Chapter 2

Additional Separation Procedures for Benders’ Decomposition

In Section 21.4 we showed the implementation of the procedure Separation-OptimalityAndFeasibilityDual as used by the textbook algorithm. The Benders' module implements also three other separation procedure that can be used by the Benders' decomposition algorithm depending on the setting of the control parameters UseDual and FeasibilityOnly. In this chapter we explain the implementation of these procedures.

The procedure SeparationFeasibilityOnly is called by the Benders' decomposition algorithm in case the primal of the Benders subproblem is used (parameter UseDual equals 0) and if only feasibility cuts can be generated by the algorithm (parameter FeasibilityOnly equals 1). This procedure creates the feasibility problem for the (primal) subproblem if it does not exist yet. The feasibility problem is updated and solved. If its optimal objective value equals 0 (or is negative) then we have found an optimal solution for the original problem and the algorithm terminates. If the optimal objective value is larger than 0, indicating that the subproblem would have been infeasible, we add a feasibility cut to the master problem. The feasibility cut is created using the dual solution of the feasibility problem. By the dual solution we mean the shadow prices of the constraints and the reduced costs of the variables in the feasibility subproblem.

```
return when ( BendersAlgorithmFinished );

! Create feasibility problem corresponding to Subproblem (if it does not exist yet).
if ( not FeasibilityProblemCreated ) then
  gmpF := GMP::Instance::CreateFeasibility( gmpS, "FeasProb",
    useMinMax : UseMinMaxForFeasibilityProblem );
  solsesF := GMP::Instance::CreateSolverSession( gmpF ) ;
  FeasibilityProblemCreated := 1;
endif;

! Update feasibility problem corresponding to Subproblem and solve it.
GMP::Benders::UpdateSubProblem( gmpF, gmpM, 1, round : 1 );
GMP::SolverSession::Execute( solsesF ) ;
GMP::Solution::RetrieveFromSolverSession( solsesF, 1 );
```
ObjectiveFeasProblem := GMP::SolverSession::GetObjective(solsesF);
if (ObjectiveFeasProblem <= BendersOptimalityTolerance) then
 if (MasterHasBeenSolved) then
 return AlgorithmTerminate('Optimal');
 endif;
endif;

NumberOfFeasibilityCuts += 1;
GMP::Benders::AddFeasibilityCut(gmpM, gmpF, 1, NumberOfFeasibilityCuts);

The procedure SeparationOptimalityAndFeasibility is called by the Benders' decomposition algorithm in case the primal of the Benders subproblem is used (parameter UseDual equals 0) and if both optimality and feasibility cuts can be generated by the algorithm (parameter FeasibilityOnly equals 0). This procedure updates the primal subproblem and solves it. If the primal subproblem is infeasible then this procedure creates a feasibility problem for the subproblem if it does not exist yet. The feasibility problem is updated and solved, and its dual solution is used to create a feasibility cut which is added to the master problem. If the primal subproblem is bounded and optimal then the objective value of the subproblem is compared to the objective value of the master problem to check whether the algorithm has found an optimal solution for the original problem. If the solution is not optimal yet then an optimality cut is added to the master problem, using the dual solution of the primal subproblem.

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);
GMP::SolverSession::Execute(solsesS)
GMP::Solution::RetrieveFromSolverSession(solsesS, 1)
ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1)
if (ProgramStatus = 'Unbounded') then
 return AlgorithmTerminate('Unbounded');
endif;
if (ProgramStatus = 'Infeasible') then
 ! Create (if it does not exist yet) and update feasibility problem corresponding to
 ! Subproblem, and solve it to create feasibility cut for the Master problem.
 if (not FeasibilityProblemCreated) then
 gmpF := GMP::Instance::CreateFeasibility(gmpS, "FeasProb",
 useMinMax : UseMinMaxForFeasibilityProblem);
 solsesF := GMP::Instance::CreateSolverSession(gmpF);
 FeasibilityProblemCreated := 1;
 endif;
 return when (BendersAlgorithmFinished);
The procedure `SeparationFeasibilityOnlyDual` is called by the Benders' decomposition algorithm in case the dual of the Benders subproblem is used (parameter `UseDual` equals 1) and if only feasibility cuts can be generated by the algorithm (parameter `FeasibilityOnly` equals 1). This procedure updates the dual subproblem and solves it. If its optimal objective value equals 0 (or is negative) then we have found an optimal solution for the original problem and the algorithm terminates. If the optimal objective value is larger than 0 then we create a feasibility cut using the level values of the variables in the solution of the dual subproblem. This feasibility cut is added to the master problem.
NumberOfFeasibilityCuts += 1;
GMP::Benders::AddFeasibilityCut(gmpM, gmpS, 1, NumberOfFeasibilityCuts);
endif;