s) (unimodal) 1 2 3 4 5

5 Support(l,u) 5 5 5 5 5

Table 20.3: Resulting distribution type when combining distributions

ExplanationIf a random parameter with a Bounded(m, l,u) distribution and a random pa-

rameter with a Support(l,u) distribution are used in a single chance con-

straint, then Table 20.3 states that the Bounded(m, l,u)) distribution of the

first random parameter will be treated as a Support(l,u) distribution. Uni-

modal distributions can only be mixed with unimodal Symmetric(c, s) and

Support(l,u) distributions.

20.4 Adjustable variables

Adjustable

variables

An adjustable variable reflects a decision made after uncertain data has been

revealed. In robust optimization this is interpreted as the adjustable variable

taking some (explicit or implicit) functional form in terms of the uncertain data

on which it depends. In Aimms, you indicate that a Variable should be treated

as adjustable by setting its Adjustable property.

The Dependency

attribute

For any adjustable variable, Aimms will create a Dependency attribute which you

can use to specify on which uncertain parameters the variable depends. The

attribute value must be a comma-separated list of mappings from an uncertain

parameter to a binary parameter, indicating for which combination of indices

a dependency exists on that uncertain parameter.

Chapter 20. Robust Optimization 340

Linear decision

rule only

Aimms currently only supports the linear decision rule, which means any ad-

justable variable will be expressed as an affine relation in terms of the uncer-

tain parameters which it depends on. More explicitly, if an adjustable variable

x(t) depends on uncertain parameters dr , then, under the linear decision rule,

Aimms assumes that x(t) takes the form

x(t) = X0(t)+
∑

r

Xr (t)dr

where X0(t) and Xr (t) are newly introduced intermediate variables, the value

of which is determined by solving the robust counterpart. As such, the value

of an adjustable variable is not fully determined by the solver. It can be com-

puted afterwards for a given realization of the uncertain parameters. Aimms

will automatically generate the affine relation based on the dependencies you

indicated in the Dependency attribute, without the need for you to introduce the

appropriate intermediate variables.

Requirements

for adjustable

variables

In order for Aimms to be able to generate the robust counterpart of a robust

optimization model, the model must satisfy the fixed recourse condition, i.e.,

the coefficients of any adjustable variables in your model must not depend on

uncertain parameters. In addition, for Aimms to be able to generate the robust

counterpart, adjustable variables may not occur in chance constraints. Also,

adjustable variables cannot be integer.

The .Adjustable

suffix for

variables

The collection of intermediate variables introduced during this process, auto-

matically becomes available through the .Adjustable attribute of the adjustable

variable at hand, followed by the name of the uncertain parameter involved.

That is, if an adjustable variable x(i) depends on an uncertain parameter a(j),

then the corresponding intermediate variable is available as the expression

x.Adjustable.a(i,j). In addition, a variable x.Adjustable.Constant(i) will be

created to account for the constant part of the affine relation. If necessary,

you can bound these variables through the .Lower and .Upper suffices, or you

can formulate additional constraints on these variables.

ExampleConsider the following declarations

Variable Stock {

IndexDomain : t;

Property : Adjustable;

Dependency : Demand(t2) : StockDemandDependency(t,t2);

}

Parameter Demand {

IndexDomain : t;

Property : Uncertain;

}

Parameter StockDemandDependency {

IndexDomain : (t,t2);

Definition : 1 $ (t2 < t);

}

Chapter 20. Robust Optimization 341

These declarations yield that the adjustable variable Stock(t) depends on the

uncertain parameter Demand(t2) for all elements t2 smaller than t. Given these

declaration, Aimms will generate the following definition for Stock(t)

Stock(t) = Stock.Adjustable.Constant(t) +

sum(t2 | StockDemandDependency(t,t2), Stock.Adjustable.Demand(t,t2)*Demand(t2))

If the data for Demand(t) becomes available, you can use the computed values

of Stock.Adjustable.Demand(t,t2) and Stock.Adjustable.Constant to compute

the value of Stock(t).

Evaluating

adjustable

variables

To compute the values of an adjustable variable for a given realization of the

uncertain parameters of the robust optimization model, you do not have to

explicitly add the appropriate definitions to your model. Aimms offers the

function GMP::RobustEvaluateAdjustableVariables, discussed in Section 16.8, to

automatically compute these values for you.

20.5 Solving robust optimization models

Solving robust

optimization

models

After you have specified all uncertain parameters, random parameters, chance

constraints and adjustable variables that specify your robust optimization

model, your original mathematical program can now be solved as a robust

optimization model. It is also still possible to solve it as a deterministic model

by just calling the SOLVE statement (see also Section 15.3).

Generate robust

counterpart

To solve a robust optimization model for a MathematicalProgram MP, the first

step is to generate its robust counterpart. This can be accomplished by calling

the gmp function

� GenerateRobustCounterpart(MP,UncertainParameters,

UncertaintyConstraints[,Name])

The function returns an element into the set AllGeneratedMathematicalPro-

grams, i.e., the generated mathematical program representing the robust coun-

terpart of the given robust optimization model.

Specifying

uncertain data

Through the UncertainParameters and UncertaintyConstraints arguments you

can specify the collection of uncertain and random parameters, as well as the

uncertainty constraints that you want to take into account when generating the

robust counterpart. Together, these completely determine the uncertain data

which Aimms will use to translate the uncertain matrix coefficients, chance

constraints and adjustable variables into the generated mathematical program

representing the robust counterpart.

Chapter 20. Robust Optimization 342

Name argumentWith the optional Name argument you can explicitly specify a name for the

generated mathematical program. If you do not choose a name, Aimms will use

the name of the underlying MathematicalProgram as the name of the generated

mathematical program as well. Please note, that Aimms will also use this name

as the default name for solving the deterministic model. Therefore, if you do

not want the generated mathematical program of the deterministic model to

be deleted, then you have to choose a non-default name.

Solving the

robust

counterpart

You can solve the generated mathematical program gmp representing the ro-

bust counterpart by calling the regular gmp procedure

� GMP::Instance::Solve(gmp)

The GMP::Instance::Solve method is discussed in full detail in Section 16.2.

Alternatively, you can use any of the other available functions available to

solve generated mathematical programs discussed in Chapter 16. Note that

Aimms will not allow you to use the gmp modification functions on any gmp

generated by GenerateRobustCounterpart.

The resulting

solution

The solution resulting from solving the robust counterpart will satisfy all non-

chance constraints in your model for all realizations of the uncertain parame-

ters that you passed to the GenerateRobustCounterPart function, and will satisfy

all chance constraints with the given probabilities and approximations, given

the random parameters taken into account.

Bibliography

[BT09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization, Prince-

ton University Press, Princeton, N.J., 2009.

	AIMMS Language Reference - Robust Optimization
	Robust Optimization
	Basic concepts
	Uncertain parameters and uncertainty constraints
	Chance constraints
	Adjustable variables
	Solving robust optimization models

	Bibliography

