
AIMMS
Tutorial

for Professionals

September 2018

AIMMS

Copyright c© 1993–2018 by AIMMS B.V. All rights reserved.

AIMMS B.V.

Diakenhuisweg 29-35

2033 AP Haarlem

The Netherlands

Tel.: +31 23 5511512

AIMMS Inc.

11711 SE 8th Street

Suite 303

Bellevue, WA 98005

USA

Tel.: +1 425 458 4024

AIMMS Pte. Ltd.

55 Market Street #10-00

Singapore 048941

Tel.: +65 6521 2827

AIMMS

SOHO Fuxing Plaza No.388

Building D-71, Level 3

Madang Road, Huangpu District

Shanghai 200025

China

Tel.: ++86 21 5309 8733

Email: info@aimms.com

WWW: www.aimms.com

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

http://www.aimms.com

Contents

Contents iii

Common Aimms Shortcut Keys iv

Part I Introduction 2

1 Introduction 2

2 Problem Description 5

2.1 Initial problem components . 5

2.2 Maintenance and vacation planning 6

2.3 Multiple demand scenarios . 7

2.4 Planning objective . 8

2.5 A rolling horizon approach . 8

3 Model Description 10

3.1 Product flow . 10

3.2 Mode switches . 12

3.3 Objective . 13

3.4 Model summary . 14

Part II Model Declarations 16

4 Auxiliary Project Files 16

4.1 Directory structure . 16

4.2 External project files . 17

4.3 Importing model sections . 18

4.4 Loading cases . 19

5 Getting Acquainted 21

5.1 Starting a new project . 21

5.2 The Model Explorer . 23

Contents iv

5.2.1 Entering a set identifier 23

5.3 Reading data . 26

5.4 A first page . 29

6 Quantities and Time 35

6.1 Model Structure . 35

6.2 Entering quantity declarations 36

6.3 Entering time declarations . 41

6.3.1 Horizon-related declarations 42

6.3.2 Calendar-related declarations 48

7 Production and Maintenance Model 56

7.1 Model structure . 56

7.2 Topology . 57

7.3 Demand scenarios . 57

7.4 Production . 58

7.5 Supply and demand . 60

7.6 Maintenance and vacations . 61

7.7 Costs . 62

7.8 Optimization model . 63

Part III Model Procedures and Functions 68

8 Linking to the Database 68

8.1 Database tables . 68

8.1.1 Entering the first database table declaration 69

8.1.2 Entering additional database table declarations 72

8.2 Database procedures . 74

8.2.1 SQL queries . 74

8.2.2 Stored procedures . 76

9 Functions and Procedures 79

9.1 Reading from a database . 79

9.2 External DLL functions . 82

9.3 Specifying the rolling horizon . 85

9.3.1 Rolling horizon declarations 86

9.3.2 Single step procedures 88

9.3.3 Rolling Procedures . 96

9.3.4 Initialization procedures 97

9.4 Running the model . 98

Contents v

Part IV Building an End-User Interface 103

10 Management of Pages and Templates 103

10.1 Page management . 103

10.2 Template management . 105

10.3 The Contents page . 112

11 Production and Transport Overviews 118

11.1 Extending the model tree . 118

11.2 The Production Overview page 119

11.2.1 Execution buttons . 120

11.2.2 The production lines table 121

11.2.3 The factory production bar chart 125

11.2.4 The vacation table . 126

11.2.5 The horizon-calendar tables 127

11.2.6 The maintenance and mode switches tables 128

11.2.7 The total costs bar chart 129

11.2.8 Completing the page . 130

11.3 The Transport Overview page . 138

11.3.1 Scenario selection object 139

11.3.2 Period selection object 140

11.3.3 Transport network object 142

11.3.4 Factory text object . 150

11.3.5 The factory production bar chart 151

11.3.6 The factory stock bar chart 152

11.3.7 Factory transport composite table 153

11.3.8 Factory properties scalar object 154

11.3.9 Factory production line table 155

11.3.10 The distribution center data block 157

11.3.11 Completing the page . 159

12 Absentee and Planning Overviews 160

12.1 Gantt charts . 160

12.2 The Absentee Overview page . 161

12.2.1 The vacation Gantt chart 161

12.2.2 The holiday Gantt chart 167

12.2.3 Completing the page . 172

12.3 The Planning Overview page . 174

12.3.1 The planning Gantt chart 175

12.3.2 Completing the page . 179

Contents vi

13 Building User-Menus 181

13.1 Menu management . 181

13.2 The Softdrink Planning menubar 182

13.2.1 The File menu . 183

13.2.2 The Edit and Data menus 186

13.2.3 The Run menu . 187

13.2.4 The Overview menu . 189

13.2.5 The Window menu . 191

13.2.6 The Help menu . 192

13.2.7 Linking the menubar to pages 196

14 Data Management 199

14.1 Storing the solution in a case . 199

14.2 Saving holidays and vacations in a case file 201

14.3 Automatic case generation . 203

A-4 Available Aimms Documents List 210

Common Aimms Shortcut Keys

Key Function

F1 Open Aimms Help

F2 Rename the selected identifier

F3 Find and repeat find

F4 Switch between edit mode and end-user mode

(for the active page)

F5 Compile all

F6 Run MainExecution

Alt+F6 Switch to debugger mode

F7 Save the active page

F8 Open Model Explorer

Ctrl+F8 Open Identifer Selector

F9 Open Page Manager

Alt+ F9 Open Template Manager

Ctrl+ F9 Open Menu Builder

F11 Open Identifer Info dialog

Ctrl+ B Insert a break point in debugger mode

Ctrl+ D Open Data Page

Ctrl+ F Open Find dialog

Ctrl+ M Open Message Window

Ctrl+ P Open Progress Window

Ctrl+ T View Text Representation of selected part(s)

Ctrl+Shift + T View Text Representation of whole model

Ctrl+ W Open Wizard

Ctrl+ Space Name completion

Ctrl+ Shift+Space Name completion for Aimms Predeclared Identifers

Ctrl+ Enter Check, commit, and close

Insert Insert a node (when single insert choice) or

Open Select Node Type dialog (when multiple

insert choices)

Part I

Introduction

Chapter 1

Introduction

Ways to learn

Aimms . . .

There are several ways in which you can learn the Aimms language and ac-

quire a basic understanding of its underlying development environment. The

following opportunities are available.

� There are two tutorials on Aimms to provide you with some initial work-

ing knowledge of the system and its language. One tutorial is intended

for students, while the other is aimed at professional users of Aimms.

� There is a model library with a variety of examples to illustrate simple

and advanced applications together with particular aspects of both the

language and the graphical user interface.

� There are three reference books on Aimms, which are available in PDF for-

mat and in hard copy form. They are The User’s Guide to introduce you

to Aimms and its development environment, The Language Reference to

describe the modeling language in detail, and Optimization Modeling to

enable you to become familiar with building models.

� There is a Function Reference that provides a detailed description of all

available functions in Aimms, including their arguments and return type.

It also provides detailed information on predeclared identifiers available

in AIMMS.

� There is an Online Help that provides many details on the usage of

Aimms. You can get online help for most of the tools, attribute forms

and objects within the Aimms system through the Context Help facili-

ties.

� There are workshops on Aimms that take you through the entire devel-

opment cycle of a complete decision support application by means of a

sequence of ‘hands-on’ sessions. For more information about the work-

shops refer to our site www.aimms.com.

. . . for beginnersAs a student studying optimization modeling, you may not have much time

for learning yet another tool in order to finish some course work or home-

work requirements. In this case, concentrate your efforts on the tutorial for

beginners. After completing that tutorial, you should be able to use the sys-

tem to build your own simple models, and to enter your own small data sets

for subsequent processing. The book on Optimization Modeling may teach you

some useful tricks, and will show you different (mostly non-trivial) examples

of optimization models.

http://aimms.com/english/developers/support/

Chapter 1. Introduction 3

. . . for

professionals

As a professional in the field of optimization modeling you are looking for a

tool that simplifies your work and minimizes the time needed for model con-

struction and model maintenance. In this situation, you cannot get around

the fact that you will need to initially invest substantial time to get to know

several of the advanced features that will subsequently support you in your

role as a professional application builder. Depending on your skills, experi-

ence, and learning habits you should determine your own individual learning

path. Along this path you are advised to work through the extensive tutorial

especially designed for professionals. This tutorial for professionals provides

a good start, and should create excitement about the possibilities of Aimms.

Individual examples in the library, plus selected sections of the three books,

will subsequently offer you additional ideas on how to use Aimms effectively

when building your own advanced applications.

Tutorials are

different in

scope

The one-hour tutorial for students is designed as the bare minimum needed to

build simple models using the Aimms Model Explorer. Data values are entered

manually using data pages, and a student can build a page with objects to view

and modify the data. The extensive tutorial for professionals is an elaborate

tour of Aimms covering a range of advanced language features plus an intro-

duction to all the building tools. Especially of interest will be the modeling

of time using the concepts of horizon and calendar, the use of quantities and

units, the link to a database, and the connection to an external DLL (Dynamic

Link Library). Even then, some topics such as efficiency considerations (execu-

tion efficiency, matrix manipulation routines) and the Aimms API (Application

Programming Interface) will remain untouched.

Chapter 1. Introduction 4

Several days are

required . . .

The current extensive tutorial for professionals requires a substantial amount

of input. Several days are required to build the entire application from scratch.

It is possible, however, to import portions of the model and its interface to

adapt the tutorial to your own time restrictions.

. . . plus access

to MS Access

This tutorial reads data from a database stored in MS Access format using

ODBC (Open DataBase Connectivity). Therefore, you will need to have Mi-

crosoft Access on your machine in order to complete the course.

Preview of your

output

In this tutorial you will build your own end-user interface. One of the pages

that you will construct is shown in Figure 1.1.

Figure 1.1: An overview of optimal transport data

Chapter 2

Problem Description

This chapterIn this chapter you will find a description of the problem to be translated into

an optimization model. The problem statement covers several pages, typical

for a professional application in the field of planning and scheduling. The

overall goal in this problem is to obtain a production and maintenance plan

on a weekly basis for a total planning horizon of one year. The corresponding

mathematical model is provided in Chapter 3.

2.1 Initial problem components

Planning

horizon

The application discussed in this tutorial considers a planning horizon of one

year and individual planning periods of one week. The overall goal of the

application will be to develop a robust production and maintenance schedule.

Production and

distribution

Consider the production and distribution of a specific soft drink on a weekly

basis. There are 3 factories and 22 distribution centers, all located in the

Netherlands (see Figure 2.1). Every week, truckloads of soft drinks are dis-

tributed from the factories to the distribution centers. There is an upper

bound on the number of truck loads that can be moved from a particular

factory during a single week.

Production linesEach factory has several production lines each with a fixed production level

measured in terms of hectoliters per day. During any particular week, a pro-

duction line is either operational at a fixed production level, or does not pro-

duce at all.

Mode switchesThe term mode switch of a production line refers to an on/off change in pro-

duction. Thus a mode switch occurs when a production line becomes opera-

tional during a particular week if it was not operational during the previous

week, and vice versa.

Chapter 2. Problem Description 6

Arnhem

Amsterdam

The Hague Utrecht
Amersfoort

Maastricht

Haarlem

Eindhoven

Breda
Den Bosch

Zwolle

Apeldoorn

Assen

Den Helder

Deventer

Dordrecht

Emmen

Enschede

Groningen
Leeuwarden

Nijmegen

Rotterdam

Tilburg

Venlo

Vlissingen

Factory

Distribution Center

Figure 2.1: The Netherlands

StorageThere are storage facilities at both factories and distribution centers. Stock,

like production, is measured in hectoliters. There is a reserve stock at each

location, and storage is limited.

Cost

components

Total cost, measured in terms of dollars, is made up of several cost compo-

nents related to production, distribution, storage, and mode switches. The

first three of these components are self-explanatory, but the final component

deserves some explanation. In this application some of the workers employed

to work on the production line are temporary workers, but it is assumed that

frequent hiring and layoffs are undesirable. Therefore, an extra artificial cost

term is introduced to penalize mode switches.

2.2 Maintenance and vacation planning

Maintenance

requirement . . .

Production lines need to be maintained on a regular basis dependent on their

associated deterioration rate. It is assumed that when a production line has

been in full use for a period of 16 weeks, then shortly thereafter it must be

closed for a week of maintenance which will be performed by the crew previ-

Chapter 2. Problem Description 7

ously working on that line. If a production line has not been in use for more

than 64 weeks, then it must have maintenance in the week prior to becoming

operational. If the line has been in and out of use over a period of weeks, then

every week of non-use increases the deterioration level by an amount equal to

one quarter of a week of use.

. . . causes no

mode switches

The workers on a production line also perform the line maintenance. There-

fore, the mode switch penalty, described in the previous section, does not

apply when production comes to a halt or starts again as a result of mainte-

nance.

. . . and

preserves

continuity

To guarantee continuity of production in each factory, there exists an addi-

tional requirement that only one production line per factory can be maintained

at the same time.

Inactive daysThe production lines in the factories are closed during weekends and official

holidays. In addition, there is no distribution of soft drinks from the factories

to the distribution centers on these particular days. As a result, a production

week always consists of five or less working days.

Vacation

periods

In addition to the official holidays, there are whole periods reserved when

workers have the opportunity to take a vacation. For planning purposes, it

is assumed that not every worker will be on vacation, and that the level of

production for all the lines in use will drop by a particular percentage during

such a vacation period. The mode switch penalty does not apply when such a

drop or subsequent increase in production takes place.

2.3 Multiple demand scenarios

Demand is

uncertain

The weekly demand for soft drinks to be supplied by the distribution centers to

customers is not exactly known. Variations over the years have been observed,

which is why there is a reserve stock. Nevertheless, when building a model

with demand as a parameter, demand values for the weeks to come must be

chosen. Such a set of demand values is referred to as a demand scenario.

Three scenariosInstead of selecting a single demand scenario, the use of three demand scenar-

ios is proposed in order to obtain a more robust production and maintenance

plan. These scenarios reflect an expected, a somewhat pessimistic and a some-

what optimistic demand, thereby capturing overall demand behavior over the

previous several years.

Chapter 2. Problem Description 8

Robust planningThe key idea of robust planning is to make a single production and mainte-

nance plan that is feasible for all three demand scenarios. The only decisions

that are allowed to be different with each demand scenario are those related to

distribution and storage. For more details on scenario-based optimization you

may want to consult Chapters 16 and 17 of Aimms, Optimization Modeling.

2.4 Planning objective

Overall goalThe overall goal of the company is to obtain a production and maintenance

plan on a weekly basis for a total planning horizon of one year. The resulting

plan should be in the form of a Gantt chart (see Figure 2.2) at the level of the

individual production lines at each of the three factories. Such a plan provides

insight into the use of capacity, the build up of inventories, and the need to

make arrangements for temporary workers to be hired in each of the factories.

Figure 2.2: Selected portion of a Gantt chart

Specific goalThe specific objective of the mathematical programming model to be built is to

minimize total cost over the planning horizon. It is straightforward to specify

the individual cost components related to production and mode switches. The

cost components related to storage and distribution, however, are scenario-

dependent and thus should be weighted in the objective with the scenario

probabilities. In this application, the assumption has been made that the prob-

abilities of the pessimistic and optimistic scenarios are each equal to 0.25.

2.5 A rolling horizon approach

Size problematicIn practical applications of the type described in this chapter the number of

factories and distribution centers is usually much larger than the few locations

specified here. In addition, most applications have more than one product.

With the one-year planning horizon, on a weekly basis, the mathematical pro-

gram as built in this tutorial is likely to be too large to be solved all at once in

a real life situation.

Chapter 2. Problem Description 9

Restrict horizonOne remedy would be to consider a shorter planning horizon. The effect on

the number of decision variables is immediate, as all of them are indexed with

weeks. The disadvantage of this approach is clear: it does not satisfy the

management requirement to plan for a full year.

Rolling horizonThe approach followed in this application is to run a sequence of mathematical

programs each with a planning horizon for intervals of 8 weeks. Once the first

program is solved for week one, all decisions concerning this first week are

considered to be final. The subsequent mathematical program then starts at

week two, and again, all production and maintenance decisions concerning this

second week are fixed. This process continues until the mathematical program

covers the last 8 weeks of the full year planning horizon.

Dependency on

future data

Rolling horizon models are a compromise between speed and accuracy. If

the planning interval is long, the solution should be more optimized. The

corresponding mathematical program is however larger in size, and could take

up a considerable amount of computational time. The length of the planning

interval should certainly reflect the insensitivity of future data to first-period

decisions. This choice is application dependent. A planning interval of 8 weeks

was adequate for the problem in this tutorial.

Maintenance

external

An advantage of this rolling horizon approach is that maintenance planning

can, for the most part, be placed outside the mathematical program. Every

time the decisions corresponding to a first week are committed, their effect

on maintenance can be registered by adjusting a deterioration parameter for

each production line. Once maintenance for a particular production line is

due within the next horizon of 8 weeks, the level of production during the

corresponding estimated maintenance period is set to zero. The specific im-

plementation details are discussed later.

EvaluationFrom the point of view of a tutorial, it is an interesting exercise to work

with time and a rolling horizon. In practical applications, however, caution

is needed: a short planning horizon may not be sufficient to take the rele-

vant future into account. In this example, a planning horizon of 8 weeks was

considered sufficiently large because demand fluctuations are not drastic, and

storage safety buffers at the locations are of a reasonable size.

Chapter 3

Model Description

This chapterIn this chapter you will find a description of the mathematical program corre-

sponding to the problem description of the previous chapter.

3.1 Product flow

IndicesThe following indices capture the dimensions of the problem, and are used

throughout this chapter.

Indices:

l locations

f factories ⊂ locations

c distribution centers ⊂ locations

p production lines

t time periods

s demand scenarios

Decision

variables

The following product flow decision variables determine the levels of produc-

tion, distribution and storage.

Variables:

qft total factory production [hl (hectoliter)]

ufpt binary to indicate that production line is in use

xfcts transport [TL (truckload)]

ylts stock [hl]

Note that the production variables are identical for all demand scenarios, while

the distribution and storage variables can vary for each scenario. Note also

that both hectoliters and truckloads are used to measure the quantities of soft

drinks. In this tutorial a truckload is defined as 12 cubic meters.

Parameters . . .The following product flow related parameters are used in this chapter.

Parameters:

Dcts demand [hl]

Lt actual period length [day]

Chapter 3. Model Description 11

Qfp production at full operation [hl/day]

Mfpt binary to indicate that production line is in maintenance

Vft binary to indicate a vacation period

F drop in workforce during vacation periods (fraction)

Afpt potential production [hl]

Xf number of available truckloads [TL]

Y l maximum stock level [hl]

Y l minimum stock level [hl]

. . . and their

data source

The parameters related to production line capacity, demand and vacations will

be read from external data sources. The maintenance parameter will be deter-

mined as part of the rolling horizon solution process.

Potential

production

determination

The potential production of a production line, Afpt , is dependent on the main-

tenance and vacation parameters, and is defined as follows.

Afpt = Lt(1−Mfpt)(1− F · Vft)Qfp , ∀(f ,p, t)

Note that nonzero values of parametersMfpt , F and Vft result in the potential

production, Afpt , being less than the production level at full operation Qfp .

Balance

constraint

The following stock balance constraint relates stock to previous stock, produc-

tion, distribution and demand.

ylts = yl,t−1,s + qlt +
∑

f

xflts −
∑

c

xlcts −Dlts , ∀(l, t, s)

ylts ∈ [Y l, Y l], ∀(l, t, s)

Domain

restrictions

Note that this balance constraint is used for all locations (thus both factories

and distribution centers), and that particular terms inside this constraint must

on some occasions be interpreted as non-existent. For instance, the production

term is non-existent for distribution centers, while the demand term is non-

existent for factories. In Aimms you can specify a global index domain for each

identifier, and the system will automatically restrict all identifier references to

such an index domain.

Factory

production

Using the potential production parameter Afpt as defined previously, it is now

straightforward to determine the total weekly production at each of the facto-

ries.

qft =
∑

p

Afptufpt , ∀(f , t)

Chapter 3. Model Description 12

Transport

limitation

It is also straightforward to model the restriction that the number of truck-

loads to be moved from a factory during a particular week is limited by the

number of trucks available at that factory.

∑

c

xfcts ≤ Xf , ∀(f , t, s)

Note that the above planning constraint is, in practice, a simplification of the

detailed transport capacity scheduling limitations. In scheduling applications

the routing of vehicles, the distances to be traveled, plus the time-windows for

the drivers would all be key factors in the determination of a final schedule.

These factors are considered to be less important for the current one-year

plan.

3.2 Mode switches

Additional

notation

The following variable is needed to register the mode switches,

Variable:

vfpt binary to register a mode switch

Mode switch

registration

The registration of mode switches seems tricky at first, but becomes straight-

forward with some additional explanation. Consider the following two inequal-

ities.

vfpt ≥ ufpt −ufp,t−1, ∀(f ,p, t)

vfpt ≥ ufp,t−1 −ufpt , ∀(f ,p, t)

Whenever a production line switches from being used to not being used, or vice

versa, the switch-registration variable v will be greater than or equal to unity.

The penalty term in the objective discussed in the next section will ensure that

this variable remains as small as possible. Thus, without a switch in the use of

a production line, the variable v will be zero.

Effect on

maintenance

Consider a production line in use. Whenever such a line needs to be main-

tained, its production drops to zero. Immediately following the maintenance

week, its production is likely to restart. In this case, the change in produc-

tion is not considered to be a mode switch. The definition of the potential

production parameter, Afpt , in the previous section is consistent with this ob-

servation. The maintenance parameter, Mfpt , is set to one when maintenance

is planned, which forces the potential production parameter, Afpt , to be zero

for that week. The penalty term in the objective function, however, will cause

the u variable to remain at level one, thus avoiding the unwanted mode switch.

A similar argument applies to maintenance while a line is not in use.

Chapter 3. Model Description 13

3.3 Objective

Additional

notation

The following parameters and variables are needed to specify the objective

function of the mathematical program.

Parameters:

C
q
f unit production cost [$/hl]

C
y
l unit stock cost [$/hl]

Cxfc unit transport cost [$/TL]

Cv penalty cost due to mode switch [$]

Ps demand scenario probability

Variables:

rs demand scenario cost [$]

z total cost [$]

Cost per

scenario

The cost per single demand scenario is the sum of the production costs, the

scenario-specific storage and distribution costs, plus a penalty term to reflect

the costs associated with mode switching.

rs =
∑

ft

C
q
fqft +

∑

lt

C
y
l ylts +

∑

fct

Cxfcxfcts +
∑

fpt

Cvvfpt , ∀s

Minimize total

cost

The total cost to be minimized is simply the weighted sum of the scenario

costs.

Minimize:

z =
∑

s

Psrs

Chapter 3. Model Description 14

3.4 Model summary

The full mathematical description of the optimization model can now be sum-

marized as follows.

Minimize:

z =
∑

s

Psrs

Subject to:

ylts = yl,t−1,s + qlt +
∑

f

xflts −
∑

c

xlcts −Dlts ∀(l, t, s)

qft =
∑

p

Afptufpt ∀(f , t)

∑

c

xfcts ≤ Xf ∀(f , t, s)

vfpt ≥ ufpt −ufp,t−1 ∀(f ,p, t)

vfpt ≥ ufp,t−1 −ufpt ∀(f ,p, t)

rs =
∑

ft

C
q
f qft +

∑

lt

C
y
l ylts +

∑

fct

Cxfcxfcts +
∑

fpt

Cvvfpt ∀s

ufpt ∈ {0,1} ∀(f ,p, t)

xfcts ≥ 0 ∀(f , c, t, s)

ylts ∈ [Y l, Y l] ∀(l, t, s)

vfpt ≥ 0 ∀(f ,p, t)

Part II

Model Declarations

Chapter 4

Auxiliary Project Files

This chapterIn this chapter you will find instructions on how to install the auxiliary files

that are needed to complete this tutorial. In addition, the process to import

model sections and pages is explained.

4.1 Directory structure

Creating foldersYou are advised to use Windows Explorer to first create a dedicated folder in

which to store your Aimms projects, and then create a subfolder to store the

particular Aimms project of this tutorial. Figure 4.1 serves as an illustration.

Figure 4.1: A selection of subfolders

Auxiliary

project files

There are several files that you will need or find convenient while building the

Aimms project described in this tutorial. Among these files are:

� a text file containing example project data,

� an MS Access database containing project data,

� a DLL with a function external to Aimms,

� several bitmaps for the end-user interface,

� a number of model sections for possible import,

� a number of cases and datasets for possible,

� a copy of this tutorial in PDF format.

Download the

auxiliary project

files

On request you can obtain a copy of the auxiliary project files listed above as

well as a copy the completed tutorial project. You can also download the files

yourself from the two following links. Download the file containing the correct

version based on the version of Aimms you plan to use.

Chapter 4. Auxiliary Project Files 17

AIMMSTutorialProjectFiles(32bit).zip

AIMMSTutorialProjectFiles(64bit).zip

Copying the

relevant

subdirectories

Extract the compressed zip file to a known location on your computer. The file

contains two subdirectoies, ‘Softdrink Planning - Auxiliary Files’ and ‘Soft-

drink Planning - Completed Project’ In the directory ‘Tutorial Softdrink Plan-

ning - Auxiliary Files’, you will find six subdirectories. Please copy these six

subdirectories from the Aimms directory to a newly created Softdrink Planning

project subdirectory.

Directory

structure

The directory structure of your project should now look like the one shown in

Figure 4.2.

Figure 4.2: The structure of the tutorial project directory

4.2 External project files

Data

subdirectory

The ‘Data’ subdirectory should contain three files. The file ‘Softdrink Plan-

ning.mdb’ contains a MS Access database containing the input data required

in this tutorial, the files ‘Softdrink Planning.dsn’ specifies a ODBC File Data

Source that Aimms uses to connect to the MS Access database, and the third

file ‘Locations.dat’ contains some example data that will be used in Chapter 5.

DLL

subdirectory

The ‘Dll’ subdirectory of your tutorial project should contain a file ‘External

Routines.dll’ and a subdirectory ‘Source’ for text based systems. The DLL file

contains a function that is external to Aimms, but that can be called from

within Aimms using the external function concept. The ‘Source’ subdirectory

of the ‘Dll’ directory contains the Microsoft Visual C++ 6.0 project that has

been used to create the ‘External Routines.dll’ file.

AIMMSTutorialProjectFiles(32bit).zip
http://download.aimms.com/aimms/download/references/AIMMSTutorialProjectFiles(32bit).zip
AIMMSTutorialProjectFiles(64bit).zip
http://download.aimms.com/aimms/download/references/AIMMSTutorialProjectFiles(64bit).zip

Chapter 4. Auxiliary Project Files 18

Bitmaps

directory

The ‘Bitmaps’ subdirectory contains several bitmap files that you will use when

developing the end-user interface. These bitmaps will enhance the appearance

of your end-user interface. The following files are available:

� ‘AIMMS Logo.bmp’

� ‘Background.bmp’

� ‘Button Next.bmp’

� ‘Button Prev.bmp’

� ‘Button Up.bmp’

� ‘Netherlands.bmp’

4.3 Importing model sections

Importing

serves a need

When working through the several chapters of this extensive tutorial for pro-

fessionals, you may arrive at a point where you want to skip some of the work

required from you. In this case you can bypass your own entries, and import

one or more model sections to continue with the tutorial in a more advanced

state.

Sections

subdirectory

The ‘Sections’ subdirectory contains several model section files for possible

import:

� ‘Absentee Overview.ams’

� ‘Data Management.ams’

� ‘Database Link.ams’

� ‘DLL Link.ams’

� ‘Planning Overview.ams’

� ‘Production Overview.ams’

� ‘Production and Maintenance Model.ams’

� ‘Quantities and Units.ams’

� ‘Rolling Horizon Procedures.ams’

� ‘Scenario Overview.ams’

� ‘Softdrink Planning Menubar.ams’

� ‘Time.ams’

� ‘Transport Overview.ams’

Illustrating the

import process

When you import the Quantities and Units section (equivalent to the model

section that is created in Section 6.2) into your model, all the identifiers that

you normally would have created in Section 6.2 will be part of your model.

Note that at this point in the tutorial you should not execute any import step.

The actions described below are really for later reference when there is a need

to import.

◮ select the Quantities and Units in the model tree,

◮ from the Edit menu, select the Import command,

Chapter 4. Auxiliary Project Files 19

◮ select the file ‘Quantities and Units.ams’ in the Import Model Section

dialog box, and

◮ press the Open button.

Confirming

import

At this point a Confirm Import dialog box will appear as in Figure 4.3. This di-

alog box lists the changes as a consequence of the planned import. To confirm,

you should press the OK button.

Figure 4.3: The Confirm Import dialog box

Verifying a

successful

import

To verify that the import step is correctly executed, one can inspect the con-

tents of the Quantities and Units section in the Model Explorer.

4.4 Loading cases

CasesTo save time and effort while completing this tutorial, you may want to import

data instead of entering or computing these data. The specification of the

holidays and vacation weeks can be avoided by importing the corresponding

case.

Cases and

datasets

directory

The ‘Cases’ subdirectory should contain the following three data files:

� ‘Holiday and Vacation Data.data’

� ‘Initial Data From Database.data’

� ‘Solution After First Roll.data’

Chapter 4. Auxiliary Project Files 20

Illustrating the

’Load Case’

process

In this section, the loading of cases will be illustrated by importing the data

from the case ‘Holiday and Vacation Data.data’. This case contains specified

holidays and vacation weeks described in the end of Chapter 12.2. To load the

case you should perform the following steps:

◮ Select Data in the menubar,

◮ go to Load Case - into Active. . .

◮ select the file ‘Holiday and Vacation Data.data’ from the Open Case File

dialog box.

Now you have loaded the data into your active case.

Chapter 5

Getting Acquainted

This chapterIn this chapter, you will create your first very small Aimms model plus an end-

user page that requires minimal effort. The main purpose of this chapter is to

give you a quick introduction to the basic functionality of Aimms.

5.1 Starting a new project

Starting AimmsAssuming that Aimms 4 has already been installed on your machine, execute

the following sequence of actions to start Aimms:

◮ press the Launch AIMMS button in the taskbar,

◮ select the latest version of Aimms 4 on your computer from the list, and

◮ select and click on the Launch button to start Aimms.

Next you will see the Aimms splash screen. Once Aimms is ready for use the

splash screen will disappear and the Aimms window will open and display the

Start Page. Should you encounter the Aimms Tip of the Day dialog box, please

close it, because it is not relevant at this point.

Creating a new

project from

within Aimms

Press the New Project button , which is located in the leftmost position

on the Aimms toolbar. The dialog box shown in Figure 5.1 will then appear,

requiring you to take the following actions:

◮ specify ‘Softdrink Planning’ as the project name,

◮ press the Wizard button to select, e.g., the folder ‘C:\Documents and

Setting\Jay Johnson\AIMMS Projects\’ for your

Aimms projects,

◮ change Default UI from ’WebUI’ to ’WinUI’. Uncheck the options ’Include

WebUI Library’ and ’Include Pro Library’, and

◮ press the OK button.

Note that Aimms will automatically extend the project folder with the project

name. This automatic facility is linked to the use of the Wizard button . If

you enter the project folder by hand, no automatic extension takes places and

Aimms will accept the folder name as you specified.

Chapter 5. Getting Acquainted 22

Figure 5.1: The New Project wizard

Having completed the New Project wizard, Aimms will open the Model Ex-

plorer (see Figure 5.2) for the ‘Softdrink Planning’ project, and you are ready

to specify your model.

Project toolbarYou will notice that the Aimms toolbar has been extended with a project tool-

bar to help you further develop the model and its associated end-

user interface. The available tools are:

� the Model Explorer,

� the Identifier Selector,

� the Page Manager,

� the Template Manager,

� the Menu Builder.

These tools can be accessed through the Tools menu as well.

Creating a new

project from

within the

Windows

Explorer

Alternatively, you can use the right-mouse popup menu command New-Aimms

Project File from within the Windows Explorer to create a new project from

scratch. In that case, the New Project wizard shown in Figure 5.1 will auto-

matically pop up, and the new Aimms project will be created in the current

subdirectory.

Chapter 5. Getting Acquainted 23

5.2 The Model Explorer

Opening the

Model Explorer

Once a new project is created, the Model Explorer will be opened automat-

ically, and the initial model tree as shown in Figure 5.2 will be shown. The

Model Explorer can also be opened manually by pressing the Model Explorer

button on the toolbar or by pressing the F8 key. In the initial model tree you

will see a predefined empty declaration section together with three predefined

procedures.

Figure 5.2: The initial model tree

5.2.1 Entering a set identifier

Opening the

declaration

section

The declaration of model identifiers requires you to first expand the declara-

tion node by double-clicking on the scroll icon (and not on the name itself).

Instead of double-clicking you can open the declaration section by pressing

the right arrow key after first having selected the corresponding node in the

model tree. Once you have opened the declaration section, the New Identifier

buttons on the toolbar will be enabled.

Creating the set

Locations

To create a set of locations you should take the following actions:

◮ press the New Set button to create a set identifier in the model tree,

◮ specify ‘Locations’ as the name of the set, and

◮ press the Enter key to register the name.

There are alternative ways to create a new identifier using either the Insert

command in the right-mouse pop-up menu or the Insert key.

Opening an

attribute form

For every node in the model tree, you can specify additional information as

attributes belonging to that node. Aimms lets you view and change the values

of these attributes in an attribute form. To open an attribute form you can

choose any one of the following possibilities:

� select a node in the model tree and press the Enter key,

� double-click on the name of the node in the model tree, or

Chapter 5. Getting Acquainted 24

� select a node in the model tree and press the Attributes button .

Double-clicking

on icon or name

You have now observed the different results obtained when double-clicking on

either the icon or the name of an intermediate node. The first option opens a

lower level in the model tree, while the second option opens the corresponding

attribute form.

The initial

attribute form

Next, you need to declare the index l as an attribute of the set Locations. You

should first open the attribute form of the set Locations. The resulting initial

attribute form is shown in Figure 5.3.

Figure 5.3: The initial attribute form of the set ‘Locations’

Declaring the

index l

To declare the index l as an attribute of the set Locations, execute the following

sequence of actions:

◮ move the mouse cursor to the Index attribute field, and click in the

empty edit field,

◮ enter the letter ‘l’ (without the quotes), and

◮ complete the attribute form by pressing the Check, commit and close

button .

Instead of using the Check, commit and close button you could have also

used the Ctrl-Enter key combination to commit your changes. Figure 5.4 con-

tains the resulting model tree.

Chapter 5. Getting Acquainted 25

Figure 5.4: The intermediate model tree with the set Locations

Saving your

changes

The asterisk (’*’) on the left of the model node Main Softdrink Planning indi-

cates that the edits to your project have not yet been saved to disk. To save

your work, please press the Save Project button on the toolbar. Alterna-

tively, you could have used the Ctrl-S key combination.

Creating the

parameter

XCoordinate

The declaration of a parameter is similar to the declaration of a set. In this

chapter, two parameters are introduced to contain the geographical longitude

(x) and latitude (y) coordinates of every location in the set Locations. To enter

the parameter XCoordinate(l), you should execute the following actions:

◮ press the New Parameter button on the toolbar to create a new pa-

rameter in the model tree,

◮ specify ‘XCoordinate(l)’ as the name of the parameter, and

◮ press the Enter key to register the name.

Note that parentheses are used to automatically add the index domain l to the

identifier XCoordinate.

Creating the

parameter

YCoordinate

The parameter YCoordinate(l) can be added in the same way. Should you make

a mistake in entering the information, you can always re-edit a name field by

first selecting the corresponding node in the model tree followed by a single

mouse click within the name field. Alternatively, you can use the F2 key to

enter edit mode.

Checking your

model

You have now entered the set Locations and the two parameters XCoordinate

and YCoordinate. The resulting model tree is shown in Figure 5.5. By pressing

the F5 key you can instantly check the validity of your model. You will only

receive a message in the event of an error or warning. Once the validity of

your model has been verified, you should save your work by pressing the Save

Project button on the toolbar.

Chapter 5. Getting Acquainted 26

Figure 5.5: The model tree thus far

5.3 Reading data

Data

initialization

To be able to briefly illustrate some Aimms features at this point in the tuto-

rial we will read in some initial data from an external text file named ‘Loca-

tions.dat’ located in the ‘Data’ directory. This file contains initial data for the

set Locations as well as the corresponding coordinates for these locations.

Viewing text

files

To view the contents of the initial data file, you can open it with an external

text editor or use the internal Aimms text editor which can be accessed from

the File - Open - Text File. . . menu. In the Open File dialog box you should

select the ‘All Files (*.*)’ option to be able to select the file ‘Locations.dat’.

Figure 5.6 shows the result if you use the internal Aimms text editor.

Chapter 5. Getting Acquainted 27

Figure 5.6: The Aimms internal text editor containing the file ‘Locations.dat’

MainInitiali-

zation

. . .

To instruct Aimms to initialize its data using the file ‘Locations.dat’, you should

now enter a read statement in the standard MainInitialization procedure.

This procedure is automatically executed whenever the project is opened. To

achieve this, you should perform the following actions:

◮ select the MainInitialization procedure node in the model tree,

◮ open its attribute form,

◮ specify the following line of text as its body argument:

read from file "Data\\Locations.dat";

◮ and complete the attribute form by pressing the Check, commit and

close button .

Note that Aimms uses the double backslash in the Body attribute of the Main-

Initialization procedure. The single backslash character has already been

reserved by Aimms to denote special characters inside strings. This choice cor-

responds to the conventions in the C programming language. For instance, ‘\n’

denotes the ‘return’ character, and ‘\t’ denotes the ‘tab’ character.

Chapter 5. Getting Acquainted 28

. . . and its

attribute form

Figure 5.7 contains the attribute form of the procedure MainInitialization.

Figure 5.7: The completed attribute form of the MainInitialization procedure

Run procedureTo execute the MainInitialization procedure without having to reopen the

project, you can:

◮ select the MainInitialization procedure in the model tree, and

◮ use the right mouse pop-up menu to issue the Run Procedure command

(see Figure 5.8).

Figure 5.8: A right mouse pop-up menu

Data pagesOnce Aimms has read the data file, all model identifiers are initialized. You

can look at the current data values by opening one or more data pages. For

instance, to open a data page for the identifier XCoordinate, you should perform

the following actions:

◮ select the XCoordinate parameter in the model tree, and

◮ use the right mouse pop-up menu to issue the Data. . . command.

The data page that will appear is displayed in Figure 5.9. By pressing the Left

Arrow button you will get the data page for the set of locations, while

pressing the Right Arrow button will lead to the parameter YCoordinate.

Chapter 5. Getting Acquainted 29

Figure 5.9: The data page for the parameter XCoordinate

5.4 A first page

Pages with

objects

To illustrate some of Aimms’s graphical features, we can now make a page

containing a network object displaying the locations geographically on a map.

Aimms uses the concept of pages to display data objects in the form of tables

and graphs.

Using the Page

Manager

To create a new empty page you should execute the following steps:

◮ press the Page Manager button on the toolbar (or alternatively, use

the F9 key),

◮ press the New Page button on the toolbar to create a page,

◮ specify ‘Locations’ as the name of this new page, and

◮ press the Enter key to register the page.

The Page Manager with the new page is shown in Figure 5.10.

Chapter 5. Getting Acquainted 30

Figure 5.10: the Page Manager with a single page

Two important

page modes

Two important page modes are the Edit mode and the User mode. The Edit

mode is used for creating and modifying the objects on a page. The User mode

is for viewing and editing the data displayed within objects on a page.

Opening the

page

To open this new page in Edit mode:

◮ select the Locations page in the Page Manager, and

◮ press the Edit Mode button on the toolbar to open the selected page

in Edit mode.

Drawing a new

network object

To create a new network object, perform the following actions:

◮ press the New Network Object button on the toolbar,

◮ position the mouse cursor where you like the upper left corner of the

new object to be,

◮ press the left mouse button and drag the mouse cursor to a point on

your screen such that the resulting rectangle has a height-width ratio of

approximately 2, and

◮ release the mouse button.

Network object

identifiers

The Network Object dialog box will appear. Please use the three Wizard but-

tons on the dialog box to fill in the ‘Node index’, ‘X coordinate’ and ‘Y coor-

dinate’ fields according to Figure 5.11. Note that in the ’Node Index’ field you

need to enter the character ’l’ and not the number ’1’.

Chapter 5. Getting Acquainted 31

Figure 5.11: The Network Object dialog box

Initial network

object

After you have pressed the OK button, the network object created at this point

should look like the one in Figure 5.12. By adding the appropriate background

bitmap, the locations will become more meaningful.

Figure 5.12: The initial Network Object

Chapter 5. Getting Acquainted 32

Network bitmapTo furnish the network object with a background bitmap, you need to change

its properties. To do so, you should perform the following actions:

◮ press the Properties button on the toolbar to access the Properties

dialog box,

◮ select the Background tab,

◮ click on the ”No Image” at the right of Background property, press

button and select From File command from the popup menu,

◮ click on the value field of the Image File Name, press the button, select

the Select File Name. . . command from the popup menu, and select the

filename ‘Bitmaps\Netherlands.bmp’,

◮ position the picture by entering 3.3 in the ‘Left’ edit field, 7.3 in the

‘Right’ edit field, 53.5 in the ‘Top’ edit field, and 50.7 in the ‘Bottom’ edit

field,

◮ press the Apply button, but do not press the OK button yet.

Figure 5.13 shows the network object with the background bitmap.

Figure 5.13: The intermediate Network Object

Positioning the

bitmap

The four values you just entered, position the bitmap to match the locations.

These values reflect the longitude and latitude coordinates of the boundaries

of the bitmap. Even though the bitmap and the locations are now consistent,

the bitmap is not yet consistent with the size of the rectangle. The coordinates

of the rectangle must be made consistent with the coordinates of the bitmap.

Chapter 5. Getting Acquainted 33

Network areaIn a professional application one would typically use model identifiers to adapt

the size of the rectangle, thereby controlling the zoom and scroll behavior of

the network object. In this chapter the coordinates of the rectangle are set

equal to the coordinates of the bitmap resulting in a tight match. To complete

the layout of the network object you should do the following:

◮ select the Network tab,

◮ fill in the four edit fields as in Figure 5.14.

◮ uncheck all checkboxes, and

◮ press the OK button.

Figure 5.14: The Network Properties dialog box

Saving your

changes

The asterisk on the left of the tab title in the page indicates that the additions

to your page have not yet been saved to disk. To save your work, press the

Save Project button on the toolbar.

Chapter 5. Getting Acquainted 34

View in User

mode

You are now ready to change the page to user mode by pressing the Page User

Mode button in the page toolbar. Your final network object should now

look like the one in Figure 5.15. Note that the names of the cities are not part

of the bitmap, but are superimposed based on the contents of the node set.

Figure 5.15: The final Network Object

Chapter 6

Quantities and Time

6.1 Model Structure

Initial treeThe predefined initial model tree is primarily to help students build small mod-

els with a single fixed data set. All model declarations can be placed in the

single declaration section, the initial data can be entered in the initialization

procedure, and the instruction to solve a mathematical program can be placed

inside the execution procedure. In this more extensive tutorial you will be

asked to structure the entire model tree.

Creating two

new sections . . .

Whenever you are building an extensive model, it is worthwhile using sections.

With sections, you can organize the model in such a way that it is easy to locate

relevant portions of your model. Proper organization will also help you and

your co-workers maintain the model during its lifespan. In this tutorial, the

model representation contains two main model sections: one model section for

the overall model to be developed in Parts 4 and 5, and one model section for

the user interface to be considered in Part 6. Each of these model sections will,

in turn, be subdivided into several subsections to reflect additional structure.

In this chapter, the first main model section will be subdivided. To create the

two main model sections, you should take the following actions:

◮ select the root node Main Softdrink Planning in the model tree,

◮ press the New Section button on the toolbar to create a section node

in the model tree,

◮ specify ‘The Model’ as the name of the section, and press the Enter key

to register the name,

◮ once more press the New Section button on the toolbar to create the

second section node,

◮ specify ‘The User Interface’ as its name, and once more press the Enter

key.

Chapter 6. Quantities and Time 36

. . . and several

subsections

The first main section will be subdivided into six smaller subsections. First

you need to double-click on the book icon . to open this section. After

opening the section, the book icon will be an open book . If, by any chance,

you double-clicked on the name of the book section instead of its book icon,

you will be in the attribute form of the section. If so, just close that form, and

then make sure that you double-click on the book icon. You can now create

subsections in exactly the same way as you created the two main sections. At

this point you should create a structure of subsections identical to the one in

Figure 6.1.

Figure 6.1: The structure of the section The Model

6.2 Entering quantity declarations

Creating a

declaration

section

With the above overall section structure in place, you are ready to specify the

first declaration section below the section entitled Quantities and Units. To

create the declaration section you should take the following actions:

◮ open the model section Quantities and Units by double-clicking on the

corresponding book icon ,

◮ press the New Declaration button to create a new declaration section,

◮ enter ‘Quantity Declarations’ as the name of this new declaration section,

and

◮ press the Enter key to register the name.

Units firstWhile developing an application, it is not unusual to begin with the declara-

tion of quantities and units. After all, you will need the units later when you

complete the declarations of the parameters and variables in your model.

Chapter 6. Quantities and Time 37

Volume quantity

and its base unit

In Chapter 3, volumes were expressed in terms of hectoliters and truckloads.

In Aimms, you first need to declare a volume quantity. Volume is a standard

SI quantity (i.e. part of the International System of Units), and is present in

the Aimms SI unit base. The name of the base unit is ‘m3’, and the units ‘hl’

(hectoliter) and ‘TL’ (truckload) are then expressed in terms of this unit.

Declaring the

volume quantity

To declare the volume quantity, you should perform the following actions:

◮ open the declaration section Quantity Declarations by double-clicking on

the scroll icon ,

◮ press the Other. . . button on the toolbar (or alternatively, press the

Insert key),

◮ select the quantity type in the Select Type of Identifier dialog box,

and press the OK button,

◮ follow the instruction ‘Press enter to select a SI Quantity’ in order to

choose from a list of predefined SI quantities,

◮ select the ‘SI Volume’ quantity, and press the OK button,

◮ select the second option ‘m3’ as in Figure 6.2, and

◮ press the OK button.

Figure 6.2: The Ignore Unit Expression dialog box

Specifying its

attributes

You can now open the attribute form of the quantity SI Volume in order to enter

the unit conversion factors for the units [hl] and [TL]. The initial attribute form

of the quantity SI Volume is shown in Figure 6.3.

Chapter 6. Quantities and Time 38

Figure 6.3: The initial attribute form of the quantity SI Volume

Specifying the

unit conversion

of [hl]

To specify the first unit [hl] (hectoliter), you should perform the following

actions:

◮ open the attribute form of the quantity SI Volume as discussed in the

previous paragraph,

◮ press the Wizard button for the Conversions attribute,

◮ select ‘l’ (which stands for liters) from the ‘Derived Units’ listbox,

◮ select ’hecto’ from the ’Decimal Scaling’ listbox, and

◮ press the Transfer button to accept the definition of the new unit ‘hl’.

The initial selection of the derived unit ‘l’ and the corresponding decimal scal-

ing ‘hecto’ are shown in Figure 6.4.

Figure 6.4: The selections in the Conversions Wizard

Chapter 6. Quantities and Time 39

Specifying the

unit conversion

of [TL]

You are now ready to enter the second unit [TL] (truckload), which was given as

12 cubic meters. Note that [TL] is a self-made unit, and that the two listboxes

in Figure 6.4 do not support you in this instance. Execute the following steps:

◮ consider the edit field under the heading ‘Conversion’ (containing ‘hl’),

and change its contents to the letters ‘TL’ (without quotes),

◮ consider the edit field to the right (containing ‘0.1’), and change it to the

number ‘12’ (without quotes),

◮ as before, press the Transfer button button to accept the definition of

the new unit ’TL’, and

◮ press the OK button to complete the specification of the two derived

units [hl] and [TL].

The attribute form should now be as shown in Figure 6.5. By pressing the

Check, commit and close button , you can verify whether Aimms accepts

the attribute form as completed by you. If there are no errors, Aimms will

commit its contents and close the attribute form.

Figure 6.5: The completed attribute form of the quantity SI Volume

Specifying the

currency

quantity

To be able to express amounts of money, you need to declare a currency quan-

tity. Currency is not a standard SI quantity, and needs to be specified. In this

tutorial you will only use a single base unit ‘$’ without any conversions to other

currencies. To declare the currency quantity you should perform the following

actions:

◮ declare a quantity Currency,

◮ enter ‘$’ (without the quotes) as its Base Unit attribute, and

◮ press the Check, commit and close button .

Specifying the

time quantity

The final quantity to be introduced is the SI quantity SI Time Duration. By de-

fault, the base unit of this quantity is set to ‘s’ (seconds). However, the base

unit ‘day’ is more natural for this model. Use the base Base Unit wizard on the

attribute form to change the base unit from ‘s’ to ‘day’. When Aimms asks you

whether you want to retain the data, select ‘No’.

Chapter 6. Quantities and Time 40

Week-to-day

conversion

In addition to the base unit ‘day’ please use the Conversions wizard to specify

the conversion between ‘day’ and ‘week’. The resulting attribute form is shown

in Figure 6.6.

Figure 6.6: The completed attribute form for the quantity SI Time Duration

Your tree thus

far

The model tree so far is shown in Figure 6.7.

Figure 6.7: The intermediate model tree showing all quantity identifiers

Saving your

changes

Again, the asterisk on the left of the model node of the Model Explorer indi-

cates that additions to your project have not yet been saved to disk. To save

your work, please press the Save Project button on the leftmost position

on the toolbar.

Chapter 6. Quantities and Time 41

6.3 Entering time declarations

Special data

types

Aimms offers two special identifier types for time-based modeling applications,

namely calendar and horizon. Calendars and horizons are sets with special

features for dealing with time. In this tutorial, both identifier types will be

used, and they will be linked through the use of a special indexed set referred

to as a timetable.

Advanced

concepts

Experience with the tutorial has shown that it may take more than one reading

of the following paragraphs before one obtains a clear understanding of the

advanced concepts presented.

CalendarsA calendar is defined as a set of consecutive time slots of unit length covering

the complete time frame from the calendar’s beginning date to its end date.

You can use a calendar to index data defined in terms of calendar time. In this

tutorial both a daily and a weekly calendar will be introduced.

HorizonsA horizon is basically a set of abstract planning periods to be used inside

a mathematical program. The elements in a horizon are divided into three

groups, also referred to as time blocks. The main group of elements comprise

the planning interval. Periods prior to the planning interval form the past,

while periods following the planning interval form the beyond. When variables

and constraints are indexed over a horizon, Aimms automatically restricts the

generation of these constraints and variables to periods within the planning

interval.

TimetablesA timetable is either an indexed set or an indexed element parameter that links

model periods in a horizon to time slots in a calendar. Based on a timetable,

Aimms provides functions that let you aggregate calendar data into horizon

data. Similarly, there are functions to let you disaggregate horizon data into

calendar data. Figure 6.8 illustrates an example of a timetable linking a horizon

and calendar.

Chapter 6. Quantities and Time 42

calendar (divided into time slots)

horizon (divided into time periods)

current date

current period

conversion rules

} } } } }

t1 t2 t3 t4 t5

past planning interval beyond

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10w11w12w13w14

Figure 6.8: Linking a calendar and horizon

The actual timetable corresponding to the example that is shown in Figure 6.8

is shown in Figure 6.9. In this example the timetable is called TimeslotToPeriod.

TimeslotToPeriod

TimeslotToPeriod(t1) {w2,w3}

TimeslotToPeriod(t2) {w4,w5}

TimeslotToPeriod(t3) {w6,w7}

TimeslotToPeriod(t4) {w8,w9,w10}

TimeslotToPeriod(t5) {w11,w12,w13}

Figure 6.9: A timetable corresponding to Figure 6.8

Two declaration

sections

To group the time-related identifiers in this tutorial you are asked to create

two separate declaration subsections within the Time model section. Please

execute the following actions:

◮ in the model tree, open the section node Time,

◮ create a new declaration section Period Declarations, and

◮ create a new declaration section Calendar Declarations.

6.3.1 Horizon-related declarations

Creating the

first parameter

NumberOfPeriods

To declare the first parameter NumberOfPeriods in the section Period Declara-

tions, you should execute the following actions:

◮ open the declaration section Period Declarations,

◮ press the New Parameter button on the toolbar to create a new pa-

rameter in the model tree,

Chapter 6. Quantities and Time 43

◮ specify ‘NumberOfPeriods’ as the name of this parameter, and

◮ press the Enter key to register the name.

Parameter

attributes

To complete the declaration of the parameter NumberOfPeriods you should open

its attribute form and perform the following actions:

◮ enter the integer range ‘{1..inf}’ (without the quotes) as the Range at-

tribute,

◮ select the ‘Initial Data’ radio button in front of the Definition/Initial Data

attribute,

◮ enter the number ‘10’ (without the quotes) as the Initial data attribute,

and

◮ press the Check, commit and close button to commit your edits.

Note that integer ranges in Aimms are always enclosed by curly brackets. The

square brackets are reserved to represent continuous ranges.

Range checkingThe existence of a Range attribute enables Aimms to perform range checking

during execution. Since the integer set ‘{1..inf}’ represents the set of all strictly

positive integers, Aimms will report an error when a non-integer, or a value less

than one, is assigned to the parameter NumberOfPeriods.

Creating the

second

parameter

The second parameter NumberOfPeriodsInPlanningInterval can now be declared

in a similar fashion. Again, specify ‘{1..inf}’ as the Range attribute. Enter ‘8’

(without the quotes) as its Initial data attribute.

Declaring a

horizon

To declare the horizon, you need to execute the following steps:

◮ press the Other. . . button on the toolbar,

◮ select the horizon type , and press the OK button,

◮ specify ‘Periods’ as the name, and

◮ press the Enter key to register the name.

Entering the

first attributes

Next, open its attribute form and enter both the index and the current period

attributes:

◮ press the Enter key again to open the attribute form of Periods,

◮ position the cursor in the empty edit field next to the Index attribute,

and type the letter ‘t’ (without quotes), and similarly,

◮ type ‘period-01’ (with the quotes) as the Current period attribute.

Chapter 6. Quantities and Time 44

Specifying the

Interval length

attribute

Next, consider the Interval length attribute. You can use the convenient name

completion facility in Aimms to avoid re-typing long identifier names.

◮ type only the first letter ‘N’ in the edit field next to the Interval length

attribute

◮ use the Ctrl-Spacebar key combination to let Aimms provide you with the

list of all identifiers and let AIMMS select the first possible extension of

the letter ’N’ (see Figure 6.10), and

◮ select ‘NumberOfPeriodsInPlanningInterval’ as the identifier name, and

press Enter.

Figure 6.10: The Name Completion pop-up menu

Specifying the

Definition

attribute

Consider Figure 6.11, and complete the Definition attribute. Again, you may

want to use the name completion facility to select NumberOfPeriods as the sec-

ond argument in the function ElementRange.

◮ type the definition as in Figure 6.11,

◮ press the Check, commit and close button to commit all your edits.

Figure 6.11: The completed attributes of the horizon ‘Periods’

Chapter 6. Quantities and Time 45

Name

completion and

dragging

The name completion facility can be used to complete any incomplete iden-

tifier name. In addition to name completion, you can also drag an identifier

name from the model tree to any edit field in your application. Both facilities

are there to avoid typing errors, guarantee name consistency and speed up

your work.

The function

ElementRange

The ElementRange function allows you to dynamically create or change the con-

tents of a set based on integer values. In this tutorial, the elements are ‘period-

01’, ‘period-02’, etc., up to the value of the parameter NumberOfPeriods. The first

two arguments are mandatory, and may be preceded by their formal argument

names ‘from’ and ‘to’. The remaining arguments are optional, and must be pre-

ceded by their formal argument names when used in a non-default order.

. . . its

arguments

After typing a function name, as soon as you enter the opening bracket (or

when you hover with the mouse pointer over the function name), Aimms will

pop up a quick info tip window as illustrated in Figure 6.12. This info tip win-

dow displays information about the arguments of the ElementRange function.

The information will remain visible until you enter a closing bracket (or use

the mouse to position the cursor outside the argument list).

Figure 6.12: The quick info tip window of the ‘ElementRange’ function

. . . and its

documentation

In Aimms, you can quickly access information on the type and order of the

arguments of a function and/or its documentation from a help file. You can

open The Function Reference from within Aimms by performing the following

actions:

◮ use the mouse cursor to position the text cursor on the ElementRange

keyword,

◮ use the right-mouse pop-up menu to issue the Help on command, and

◮ select the ElementRange entry in the Help on submenu (see Figure 6.13).

At this point, Acrobat’s PDF viewer will open the The Function Reference on

the appropriate page.

Chapter 6. Quantities and Time 46

Figure 6.13: A right-mouse pop-up menu

Remaining

period

declarations

The four remaining period declarations concern three numerical parameters

referencing the desired number of days in a period, the desired number of

weeks in a period and the actual number of days in a period (reflecting week-

ends and official holidays), and a so-called element parameter denoting the

first period in the planning interval. The value of this last element parameter

is not a number, but an element of the set Periods.

Number of days

in a period

The desired number of days in a period is equal to seven. Due to weekend

days and official holidays the actual number of days per period will be less

than this. To declare the parameter DesiredNumberOfDaysInPeriod you should

perform the following actions:

◮ insert a new parameter immediately below the horizon Periods,

◮ specify ‘DesiredNumberOfDaysInPeriod(t)’ as the name of this new pa-

rameter, and press the Enter key,

◮ open its attribute form,

◮ enter the number ‘7’ (without quotes) as the Definition attribute, and

◮ press the Check, commit and close button to commit all your edits.

Number of

weeks in period

Because the parameter DesiredNumberOfWeeksInPeriod is very similar to the pa-

rameter DesiredNumberOfDaysInPeriod it is possible to create this identifier dec-

laration from copy of the parameter DesiredNumberOfDaysInPeriod. To do so

you should execute the following steps:

◮ select the identifier DesiredNumberOfDaysInPeriod in the model tree,

◮ press the Copy button on the toolbar (or alternatively, press the Ctrl-C

key combination),

◮ press the Paste button on the toolbar (or alternatively, press the Ctrl-V

key combination),

◮ press the F2 key and change the name from Copy DesiredNumberOfDaysIn-

Periods(t) to DesiredNumberOfWeeksInPeriod(t),

◮ press the Enter key to confirm the name change,

Chapter 6. Quantities and Time 47

◮ press the Enter key to open its attribute form,

◮ change the number ‘7’ in the Definition attribute to ‘1’ (without the

quotes), and

◮ press the Check, commit and close button to commit all your edits.

Name change

propagation

Changing the name of an identifier in the model tree will cause Aimms to

change all references to the identifier accordingly.

Declaring the

actual period

length

To declare the indexed parameter ActualNumberOfDaysInPeriod(t), expressed in

terms of days, you should execute the following steps:

◮ insert a new parameter,

◮ specify ‘ActualNumberOfDaysInPeriod(t)’ as the name of this new param-

eter, and press the Enter key,

◮ open its attribute form, and press the Wizard button for the Unit

attribute,

◮ select ‘SI Time Duration’ as the quantity and ‘day’ as the unit,

◮ press the OK button,

◮ enter the unquoted sentence ‘takes into account the weekends and the

official holidays’ as the Comment attribute, and

◮ press the Check, commit and close button to commit all your edits.

The completed attribute form is shown in Figure 6.14.

Figure 6.14: The attribute form of the parameter ActualNumberOfDaysInPeriod

Declaring a

parameter for

the first period

. . .

By declaring a separate element parameter for the first period in the plan-

ning interval, instead of simply using the element ’period-1’, you promote the

important separation between model and data. Please execute the following

declaration steps:

◮ press the New. . . button on the toolbar,

◮ select the element parameter type , and press the OK button,

Chapter 6. Quantities and Time 48

◮ specify ‘FirstPeriodInPlanningInterval’ as the name of the element pa-

rameter, and press the Enter key to register this name.

. . . and

completing its

attributes

The following actions complete the corresponding attribute form:

◮ press the Enter key again to open the attribute form,

◮ use the Range wizard to specify the set Periods as the range,

◮ specify ‘first(t | t in Periods.Planning)’ (without the quotes) as its defini-

tion, and

◮ press the Check, commit and close button to commit all your edits.

The model treeThe model tree up to this point is shown in Figure 6.15.

Figure 6.15: All period declarations in the model tree

6.3.2 Calendar-related declarations

Declaring begin

and end dates

Two string parameters are introduced to allow you to change the beginning

and end dates of both calendars in your model in a dynamic fashion. This is

again an example of the separation between model and data. To declare the

first of these two string parameters, you should execute the following actions:

◮ open the Calendar Declarations declaration section,

◮ press the Other. . . button on the toolbar,

◮ select the string parameter type , and press the OK button,

◮ specify ‘BeginDateOfCalendar’ as the name of the string parameter, and

press the Enter key to register this name.

Chapter 6. Quantities and Time 49

Repeat the last three steps to declare EndDateOfCalendar as the second string

parameter.

. . . completing

their attributes

The attribute forms can now be completed as follows:

◮ select the string parameter BeginDateOfCalendar,

◮ press the Enter key to open its attribute form,

◮ specify the string ”2000-07-01” (don’t forget the quotes) as the definition

of the beginning date, and

◮ press the Ctrl-Enter key combination as an alternative for the Check,

commit and close button to commit all your edits.

Repeat these steps for the string parameter EndDateOfCalendar, but use the

quoted string ”2001-06-30” as its definition. This date format (yyyy-mm-dd),

used to represent the beginning and end dates above, is required by Aimms.

The date format of the timeslots in the calendar can be customized to your

specification using the Timeslot format attribute.

Declaring a

calendar

To declare the calendar Days, execute the following steps:

◮ press the Other. . . button on the toolbar,

◮ select the calendar type , and press the OK button,

◮ specify ‘Days’ as the name, and

◮ press the Enter key to register the name.

Specifying the

calendar

attributes

By now, you should be able to open the attribute form of the calendar and use

the wizards to complete the attribute fields as shown in Figure 6.16. When

completing the Begin date and End date attributes, choose the Select String

Parameter. . . command from the pop-up menu and select the appropriate

string parameter.

Figure 6.16: The completed attribute form of the calendar ‘Days’

Chapter 6. Quantities and Time 50

Timeslot formatWhen completing the Timeslot format attribute using the wizard you should

select the Select Static String. . . command from the pop-up menu. Aimms

will then open a Timeslot format wizard to support you in constructing the

appropriate timeslot format. Through this wizard, you can not only select

from a number of ‘Basic Formats’ (including the ones defined by the regional

settings of your computer), but you also have the possibility of constructing

a custom format, observing the result as you proceed. The timeslot format

selected in this tutorial is shown in Figure 6.17.

Figure 6.17: The Timeslot Format wizard

Declaring

subsets . . .

Several subsets of the calendar Days will be used throughout the model in this

tutorial, and you should be able to enter these sets on the basis of what you

have learned so far. Note that, when declaring these subsets, the use of the

Subset of wizard (see Figure 6.18) is mandatory and you are not allowed to

complete the attribute by hand.

Figure 6.18: The Subset of wizard

Chapter 6. Quantities and Time 51

. . . of the

calendar Days

The names of the subsets are self-explanatory. The subset Mondays will play a

role later on when a timetable is constructed to link the horizon Periods and

the calendar Days. This subset is used as a function argument, and Aimms will

then begin a new period in the horizon whenever it encounters a Monday. The

five subsets to be entered by you in the Calendar Declarations section are as

follows:

Set WeekendDays {

SubsetOf : Days;

Definition : {

{ d | TimeslotCharacteristic(d, ’weekday’) > 5}

}

}

Set OfficialHolidays {

SubsetOf : Days;

}

Set InactiveDays {

SubsetOf : Days;

Definition : WeekendDays + OfficialHolidays;

}

Set Mondays {

SubsetOf : Days;

Definition : {

{ d | TimeslotCharacteristic(d, ’weekday’) = 1}

}

}

Set DaysInPeriod {

IndexDomain : t;

SubsetOf : Days;

}

Timeslot

characteristics

The predefined function TimeslotCharacteristic determines a numeric value

which characterizes the timeslot in terms of its day in the week, its day in

the year, etc. In the Definition attribute of the set WeekendDays, all days in the

week with their numeric value greater than 5 (as weekend days) are selected.

Similarly, in the Definition attribute of the set Mondays ,this function selects all

Mondays (with the numeric value of 1) to be used as delimiter days.

Viewing the

weekend days

At this moment the daily calendar is fully defined since the beginning date and

end dates are defined as string constants. Similarly, the subset WeekendDays is

also fully defined, and its contents can already be viewed as follows:

◮ select the set WeekendDays in the model tree, and

◮ select the Data. . . command in the right-mouse pop-up menu (see Fig-

ure 6.19).

Chapter 6. Quantities and Time 52

Figure 6.19: A right-mouse pop-up menu

Data pageAimms will now display the corresponding data page as shown in Figure 6.20.

On the left you see the elements of the set WeekendDays. On the right you see

these same elements, but then as a subset of the calendar Days.

Figure 6.20: Data page for the set WeekendDays

Creating a

weekly calendar

In addition to the daily calendar, there is also a weekly calendar together with

several subsets thereof. You should be able to declare this calendar, called

Weeks, based on what you have learned so far. We recommend that you specify

the Timeslot format attribute by hand, because the corresponding format is

not predefined. The completed attribute form of Weeks is shown in Figure 6.21.

Chapter 6. Quantities and Time 53

Figure 6.21: The completed attribute form of the calendar ‘Weeks’

At this moment if you ask data of Weeks calendar, you will get a warning ex-

plaining that a weekly calendar for which the start date is not the first day of

a week (Monday) is limited in its use. Since the limitations are no issue in this

tutorial project and to prevent this warning to pop up again, please switch off

the option Warning calendar week begin that causes this warning, by executing

the following actions:

◮ go to the Settings menu and execute the Project Options command,

◮ select the AIMMS - Progress, errors & warnings - Warnings - Compila-

tion folder in the option tree (see Figure 6.22),

◮ click on the Option Warning calendar week begin in the rightmost win-

dow,

◮ select on ’Off’ value,

◮ press the Apply button on the Aimms Options dialog box, and

◮ finish by pressing the OK button.

Chapter 6. Quantities and Time 54

Figure 6.22: The Aimms Options dialog box

Declaring

week-related

references

As indicated in the previous paragraph, you should have little or no problem

entering the following subset and element parameter related to the calendar

called Weeks.

Set InactiveWeeks {

SubsetOf : Weeks;

}

ElementParameter WeekInPeriod {

IndexDomain : t;

Range : Weeks;

}

Relating days to

weeks

The relationship between days and weeks can be captured through an indexed

element parameter that contains, for each day in the daily calendar, the corre-

sponding week in the weekly calendar. Please enter the following declaration:

ElementParameter DayToWeek {

IndexDomain : d;

Range : Weeks;

Definition : {

first (w | TimeslotCharacteristic(w, ’week’) =

TimeslotCharacteristic(d, ’week’)

and

TimeslotCHaracteristic(w, ’year’) =

Timeslotcharacteristic(d, ’year’))

}

}

Chapter 6. Quantities and Time 55

With the use of the function TimeslotCharacteristic it becomes straightfor-

ward to verify whether the week number (ranging from 1 to 53) of a week w is

equal to the week number of a day d. The year number can be checked in a

similar fashion.

One more

identifier

The following calendar-related identifier will be used later. Please enter it now.

ElementParameter LastWeekInClaendar {

Range : Weeks;

Definition : last(Weeks);

}

Model treeThe part of the model tree containing the calendar declarations is shown in

Figure 6.23.

Figure 6.23: All calendar related declarations in the model tree

Chapter 7

Production and Maintenance Model

This chapterIn this chapter you will enter all the model identifiers that are related to the

mathematical model described in Chapter 3. As with most realistic models,

the number of identifiers is quite large, and it pays to refine the model tree by

declaring several additional declaration sections.

7.1 Model structure

Adding to the

model tree

Please add the following declaration subsections to the section named Produc-

tion and Maintenance Model:

� Location Declarations

� Scenario Declarations

� Production Declarations

� Supply and Demand Declarations

� Maintenance and Vacation Declarations

� Cost Declarations

� Mathematical Program Declarations

The resulting section in the model tree is shown in Figure 7.1.

Figure 7.1: Seven declaration sections to increase model structure

Chapter 7. Production and Maintenance Model 57

Proceed with

little assistance

. . .

Most of the declarations in this chapter are provided in a compact textual

format that closely corresponds to the attribute format presented in previous

chapters. Instead of providing detailed instructions, you are asked to complete

the attribute forms on the basis of what you have learned so far.

. . . or import all

identifier

declarations

As explained in Chapter 4, you can avoid entering some, or all, of the decla-

rations in this chapter by importing the model section ‘Production and Main-

tenance Model.amb’ into the Production and Maintenance Model section in the

model tree. You are advised to at least examine the declarations listed in the

remainder of this chapter if you choose the import file option.

7.2 Topology

Moving existing

identifiers

In Chapter 5 you already declared the set of locations and their corresponding

x- and y-coordinates. You should now move these existing identifiers to their

new position in the model tree by performing the following actions:

◮ open the declaration section Declaration at the end of the model tree,

◮ select all three identifiers using the Shift key in combination with the

left-mouse button,

◮ press the Cut button on the toolbar,

◮ select and open the section named Location Declarations, and

◮ press the Paste button on the toolbar.

As an alternative, you could have dragged the three identifiers to their new

position.

Entering

location

declarations

In the Location Declarations section you can now declare the sets Factories

and Centers as subsets of the set of all locations.

Set Factories {

SubsetOf : Locations;

Index : f;

}

Set Centers {

SubsetOf : Locations;

Index : c;

}

7.3 Demand scenarios

Entering

scenario

declarations

The following two identifiers need to be added to the section Scenario Dec-

larations, and are used to set up the demand scenarios. Note that when a

particular set has a fixed number of known elements, you can enter these ele-

ments as data in the Definition attribute (see the set Scenarios below).

Chapter 7. Production and Maintenance Model 58

Set Scenarios {

Index : s;

Definition : data { pessimistic, expected, optimistic };

}

Parameter ScenarioProbability {

IndexDomain : s;

Definition : data { pessimistic : 0.25, expected : 0.50, optimistic : 0.25};

}

7.4 Production

Data definition

and domain

condition

An interesting feature of Aimms is that you can specify a global index domain

condition as illustrated in the last three declarations below. In these examples,

Aimms will only consider the (f ,p) combinations that exist. All other combi-

nations will be ignored throughout the application. Note that the ‘|’ operator

is to be interpreted as the ‘such that’ operator, and that the Ord(p) operator

returns the ordinal position of the corresponding element p within its domain

set ProductionLines.

Entering

production

declarations

Please open the Production Declarations subsection, and enter the following

declarations after having read the previous paragraph.

Set ProductionLines {

Index : p;

Definition: data { line-01 .. line-04 };

}

Parameter NumberOfProductionLines {

IndexDomain : f;

}

Set FactoryProductionLines {

IndexDomain : f;

SubsetOf : ProductionLines;

Definition : {

{ p | Ord(p) <= NumberOfProductionLines(f) }

}

}

Parameter DeteriorationLevel {

IndexDomain : (f,p) | p in FactoryProductionLines(f);

}

Parameter DeteriorationLevelAtStartOfCalendar {

IndexDomain : (f,p) | p in FactoryProductionLines(f);

}

Parameter MaximumDeteriorationLevel {

IndexDomain : (f,p) | p in FactoryProductionLines(f);

}

Chapter 7. Production and Maintenance Model 59

Entering unit

expressions once

The Unit wizard can only complete the Unit attribute for you once either the

desired unit or the unit expression has been entered. Therefore, when declar-

ing the first of the two parameters below, you should enter the Unit attribute

[hl/day] manually. When declaring the second parameter, you can use the Unit

wizard and select the ‘Implicit Quantities’ entry.

Parameter ProductionLineLevelAtStartOfCalendar {

IndexDomain : (f,p) | p in FactoryProductionLines(f);

Unit : hl/day;

}

Parameter MaximumProductionLineLevel {

IndexDomain : (f,p) | p in FactoryProductionLines(f);

Unit : hl/day;

}

Postponing

identifier

checking

Once you have entered the declaration listed below, Aimms still cannot compile

the definition of the parameter PotentialProduction. This definition contains

a reference to the three identifiers LineInMaintenance, DropDueToVacation and

IsVacationPeriod, which have not yet been declared. In such a situation, you

should use the Commit and close button instead of the Check, commit and

close button , and Aimms will not complain (though the identifier names will

be colored red). Instructing Aimms to compile the model will result in errors

reporting missing identifiers. The three identifiers will be declared at a later

stage.

Parameter PotentialProduction {

IndexDomain : (f,p,t) | p in FactoryProductionLines(f);

Unit : hl;

Definition : ActualNumberOfDaysInPeriod(t) *

(1- LineInMaintenance(f,p,t))*

(1- DropDueToVacation * IsVacationPeriod(f,t)) *

MaximumProductionLineLevel(f,p);

}

Initial overviewAn overview of all the declarations entered by you so far is shown in Figure 7.2.

Chapter 7. Production and Maintenance Model 60

Figure 7.2: All location, scenario and production declarations

7.5 Supply and demand

Entering supply

and demand

declarations

Use the Unit wizard, the Range wizard, and the name completion functional-

ity to enter the following supply and demand declarations in the appropriate

declaration section of your model tree.

Parameter Demand {

IndexDomain : (c,t,s);

Unit : hl;

}

Parameter MinimumStock {

IndexDomain : l;

Unit : hl;

}

Parameter MaximumStock {

IndexDomain : l;

Unit : hl;

}

Chapter 7. Production and Maintenance Model 61

Parameter StockAtStartOfCalendar {

IndexDomain : l;

Unit : hl;

}

Parameter MaximumTransportCapacity {

IndexDomain : f;

Unit : TL;

}

7.6 Maintenance and vacations

Maintenance

declaration

As was already mentioned in Chapter 2, most of the computations needed for

maintenance planning can be placed outside the mathematical program. All

you need to declare at this point is when a particular production line is un-

dergoing maintenance. Please use the Maintenance and Vacation Declarations

declaration section in your model tree.

Parameter LineInMaintenance {

IndexDomain : (f,p,t);

Range : binary;

}

Entering

vacation

declarations

The management of each factory knows the particular weeks in which a rel-

atively large portion of its personnel will be on leave. During these weeks,

production typically drops by 40% of the maximum production capacity. The

following two parameters need to be declared.

Set VacationWeeks {

IndexDomain : f;

SubsetOf : Weeks;

}

Parameter DropDueToVacation {

InitialData : 0.4;

}

Parameter IsVacationPeriod {

IndexDomain : (f,t);

Range : binary;

Definition : {

if (WeekInPeriod(t) in VacationWeeks(f))

then 1

else 0

endif

}

}

Chapter 7. Production and Maintenance Model 62

Compiling the

entire model

At this point you should be able to compile the entire model, because the

three identifiers missing in section 7.4 have now been declared. To compile

the entire model you should execute the Compile All command from the Run

menu. Alternatively, you could simply press the F5 key. Please ignore any

warnings concerning data initialization.

7.7 Costs

Entering cost

declarations

The total scenario cost is divided into four components, each of which has

its own unit cost declaration. The total cost is the weighted sum of the total

scenario cost over all scenarios. You should enter the following declarations

in the Cost Declarations section in your model tree.

Parameter UnitTransportCost {

IndexDomain : (f,c);

Unit : $/TL;

}

Parameter FixedCostDueToLeaveChange {

Unit : $;

InitialData : 25000;

}

Parameter UnitStockCost {

IndexDomain : l;

Unit : $/hl;

}

Parameter UnitProductionCost {

IndexDomain : f;

Unit : $/hl;

}

An overview of all supply and demand, maintenance and vacation, and cost

declarations entered is shown in Figure 7.3.

Chapter 7. Production and Maintenance Model 63

Figure 7.3: All supply, demand, maintenance, vacation, and cost declarations

7.8 Optimization model

VariablesThere are seven variables in the formulation of the mathematical program in

this tutorial. These should be entered in the declaration section Mathematical

Program Declarations in your model tree.

Variable ProductionLineInUse {

IndexDomain : (f,p,t) | p in FactoryProductionLines(f);

Range : binary;

}

Variable Production {

IndexDomain : (f,t);

Range : nonnegative;

Unit : hl;

Definition : sum[p, PotentialProduction(f,p,t) * ProductionLineInUse(f,p,t)];

}

Variable ProductionLineLevelChange {

IndexDomain : (f,p,t) | p in FactoryProductionLines(f);

Range : [0, 1];

}

Variable Transport {

IndexDomain : (f,c,t,s) | UnitTransportCost(f,c);

Range : [0, MaximumStock(c)];

Unit : TL;

}

Chapter 7. Production and Maintenance Model 64

Variable Stock {

IndexDomain : (l,t,s);

Range : [MinimumStock(l), MaximumStock(l)];

Unit : hl;

Definition : {

Stock(l,t-1,s) + Production(l,t) +

sum[f, Transport(f,l,t,s)] -

sum[c,Transport(l,c,t,s)] - Demand(l,t,s)

}

}

Variable TotalScenarioCost {

IndexDomain : s;

Range : free;

Unit : $;

Definition : {

sum[(f,t,p), FixedCostDueToLeaveChange * ProductionLineLevelChange(f,p,t)] +

sum[(f,t), UnitProductionCost(f) * Production(f,t)] +

sum[(l,t), UnitStockCost(l) * Stock(l, t, s)] +

sum[(f,c,t), UnitTransportCost(f,c) * Transport(f,c,t,s)]

}

}

Variable TotalCost {

Range : free;

Unit : $;

Definition : sum[s, ScenarioProbability(s) * TotalScenarioCost(s)];

}

Defined

variables

Note that four of the variables have their own definitions. Aimms will treat

these definitions as constraints when generating the corresponding mathemat-

ical program.

ConstraintsThe remaining three constraints in the formulation of the mathematical pro-

gram are listed below.

Constraint ChangeWhenIncrease {

IndexDomain : (f,p,t) | p in FactoryProductionLines(f);

Definition : {

ProductionLineLevelChange(f,p,t) >=

ProductionLineInUse(f,p,t) - ProductionLineInUse(f,p,t-1)

}

}

Constraint ChangeWhenDecrease {

IndexDomain : (f,p,t) | p in FactoryProductionLines(f);

Definition : {

ProductionLineLevelChange(f,p,t) >=

ProductionLineInUse(f,p,t-1) - ProductionLineInUse(f,p,t)

}

}

Constraint RestrictTransportCapacity {

IndexDomain : (f,t,s);

Unit : TL;

Definition : sum[c, Transport(f,c,t,s)] <= MaximumTransportCapacity(f);

Chapter 7. Production and Maintenance Model 65

}

Mathematical

program

A mathematical program in Aimms specifies the set of variables and con-

straints together with the objective, optimization direction and model type

that are needed by Aimms to generate the model. If you do not specify a vari-

able set or a constraint set, Aimms will assume that all model variables and

all model constraints are included in the mathematical program. Please use

the Objective, the Direction and the Type wizard to declare the mathematical

program LeastCostPlan as shown in Figure 7.4.

Figure 7.4: Attribute form of the mathematical program

Model treeAll variables and constraints that are declared in the Mathematical Program

Declarations are shown in Figure 7.5.

Chapter 7. Production and Maintenance Model 66

Figure 7.5: The model tree to date

Part III

Model Procedures and

Functions

Chapter 8

Linking to the Database

This chapterIn this chapter you will experience how straightforward it is to link your model

to a database using the point-and-click database interaction facilities of Aimms.

In addition, the possibility of entering SQL procedures in Aimms is also illus-

trated.

Further readingIf you follow the steps in this chapter and you decide that you need to know

more about database linkage, please look at the Chapter ‘Communicating with

Databases’ in The Language Reference.

8.1 Database tables

ODBC and

MS-Access

The linkage between Aimms and a database relies on the ODBC (Open DataBase

Connectivity) standard. You will need to be aware of the version (32 bit or 64

bit) of the ODBC and Microsoft Office you have installed on your Computer.

The Microsoft Access Database Engine 2010 Redistributed will allow you to

run different versions on you OCDB and Microsoft Access. More detailed in-

formation on how to install the Microsoft Access Database Engine 2010 Redis-

tributed for different versions can be found on this technical blog;

http://techblog.aimms.com/2014/10/27/installing-32-bit-and-64-bit-microsoft-access-drivers-

Columns and

rows

The basic building blocks of a database are database tables containing columns

and rows. One or more columns in a particular database table serve as so-

called primary key columns. The remaining columns contain data defined over

these key columns. The primary key values found in each row uniquely identify

that row. For example, the first column in Figure 8.1 is a primary key column

and identifies every row uniquely through the name of each location.

http://techblog.aimms.com/2014/10/27/installing-32-bit-and-64-bit-microsoft-access-drivers-next-to-each-other/
http://techblog.aimms.com/2014/10/27/installing-32-bit-and-64-bit-microsoft-access-drivers-next-to-each-other/

Chapter 8. Linking to the Database 69

Figure 8.1: Contents of the table ‘Locations’

Four database

tables

The database delivered with this tutorial contains four database tables. The

first table contains data that are applicable to both factories and distribution

centers (e.g. coordinate data and stock level data). The second table provides

data that are needed to configure the factories (e.g. production capacity and

cost data). Historical data (e.g. demand values over time) have been placed

inside the third table, and will be used to initiate the rolling horizon process.

Finally, the fourth database table contains the data that are needed to config-

ure the individual production lines (e.g. production line capacities).

8.1.1 Entering the first database table declaration

Database table

in Aimms

You can refer to an external database table within Aimms by means of a data-

base table identifier declaration. As an attribute you can specify the ODBC

data source name of the database you want to access, and also the name of

the external database table from which you want to read or to which you want

to write.

Creating the

LocationTable

To declare your first database table in Aimms, you should perform the follow-

ing actions:

◮ create a new declaration section named Database Declarations under the

Database Link section of the model tree,

◮ open the new declaration section,

◮ press the Other. . . button on the toolbar,

Chapter 8. Linking to the Database 70

◮ create a new database table identifier in this new declaration section by

selecting the database table icon in the Select Type of Identifier dia-

log box, and

◮ specify ’LocationTable’ as its name.

Specifying the

data source

attribute

An MS Access database file named ‘Softdrink Factory Planning.mdb’ has been

supplied with this tutorial. Next, you will make this database available to

Aimms by performing the following actions:

◮ activate the Data source wizard in the attribute form of the database

table ‘LocationTable’,

◮ choose the Select File Data Source. . . command in the menu that pops

up,

◮ select the file ‘Softdrink Planning.dsn’ from the ‘Data’ subdirectory, and

◮ press the Save button.

Specifying the

table name

attribute

Once you have created the data source, you are now ready and able to select a

table from this source. Please, execute the following simple steps:

◮ activate the Table name wizard,

◮ choose the Select Table/Query Name. . . command from the pop-up

menu,

◮ select ’Locations’, and

◮ press the OK button.

Look at the

external table

If you have not worked with external databases before, it may be of interest

to look at the external database table as it appears in the database. For this

purpose, you can start MS Access, and inspect the design view of database

table Locations as shown in Figure 8.2.

Chapter 8. Linking to the Database 71

Figure 8.2: The MS Access design view of the Locations table

Specifying the

mapping

attribute

In general, the naming convention used inside a database table will not be

identical to the naming convention used for the corresponding identifiers in

Aimms. That is why a mapping is needed to relate columns in the external

database table to identifiers in Aimms. For example, the mapping between the

index identifier l in Aimms and the column named ‘Location’ in the database

can be specified as follows:

◮ activate the Mapping wizard,

◮ select the primary key ”Location” from the ‘Data Column’ drop down list

(see Figure 8.3),

◮ press the wizard button to select the index l as the ‘Aimms Identifier’,

◮ press the Transfer button to put the specified mapping into the ‘Map-

pings’ list, and

◮ press the OK button.

Chapter 8. Linking to the Database 72

Figure 8.3: The Mapping wizard

Completing the

mapping

Please look at Figure 8.4, and complete the mapping attribute accordingly us-

ing the wizard as explained in the previous paragraph.

Figure 8.4: Attribute form of the data table ‘Locations’

8.1.2 Entering additional database table declarations

Weekly demand

data

Once you have completed your first database table declaration as described

in the previous section, you can make the remaining three external database

tables available to Aimms. Before entering the corresponding declarations you

need to declare two additional model parameters to store the weekly demand

data read from the database.

Parameter WeeklyDemand {

IndexDomain : (c,w,s);

Unit : hl;

}

Chapter 8. Linking to the Database 73

Parameter TotalWeeklyDemand {

IndexDomain : (w,s);

Unit : hl;

}

Adding the

three database

tables

First declare the three additional database table identifiers FactoryTable, Cen-

terTable and ProductionLineTable in the model tree (just below the parameter

TotalWeeklyDemand). Then consider the attribute descriptions listed below. Next

fill in the three attribute forms accordingly, using the Data source wizard, the

Table name wizard, and the Mapping wizard.

DatabaseTable FactoryTable {

DataSource : "data\\Softdrink Planning.dsn";

TableName : "Factories";

Mapping : {

"Factory" --> f,

"UnitProductionCost" --> UnitProductionCost(f),

"MaximumTransportCapacity" --> MaximumTransportCapacity(f)

}

}

DatabaseTable CenterTable {

DataSource : "data\\Softdrink Planning.dsn";

TableName : "Centers";

Mapping : {

"Center" --> c,

"Date" --> w,

"Scenario" --> s,

"Demand" --> WeeklyDemand(c, w, s)

}

}

DatabaseTable ProductionLineTable {

DataSource : "data\\Softdrink Planning.dsn";

TableName : "ProductionLines";

Mapping : {

"Factory" --> f,

"ProductionLine" --> p,

"InitialUsageCount" --> DeteriorationLevelAtStartOfCalendar(f, p),

"InitialProductionLevel" --> ProductionLineLevelAtStartOfCalendar(f, p),

"MaximumProductionLevel" --> MaximumProductionLineLevel(f, p),

"MaximumUsageCount" --> MaximumDeteriorationLevel(f, p)

}

}

Chapter 8. Linking to the Database 74

Figure 8.5: The database section of the model tree so far

8.2 Database procedures

Sophisticated

control

When transferring data from, or to, a database table, you may need more so-

phisticated control over the data link than offered by the standard database

table interface. Aimms offers you this additional control by letting you write

and execute SQL (Structured Query Language) statements, or providing access

to stored procedures already available inside the database.

8.2.1 SQL queries

A first SQL

query . . .

It is possible to access data values in a database that are not directly stored in

one of its database tables. Consider, for instance, the database table named

”ProductionLines” with the two primary key columns ”Factory” and ”Produc-

tionLine”. In this database table, there is no entry for the number of produc-

tion lines in each factory. However, this information can be obtained from the

database through the following query using SQL.

SELECT Factory, COUNT(ProductionLine) AS LineCount

FROM ProductionLines GROUP BY Factory

This query temporarily creates a new table inside the database consisting of

two columns. The first column is a primary key named ‘Factory’, while the

second column is named ‘LineCount’ and contains the required totals.

Chapter 8. Linking to the Database 75

. . . declared in

Aimms

To implement this query in Aimms, you can create your first database proce-

dure named NumberOfProductionLinesQuery. The following steps are required:

◮ close the declaration section named Database Declarations by double

clicking on the scroll icon ,

◮ press the Other. . . button on the toolbar,

◮ select the database procedure from the Select Type of Node dialog

box (see Figure 8.6), and press the OK button,

◮ enter ‘NumberOfProductionLinesQuery’ as the name of the database pro-

cedure, and

◮ press the Enter key to register the name.

Figure 8.6: The Select Type of Node dialog box

Specifying the

database

procedure

attributes

After opening the attribute form of the database procedure, please complete

it as shown in Figure 8.7. Note that the SQL text must be in double quotes, and

can be split over several ”quoted” lines using the + operator and the appropri-

ate use of spaces to ensure that consecutive words are not run together. The

specified ‘UseResultSet’ Property attribute enables you to use the database

procedure as if it were a database table. Without this property, Aimms does

not allow you to specify the Mapping attribute, necessary to read data. Note

that the Mapping wizard is not available for SQL queries.

Chapter 8. Linking to the Database 76

Figure 8.7: A database procedure to execute an SQL command

8.2.2 Stored procedures

Procedures

inside the

database . . .

In the previous subsection, you placed your own SQL query inside an Aimms

database procedure. In this subsection, you will consider a query that already

resides inside the database, and that you can also access from within an Aimms

database procedure.

. . . with or

without

arguments

A stored procedure can have one or more arguments, and it is straightforward

to specify these arguments in an Aimms database procedure. In this tutorial,

however, the stored procedure named TotalDemand and AllCenters are used,

and these procedures happen not to have arguments.

Declaring the

database

procedures

To declare your second database procedure, please execute the following ac-

tions:

◮ insert a new database procedure in the model tree, and specify ‘TotalDe-

mandQuery’ as its name,

◮ open its attribute form,

◮ use the Data source wizard to select ‘Softdrink Planning.dsn’ as its Data

source attribute,

◮ press the radio button in front of the Stored procedure attribute,

◮ activate the Stored procedure wizard,

◮ choose the Select Stored Procedure Name. . . command in the menu that

pops up,

◮ select ‘TotalDemand’ as the Stored procedure attribute,

◮ complete the attribute form as shown in Figure 8.8, and

◮ close the attribute form using the Check, commit and close button .

Chapter 8. Linking to the Database 77

Figure 8.8: The completed attribute form of the database procedure TotalDe-

mandQuery

And to declare your third database procedure with ’AllCentersQuery’ as its

name, please perform similar steps as mentioned above, only this time select

’AllCenters’ as the Stored procedure attribute. The completed attribute form

should look like the one in Figure 8.9).

Figure 8.9: The completed attribute form of the database procedure AllCen-

tersQuery

Chapter 8. Linking to the Database 78

Database

declarations so

far

The part of the model tree describing the database link is shown in Figure 8.10.

Figure 8.10: An intermediate model tree showing all database identifiers and

procedures

Chapter 9

Functions and Procedures

This chapterIn the previous chapter you were introduced to database procedures. In this

chapter you will develop several Aimms procedures to read data and to control

the entire rolling horizon process. In addition, you will work with an external

procedure that is called from within Aimms.

Many small

procedures

The procedures in this chapter have all been kept small for ease of under-

standing. The underlying rolling horizon algorithm, however, is not trivial,

and results in a multitude of procedures. The chapter is therefore both a tu-

torial in the use of procedures and a tutorial in the application of a rolling

horizon.

9.1 Reading from a database

Reading a

database table

. . .

Reading all the data at once from a database table is quite easy in Aimms. Con-

sider, for instance, the database table LocationTable declared in the previous

chapter. The following statement

read from table LocationTable;

is an instruction to Aimms to read all identifiers that have been specified in the

Mapping attribute of the corresponding database table.

. . . or a portion

thereof

It is also possible to read a selection of all identifiers specified in the Mapping

attribute of a database table. For instance, the following statement

read XCoordinate, YCoordinate from table LocationTable;

only reads data of XCoordinate and YCoordinate.

Creating a

procedure

At this point, you are asked to create a single procedure named ReadFrom-

Database to be placed between the Database Declarations node and the Num-

berOfProductionLinesQuery node in the model tree in the following manner:

◮ select the Database Link section of the model tree,

Chapter 9. Functions and Procedures 80

◮ if open, close this section by clicking on the minus sign in front of the

icon,

◮ press the New Procedure button button on the toolbar,

◮ enter ‘ReadFromDatabase’ as the name of the procedure, and

◮ press the Enter key to register this name.

Completing the

Body attribute

Open the attribute form of the procedure ReadFromDatabase by double-clicking

on its name, and complete the Body attribute as shown in Figure 9.1. Note

that the two database procedures NumberOfProductionLinesQuery and TotalDe-

mandQuery both result in temporary tables inside the database, and that Aimms

acts as if the name of each procedure is the same as the name of the temporary

table.

Figure 9.1: The procedure ‘ReadFromDatabase’

Running the

procedure

After you have completed the Body attribute of the procedure ReadFromData-

base, close the attribute form using the Check, commit and close button .

You can now run the procedure by performing the following steps:

◮ select the procedure ReadFromDatabase in the model tree, and

◮ select the Run Procedure command using the right-mouse pop-up menu

(see Figure 9.2).

Figure 9.2: The right-mouse menu of the procedure ‘ReadFromDatabase’

Chapter 9. Functions and Procedures 81

Finding an

identifier . . .

After you have executed the procedure ReadFromDatabase you may want to look

at the contents of, for instance, the parameter MaximumProductionLineLevel. Be-

fore you are able to view its data, you need to locate this parameter in the

model tree. You can find it in the following manner:

◮ press the Find button on the toolbar,

◮ enter ‘MaximumProductionLineLevel’ using the name completion facility

(see Figure 9.3), and

◮ press the Declaration. . . button.

Figure 9.3: The Find & Replace dialog box

. . . and

inspecting its

data

Next, open the data page for the parameter MaximumProductionLineLevel by per-

forming the following two steps:

◮ press the right-mouse button to activate the pop-up menu, and

◮ select the Data. . . command.

The data page on your computer should now look like the one shown in Fig-

ure 9.4.

Figure 9.4: The data page for MaximumProductionLineLevel

Chapter 9. Functions and Procedures 82

9.2 External DLL functions

External DLLIn this section, you will link an external Dynamic Link Library (DLL) named ‘Ex-

ternal Routines.dll’ to your Aimms model. Inside this DLL, there is a function

named DLLUnitTransportCost, that determines the unit transport cost on the

basis of the distance between a particular factory and a particular distribution

center. Writing your own DLLs is beyond the scope of this tutorial. Chap-

ters 11 and 34 of The Language Reference, however, elaborate further on the

use of DLLs and the related Aimms Programming Interface. The source code

of ‘External Routines.dll’ has already been copied to the ‘DLL’ subdirectory of

your project.

DLL function . . .The DLL ‘External Routines.dll’ exports the following function.

double DLLUnitTransportCost(char *from_name, char *to_name)

The two input arguments of the function are strings representing the names

of the two locations for which the unit transport cost is calculated.

. . . and its

counterpart in

Aimms

For each external DLL function used in an Aimms application, you must de-

clare a corresponding external function in Aimms. In this tutorial, the external

function is named ExternalUnitTransportCost, and has the same number of ar-

guments as its external counterpart.

Declaring an

external

function

To declare the external function you should perform the following tasks:

◮ open the DLL Link model section,

◮ press the Other. . . button on the toolbar,

◮ select the external function from the Select Type of Node dialog box

(see Figure 9.5),

◮ specify ‘ExternalUnitTransportCost(factory,center)’ as the name of the

function, and

◮ press the Enter key to register its name.

Chapter 9. Functions and Procedures 83

Figure 9.5: The Select Node Type dialog box

The Arguments

wizard

Next, Aimms will automatically open the Arguments wizard as shown in Fig-

ure 9.6.

Figure 9.6: The Arguments wizard

To complete the Arguments wizard, execute the following steps:

◮ change the type of the currently selected argument factory to ‘element

parameter’,

◮ select Factories as its Range attribute,

◮ then click on the second argument center,

◮ change its type to ‘element parameter’,

◮ select Centers as its Range attribute, and

◮ press the OK button.

After completing the Arguments wizard, Aimms will have declared the two

input arguments as local element parameters. You may verify that Aimms has

Chapter 9. Functions and Procedures 84

indeed placed these local parameters in a new declaration section underneath

the ExternalUnitTransportCost node in the model tree (see Figure 9.7).

Figure 9.7: The completed DLL section of the model tree

Completing the

attributes

Using wizards it is now straightforward to complete the Dll name and Return

type attributes of the external function as shown in Figure 9.8.

Figure 9.8: The attribute form of the external function ExternalUnitTransport-

Cost

Chapter 9. Functions and Procedures 85

The Body call

attribute

The Body call attribute specifies the actual link between the arguments of the

function in Aimms and in the DLL. There is an extensive Body call wizard, as

shown in Figure 9.9, which supports several choices in establishing the link. In

the Body call wizard (see Figure 9.9) you should perform the following actions:

◮ select ‘Scalar’ translation type

◮ press the wizard button to select the element parameter factory as

the actual argument,

◮ set the external datatype to ‘String’,

◮ press the Add button,

◮ select ‘Scalar’ translation type

◮ press the wizard button to select the element parameter center as the

actual argument,

◮ set the external datatype to ‘String’,

◮ press the Add button, and

◮ press the OK button.

Figure 9.9: The Body call wizard

9.3 Specifying the rolling horizon

This sectionIn this section, you will specify all the procedures that are necessary to de-

scribe the rolling horizon process. Once you have implemented the single step

contained in this process, it becomes straightforward to describe the overall

Chapter 9. Functions and Procedures 86

process. After proper data initialization you are then ready to run the com-

pleted set of rolling horizon procedures.

Structuring the

tree

This section is divided into four subsections, as shown in Figure 9.10. You

should add these subsections to your own model tree.

Figure 9.10: The structure of the Rolling Horizon Procedures section

9.3.1 Rolling horizon declarations

Horizon

identifiers . . .

There are several identifiers that play a role in the rolling horizon process.

Their names are mostly self-explanatory, and their contents are specified be-

low. As you will see in the next subsection, these identifiers are used in the

formation of timetables, which link the abstract periods in the rolling horizon

model to the specific days and weeks in the two calendars.

. . . and their

declarations

At this stage, you should enter the following declarations in Rolling Horizon

Declarations.

ElementParameter FirstDayInPlanningInterval {

Range : Days;

}

Set WeeksInPlanningInterval {

SubsetOf : Weeks;

Definition : union[t, WeekInPeriod(t)];

}

ElementParameter FirstWeekInPlanningInterval {

Range : Weeks;

Definition : DayToWeek(FirstDayInPlanningInterval);

Chapter 9. Functions and Procedures 87

}

ElementParameter LastWeekInPlanningInterval {

Range : Weeks;

Definition : last(WeeksInPlanningInterval);

}

Parameter LenghtDominatesNotActive {

IndexDomain : t;

}

Additional

explanation

The identifier named LengthDominatesNotActive is a required input for the pro-

cedure CreateTimeTable discussed in the next subsection. Whenever this iden-

tifier assumes its default value of zero, then the desired length of any period

may not be achieved due to a delimiter slot being encountered in that period.

In the example in this tutorial, this parameter is indeed zero. As a result, the

timetable DaysInPeriod will make sure that each period starts on a Monday (the

delimiter slot). Even though the desired length of each period has been set to

seven days, its actual length is shortened due to weekends and the official

holidays (the so-called inactive days).

Registration

identifiers

In addition to the five horizon identifiers, you need to enter two registration

identifiers. These two identifiers are used to store the overall maintenance

and line usage planning. Add the following two parameters at the end of the

Rolling Horizon Declarations section:

Parameter OverallMaintenancePlanning {

IndexDomain : (f,p,w) | p in FactoryProductionLines(f);

}

Parameter OverallLineUsagePlanning {

IndexDomain : (f,p,w) | p in FactoryProductionLines(f);

}

Chapter 9. Functions and Procedures 88

Figure 9.11: The Rolling Horizon Declarations section of the model tree

9.3.2 Single step procedures

Tree structureA single step in the rolling horizon decision process can be divided into several

procedures, as shown in Figure 9.12. The implementation of each procedure

will be discussed later on in this subsection. Complete your model tree accord-

ingly, but please follow the instructions in the next paragraph when entering

the procedure RegisterInOverallPlanning with its two arguments named iw and

ip.

Figure 9.12: The procedures needed to specify a single step

Chapter 9. Functions and Procedures 89

Argument

wizard

Once you enter the procedure RegisterInOverallPlanning(iw,ip) with its two

arguments, Aimms will automatically open a wizard. To complete this Argu-

ment wizard for both iw (referring to a week) and ip (referring to a period),

you should execute the following actions:

◮ change the type of the currently selected argument iw to ‘element param-

eter’,

◮ select Weeks as its Range attribute,

◮ select ‘Input’ as its Property attribute,

◮ then click on the second argument ip to change the target,

◮ change its type to ‘element parameter’,

◮ select Periods as its Range attribute, and

◮ select ‘Input’ as its Property attribute.

At this point, the Argument wizard should be the same as the one shown in

Figure Figure 9.13.

Figure 9.13: Argument wizard

Describing a

timetable

A timetable is either an indexed set or an indexed element parameter, repre-

senting the mapping between the periods in the horizon and the timeslots in

the calendar. It is an indexed set when the period can contain several time

slots as for instance in the timetable DaysInPeriod. It can be an indexed ele-

ment parameter when there is a one-to-one mapping between each period and

each time slot as for instance in the timetable WeekInPeriod.

Chapter 9. Functions and Procedures 90

Creating a

timetable . . .

The quick info tip window of the predefined procedure CreateTimeTable are

shown in Figure 9.14.

Figure 9.14: Quick info tip window of the function CreateTimeTable

Through the arguments you have considerable control over the contents of the

timetable. For detailed information see Section 29.4 of The Language Refer-

ence manual.

Chapter 9. Functions and Procedures 91

. . . in an Aimms

procedure

Go to the Body attribute of the procedure LinkHorizonToCalendar, and enter the

following statements:

CreateTimeTable(

TimeTable : DaysInPeriod,

CurrentTimeSlot : FirstDayInPlanningInterval,

CurrentPeriod : FirstPeriodInPlanningInterval,

PeriodLength : DesiredNumberOfDaysInPeriod,

LengthDominates : LengthDominatesNotActive,

InactiveTimeSlots : InactiveDays,

DelimiterSlots : Mondays);

ActualNumberOfDaysInPeriod(t) := (card(DaysInPeriod(t))) [day];

CreateTimeTable(

TimeTable : WeekInPeriod,

CurrentTimeSlot : FirstWeekInPlanningInterval,

CurrentPeriod : FirstPeriodInPlanningInterval,

PeriodLength : DesiredNumberOfWeeksInPeriod,

LengthDominates : LengthDominatesNotActive,

InactiveTimeSlots : InactiveWeeks,

DelimiterSlots : Weeks);

Argument

names are

optional

Note that when calling CreateTimeTable, the arguments are preceeded by their

argument names as displayed in Figure 9.14. The use of argument names in

function calls is optional in Aimms. In the above Body attribute, the argument

names are used to increase the readability.

Overriding unitsIn order to enforce unit consistency in the above assignment statement, the

unitless expression card(DaysInPeriod(t)) is assigned the unit [day]. Such unit

casting requires the entire expression to be enclosed between parentheses.

Maximizing

attribute fields

You can use the Maximized button from the Edit menu to temporarily en-

large the size of the Body attribute (or any other multi-line attribute) to ease

entry. When you have completed the attribute, simply press the Maximize

button again to restore the original size.

DaysInPeriod . . .The timetable DaysInPeriod contains the working days in a week, and explicitly

excludes the inactive days such as the weekends and the official holidays. The

sole reason why this timetable is created, is to determine the parameter Actu-

alNumberOfDaysInPeriod needed to establish the correct level of production.

. . . requires one

more

initialization

To view the contents of the DaysInPeriod timetable, you should first initialize

the element parameter FirstDayInPlanningInterval. All other input arguments

have already been initialized. Execute the following steps:

◮ select the procedure LinkHorizonToCalendar in the model tree,

◮ press the Enter key to open its attribute form,

Chapter 9. Functions and Procedures 92

◮ position the text cursor somewhere within the string ‘FirstDayInPlan-

ningInterval’ in the Body attribute,

◮ press the right-mouse button to activate the pop-up menu,

◮ select the Data. . . command,

◮ click on the empty right-hand side of the equal sign in the Data page,

◮ specify ‘03/07/2000’ (without the quotes) as the value on the data page,

and

◮ press the Close button.

You may re-open the page to verify that Aimms has accepted your input value.

If the input format you entered was incorrect, Aimms will replace your input

with the default empty string.

. . . is first

determined

At this point, you can view the contents of the timetable DaysInPeriod by run-

ning the procedure and looking at the appropriate data page:

◮ position the text cursor somewhere within the string ‘LinkHorizonToCal-

endar’ in the Procedure attribute,

◮ press the right-mouse button to activate the pop-up menu, and

◮ select the Run Procedure command.

You can ignore all the initialization warnings since the existing default values

suffice at this point in the tutorial. Please close the Errors/Warnings window

and continue.

. . . and can then

be viewed

Next construct the data page corresponding to the timetable DaysInPeriod as

shown in Figure 9.15 by executing the following steps:

◮ position the text cursor somewhere within the string ‘DaysInPeriod’ in

the Body attribute,

◮ press the right-mouse button to activate the pop-up menu again, and

◮ select the Data. . . command.

Note that each period covers exactly five days due to the fact that the week-

ends are excluded. The default format of this data page requires you to scroll

horizontally. You may select a different view by pressing the Change view

button , and choosing, for instance, ‘Sparse List’ as the Type of Object.

Chapter 9. Functions and Procedures 93

Figure 9.15: The data page of the day-based timetable

Reading just a

subset of

demand data . . .

The weekly calendar in this tutorial spans a period of roughly one year. The

planning horizon in a single step of the overall rolling horizon procedure, how-

ever, is just a small subset of weeks. That is why the procedure ReadDemand-

DataFromDatabase is introduced to limit the total amount of demand data that

is loaded into memory at any given time.

. . . goes as

follows

Prior to each subsequent step of the rolling horizon process, it is recom-

mended that you first emptie the weekly demand data associated with the

old planning interval, and then read the demand data for the weeks in the

new planning interval. This can be accomplished by entering the following

statements in the Body attribute of the procedure ReadDemandDataFromDatabase.

empty WeeklyDemand;

read WeeklyDemand(c,w,s) from table CenterTable

filtering w in WeeksInPlanningInterval;

Demand(c,t,s) := WeeklyDemand(c,WeekInPeriod(t),s);

Note that the weekly demand is read for only those weeks that are in the cur-

rent planning interval. Using the timetable WeekInPeriod, the weekly demand

is then assigned to period demand as required by the mathematical program

to be solved.

Determine when

under

maintenance

The parameter DeteriorationLevel registers, for each combination of factory

and production line, the amount of time that has elapsed since that line was

maintained. Assuming that all lines will be in use for the entire planning in-

terval, it is a straightforward calculation to estimate when a production line

should be under maintenance.

At most one line

under

maintenance in

first period

Now comes the slightly tricky requirement: in each factory no more than one

production line can be maintained in the first period. If there is more than

one candidate, you should maintain just one line, and delay the maintenance

of the other candidate(s) to the next period. The final result is then stored

in the parameter LineInMaintenance declared for each factory, production line

Chapter 9. Functions and Procedures 94

and period. This parameter is one of the determinants of the production level

of a line when in use (see the definition of the parameter PotentialProduction).

Entering local

declarations

Before specifying the Body attribute of the procedure DetermineMaintenance,

you need to declare the following two local identifiers in a new declaration

section within the procedure node DetermineMaintenance.

ElementParameter EstimatedMaintenancePeriod {

IndexDomain : (f,p);

Range : Periods;

}

Set LinesInMaintenanceInFirstPeriod {

IndexDomain : f;

SubsetOf : ProductionLines;

}

Figure 9.16 shows the local declaration section of the procedure Determine-

Maintenance.

Figure 9.16: The local declaration of the procedure DetermineMaintenance

Entering

maintenance

calculations

The following statements in Aimms have been discussed in the previous para-

graph. Please enter them in the Body attribute of the procedure Determine-

Maintenance.

EstimatedMaintenancePeriod(f,p) :=

Element(Periods, max(MaximumDeteriorationLevel(f,p) -

Floor(DeteriorationLevel(f,p)) + 2, 2));

LinesInMaintenanceInFirstPeriod(f) :=

{ p | EstimatedMaintenancePeriod(f,p) = FirstPeriodInPlanningInterval };

EstimatedMaintenancePeriod((f,p) |

Ord(p,LinesInMaintenanceInFirstPeriod(f)) >= 2) += 1;

empty LineInMaintenance;

LineInMaintenance((f,p,EstimatedMaintenancePeriod(f,p)) |

EstimatedMaintenancePeriod(f,p) in Periods.Planning) := 1;

Chapter 9. Functions and Procedures 95

Entering a

‘solve’

procedure . . .

Having completed the first three single step procedures, you are now ready to

enter the procedure in which the single step mathematical program is solved.

Please enter the following statements in the Body attribute of the procedure

SolveLeastCostPlan.

solve LeastCostPlan;

halt with "Least cost mathematical program is not optimal.\nCheck "

+ "input data for infeasibilities."

when (LeastCostPlan.ProgramStatus <> ’Optimal’);

. . . with a halt

statement

Note that the second statement illustrates the use of the halt statement in

Aimms. Once the program halts, it will provide a two-line message as indicated

by the special character ‘\n’. By using the + notation in the Body attribute,

you may divide a single quoted string into several pieces. In the conditional

when part of the halt statement, there is a reference to a property of the math-

ematical program, namely the program status, using the ‘dot’ notation (see

Section 15.2 in The Language Reference).

Register overall

planning

Following the solution of the single step mathematical program, the results

associated with just the first period are kept as ‘definite’. In this tutorial, only

the overall planning of maintenance and the overall planning of production

line usage are kept. The overall planning is registered in terms of calendar

weeks, which implies that period data must be translated into week data. Such

translation is achieved with the following two statements, to be added to the

Body attribute of the procedure RegisterInOverallPlanning:

OverallMaintenancePlanning(f,p,iw) := LineInMaintenance(f,p,ip);

OverallLineUsagePlanning(f,p,iw) := ProductionLineInUse(f,p,ip);

Preparing data

for next step

Once the overall planning has been registered, all that remains is to prepare

several data items for the next step. First of all, the first day in the planning

interval must be moved forward seven days to the next Monday. Then the

current first-period stock and production solution data must become historic

data. Finally, the deterioration level of all the production lines must be prop-

erly adjusted upwards or downwards. All these assignments are captured in

the following Body attribute of the procedure PrepareDataForNextRoll.

FirstDayInPlanningInterval += 7;

Stock(l,’past’,s) :=

Stock(l,FirstPeriodInPlanningInterval,s);

ProductionLineInUse(f,p,’past’) :=

ProductionLineInUse(f,p,FirstPeriodInPlanningInterval);

DeteriorationLevel(f,p) +=

0.75 * ProductionLineInUse(f,p,FirstPeriodInPlanningInterval) + 0.25;

DeteriorationLevel((f,p) |

LineInMaintenance(f,p,FirstPeriodInPlanningInterval)) := 0;

Chapter 9. Functions and Procedures 96

Updating

deterioration

level

Note that the deterioration level of a productive line is updated by 1 reflecting

that the line was in use during the first period in the planning interval. Oth-

erwise, the deterioration level is increased by only 0.25 to reflect that the line

remained idle for that week. Of course, if a line is under maintenance during

the first period, its deterioration level is reset to zero.

9.3.3 Rolling Procedures

Tree structureTwo rolling horizon procedures can be considered. One of them captures all

the procedures needed to execute a single step in the rolling horizon pro-

cess. You may execute this procedure sequentially by using the corresponding

right-mouse action, and examine the results as they are found. The second

procedure executes all the remaining single steps in one go. Please update the

section Rolling Procedures in your tree structure as shown in Figure 9.17.

Figure 9.17: The structure of the Rolling Procedures section

Roll horizon

once

The following sequence of statements carries out a single step in the rolling

horizon process. Please enter them in the Body attribute of the procedure

RollHorizonOnce. Note that each of the statements is a call to a procedure that

was developed in the previous subsection.

LinkHorizonToCalendar;

ReadDemandDatafromDatabase;

DetermineMaintenance;

SolveLeastCostPlan;

RegisterInOverallPlanning(FirstWeekInPlanningInterval,FirstPeriodInPlanningInterval);

PrepareDataForNextRoll;

Rolling horizon

to end

The following procedure completes the rolling horizon process starting from

the current point in the calendar as determined by the element parameter

FirstWeekInPlanningInterval. In the next subsection, you will encounter a pro-

cedure that will allow you to start the rolling horizon process from the be-

ginning of the calendar. Please enter the following statements in the Body

attribute of the procedure RollHorizonToEnd.

Chapter 9. Functions and Procedures 97

while (LastWeekInPlanningInterval < LastWeekInCalendar) do

RollHorizonOnce;

endwhile;

for (t | t > FirstPeriodInPlanningInterval) do

RegisterInOverallPlanning(WeekInPeriod(t),t);

endfor;

Complete

overall planning

Note that the maintenance and line usage planning of the final planning inter-

val is not only registered for the first period through the procedure RollHori-

zonOnce, but also for the remaining periods through the execution of the for

statement.

9.3.4 Initialization procedures

Tree structureThere are three initialization procedures to be considered. One of them is the

system-supplied procedure MainInitialization that is executed every time a

project is started. The other two initialization procedures have been embed-

ded in MainInitialization, but can also be called separately. Please update

your tree structure as shown in Figure 9.18. Be sure not to create a MainIni-

tialization procedure, because one is already present in your model. Simply

move it from the end of the model tree to its desired position (using either the

cut-and-paste or the drag-and-drop facility in Aimms).

Figure 9.18: The structure of the Initialization Procedures section

Initializing

Periods

In the procedure InitializeLengthOfPlanningInterval, two crucial parameters

in the rolling horizon are set. Their values determine the amount of time

considered in a single step of the rolling horizon process. You may change

these values if you want to consider different planning intervals. Please enter

the following statements into the Body attribute.

NumberOfPeriods := 10;

NumberOfPeriodsInPlanningInterval := 8;

Chapter 9. Functions and Procedures 98

Starting at the

beginning

The procedure MovePlanningIntervalToStartOfCalendar first empties any exist-

ing overall maintenance and line usage planning, and then assigns all starting

values known at the beginning of the calendar to the appropriate variables and

parameters. This procedure can be called at any time, causing any activated

rolling horizon procedures to start at the beginning of the calendar. Please

enter the following statements into the Body attribute.

empty OverallMaintenancePlanning, OverallLineUsagePlanning;

Stock(l,’past’,s) := StockAtStartOfCalendar(l);

ProductionLineInUse(f,p,’past’) := 1 onlyif ProductionLineLevelAtStartOfCalendar(f,p);

DeteriorationLevel(f,p) := DeteriorationLevelAtStartOfCalendar(f,p);

FirstDayInPlanningInterval := first(Mondays);

WeekInPeriod(t) := Element(Weeks, Ord(t));

MainInitiali-

zation

The procedure MainInitialization, executed by Aimms at the start of each run,

is a natural starting point for reading data, initializing various parameters and

starting other procedures that also initialize your model data. In this tutorial,

the procedure MainInitialization reads essentially all the problem data from

the database tables. The only exception is the demand data, which are read

one section at a time for the current planning horizon from within the proce-

dure RollHorizonOnce. Following this, the unit transport costs are obtained by

calling the external function developed in Section 9.2. Finally, the data initial-

ization required for the rolling horizon procedures is completed by calling the

two procedures described above. Please replace the content of the MainIni-

tialization procedure by the following statements.

ReadFromDatabase;

UnitTransportCost(f,c) := (ExternalUnitTransportCost(f,c)) [\$/TL];

InitializeLengthOfPlanningInterval;

MovePlanningIntervalToStartOfCalendar;

empty LengthDominatesNotActive, InactiveWeeks;

FormatString

and unit casting

Note that the unit [$/TL] is attributed to the output of the external function.

This requires you to place the parentheses around the function call as illus-

trated above.

9.4 Running the model

Closing your

project

As indicated previously, the statements that you entered in the MainInitial-

ization procedure are executed when the project is opened. Even though you

could run this procedure directly using the right-mouse Run Procedure com-

mand, you may as well try out the default action by first closing the project

and then re-opening it. To do so, execute the following steps to close your

project:

Chapter 9. Functions and Procedures 99

◮ select the Close Project command from the Aimms File menu,

◮ answer ‘No’ when being asked to compile your model before closing the

project,

◮ answer ‘No’ in the dialog box that asks whether you want to save your

data (see Figure 9.19),

◮ answer ’Yes’ to save the changed project.

Figure 9.19: The Save Changes dialog box

Opening the

project

Opening a project that you have just closed, is straightforward. Aimms keeps

track of the last five projects opened. Just select the ‘Softdrink Planning’

project from project list displayed in the Aimms Start Page. Alternatively, you

can select the recent project from the File menu (see Figure 9.20).

Figure 9.20: The File menu of Aimms

Running a

procedure

You are now ready to test the rolling horizon process starting from the be-

ginning of the calendar. To run the procedure RollHorizonOnce you should

perform the following actions:

◮ select the procedure RollHorizonOnce in the model tree, and

◮ in the right-mouse menu select the Run Procedure command (see Fig-

ure 9.21).

Chapter 9. Functions and Procedures 100

Figure 9.21: The right-mouse menu of the procedure RollHorizonOnce

Monitoring the

progress

The Progress window lets you to monitor the progress made by Aimms and

the solver during the generation and solution of a mathematical program. By

pressing the Ctrl-P key combination, the Progress window as shown in Fig-

ure 9.22 will appear. Once the solution has been found, Aimms will again dis-

play warnings about data not yet initialized. These warnings can be ignored at

this stage of the tutorial.

Figure 9.22: The Progress window

Viewing the

solution

Once the procedure RollHorizonOnce has finished, you can view the results. For

instance, you could open the data page associated with the variable TotalCost,

and compare its value to the one in the Progress window in Figure 9.22. Sim-

ilarly, you can inspect the value of any of the decision variables. For example,

the optimal values for the variable Production are displayed in Figure 9.23

Chapter 9. Functions and Procedures 101

Figure 9.23: The data page of the variable Production

Additional

information in a

pivot table

By default Aimms will display non-scalar data in a pivot table. For variables

and constraints, additional information (e.g. marginal values, basic status) will

also be shown in the pivot table when available. Notice that in the data page

of the variable Production the basic status is displayed.

Ready for GUI

building

At this point in the tutorial, you have reached a major milestone in that the

complete model description of a rolling horizon application has been com-

pleted. In the next part of this tutorial, you will concentrate on building a

graphical user interface for the end-user of this application.

Part IV

Building an End-User Interface

Chapter 10

Management of Pages and Templates

This chapterFollowing this chapter, you will set up the structure of your end-user interface

using the Page Manager. In addition, you will specify the style of your end-

user interface using the Template Manager. At the end of this chapter you will

make a startup page that will contain references to all the other pages.

Iterative design

process

Designing an effective end-user interface is an iterative process that requires

interaction with the end-users. Chapter 12 of the The User’s Guide contains

several design principles. In this tutorial, however, you will build the specified

interface without any redesign.

10.1 Page management

The Aimms

Page Manager

In Aimms, pages correspond to windows of information visible to the end-user.

Pages are managed using the Page Manager, which allows you to organize

all your end-user windows in a tree-like fashion. The organization of pages

in the page tree defines the navigation structure of the end-user interface.

Relative to a particular page in the page tree, the positions of the other pages

define relationships such as parent page, child page, next page or previous

page, which can be used with navigation controls such as buttons and menus.

Figure 10.1 shows the navigation structure that you will use in your end-user

application.

Contents

Production

Overview

Transport

Overview

Absentee

Overview

Planning

Overview

Scenario

Overview

Figure 10.1: The navigation structure to be implemented

Chapter 10. Management of Pages and Templates 104

Opening the

Page Manager

To create the desired page structure, you should first open the Page Manager

by selecting it from the Aimms Tools menu, or alternatively by pressing the

F9 key. A page tree is shown in Figure 10.2. Note that the trial page created

in Chapter 5 was automatically added to the Page Manager. If you previously

saved a changed Data Page, a parent page named ’All Data Pages’ is added as

well, containing the saved Data Page.

Figure 10.2: A Page Manager with one page

Creating a new

page

You have already created a new page in Chapter 5:

◮ press the New Page on the toolbar to create a new page, or alterna-

tively press the Insert key,

◮ specify ‘Contents’ as the name of this new page, and

◮ press the Enter key to register the page.

Creating a child

page

To create a child page of the Contents page you should execute the following

steps:

◮ open the Contents page by double-clicking on its icon,

◮ press the New Page button on the toolbar to create a new page,

◮ specify ‘Production Overview’ as the name of this new page, and

◮ press the Enter key to register the page.

Figure 10.3: The intermediate page tree

Chapter 10. Management of Pages and Templates 105

Completing the

page navigation

structure

You should now complete the structure of the page tree to match Figure 10.4.

Figure 10.4: The final page navigation structure

Saving your

changes

The asterisk at the left side of the title bar indicates that changes to your

project have not yet been saved to disk. Save your work by pressing the Save

Project button on the toolbar, or alternatively, pressing the Ctrl-S key com-

bination.

Describing the

six pages

The intended contents of each of the six pages are described below.

� Contents: The Contents page will be created as a means of navigating to

the other pages.

� Production Overview: The Production Overview page will contain the op-

timal production levels and maintenance schedule for the current plan-

ning interval.

� Transport Overview: The Transport Overview page will contain the opti-

mal transport values for the factories and centers plus their correspond-

ing stock levels for the current planning interval.

� Absentee Overview: The Absentee Overview page will provide an inter-

active facility to specify holidays and vacation periods in a convenient

manner.

� Planning Overview: The Planning Overview page will display the overall

production and maintenance planning for the portion of the entire cal-

endar under consideration.

� Scenario Overview: The Scenario Overview page will display the demand

figures for the different scenarios in the database.

10.2 Template management

The Aimms

Template

Manager

Using the Template Manager, you can ensure that all end-user pages are the

same size and possess the same look and feel. You can accomplish this effect

by creating so-called page templates, which define page properties and objects

common to a group of end-user pages. These page templates can be nested

inside the tree of page templates. In addition, you need to position all your

Chapter 10. Management of Pages and Templates 106

end-user pages as child pages beneath the page templates so that the objects

on the template pages become visible on the end-user pages.

Common page

components

Typical page objects and page properties that are inherited by end-user pages

from page templates are:

� background color or background bitmap,

� a logo,

� navigation buttons,

� page menubar and toolbar,

� header and footer areas, and

� page size and resize behavior.

In this tutorial exercise, there will be one template for the background color,

and one template containing shared navigation buttons.

Opening the

Template

Manager

To create the desired page templates you should first open the Template Man-

ager by selecting it from the Aimms Tools menu, or alternatively by pressing

the Alt+F9 key. The initial template tree is shown in Figure 10.5. Note that the

initial template tree automatically contains all the pages that you previously

created inside the Page Manager.

Figure 10.5: The Template Manager with initial template tree

Creating two

page templates

Next, you need to create one page template for the background color and one

for the navigation buttons:

◮ select the root node in the template tree,

◮ press the New Template button on the toolbar,

◮ specify ‘Background Bitmap’ as the name of this new template, and

◮ press the Enter key to register the template.

Position the second page template as a child of the first page template as

shown in Figure 10.6:

Chapter 10. Management of Pages and Templates 107

◮ open the Background Bitmap template by double-clicking on its icon,

◮ press the New Template button on on the toolbar,

◮ specify ‘Navigation Buttons’ as the name of this new template, and

◮ press the Enter key to register the template.

Figure 10.6: The Template Manager with intermediate template tree

Moving pages

underneath

templates

The six pages created in the Page Manager appear automatically in the Tem-

plate Manager. You should move the Contents page so that it inherits the

bitmap background as indicated in Figure 10.7:

◮ select the Contents page in the template tree, and

◮ drag the page to the Background Bitmap template.

Figure 10.7: The Template Manager while moving the Contents page

Next, you should move the remaining five overview pages so that they inherit

both the bitmap background and the navigation buttons as illustrated in Fig-

ure 10.8:

◮ open the Navigation Buttons template by double-clicking on its icon,

Chapter 10. Management of Pages and Templates 108

◮ select all five overview pages in the template tree using the Shift key

together with the mouse, and

◮ drag the selected pages to below the Navigation Buttons template.

Figure 10.8: The Template Manager while moving overview pages

Final template

tree

The final template tree should be as shown in Figure 10.9.

Figure 10.9: The Template Manager after moving pages

Background

bitmap

specification

The Background Bitmap template is designed to provide a uniform background

for your entire end-user interface. You can specify this template in the follow-

ing manner:

◮ select the Background Bitmap template in the template tree,

◮ open the template by clicking on the Open in Edit Mode button on the

toolbar,

◮ select the Picture command from the Object menu,

◮ position the mouse cursor at the upper left corner of the template,

◮ depress the left-mouse button and drag the mouse cursor to the lower

right corner of the template, and

◮ release the mouse button.

Chapter 10. Management of Pages and Templates 109

At this point you need to complete the Picture Properties dialog box:

◮ press the Wizard button on the right of the ‘File Name’ edit field,

◮ select the Select File Name. . . command in the right-mouse pop-up menu,

◮ select the bitmap file ‘Bitmaps\Background.bmp’,

◮ press the Open button,

◮ select the ‘Fill with Multiple Pictures’ display option, and

◮ press the OK button.

Figure 10.10: The Picture Properties dialog box

Viewing the

result

By selecting the option ‘Fill with Multiple Pictures’, as shown above in Fig-

ure 10.10, you instruct Aimms to replicate the small bitmap contained in the

file ‘Background.bmp’. As a result, the entire screen should now be filled with a

blue pattern as displayed in Figure 10.11.

Chapter 10. Management of Pages and Templates 110

Figure 10.11: The Background Bitmap template

Saving your

changes

The asterisk on the left of the title bar on the template page indicates that

additions to your project have not yet been saved to disk. Save your work by

pressing the Save Project button on the toolbar.

Verifying

template

inheritance

You can check whether the Background Bitmap template is correctly inherited

by performing the following actions:

◮ press the F9 key to open the Page Manager, and

◮ open, for instance, the Production Overview page by double-clicking on it.

The Production Overview page should look the same as the Background Template

page. Once you have verified this action, you may close this page by clicking

the cross at the upper right corner of the page.

Navigation

buttons

The second template provides a dedicated area with navigation buttons for the

overview pages. You will place three buttons for easy access to:

� the next page,

� the previous page, and

� the contents page.

Creating a ‘Next

Page’ button

To create a button that allows you to go to the next page with a single click,

you should perform the following actions:

◮ open the Navigation Buttons template in Edit mode,

◮ press the New Button button on the toolbar,

Chapter 10. Management of Pages and Templates 111

◮ use the mouse to draw a small rectangle at the lower right corner of the

page,

◮ select the ‘Bitmap Button’ option in the Button Properties dialog box,

◮ use the wizard to select the Select File Name. . . command from the right-

mouse pop-up menu,

◮ select the file ‘Bitmaps\Button Next.bmp’, and

◮ press the OK button.

Next, you need to open the Button Properties dialog box again and complete

the Actions tab as shown in Figure 10.12.

◮ select the Actions tab,

◮ select a ’Goto Page’ action,

◮ press the Add button which selects the default ‘Go to Previous Page’

action,

◮ select the ‘Next Page’ option,

◮ press the Apply button to get the new ‘Go to Next Page’ action, and

◮ press the OK button.

Figure 10.12: The Button Properties dialog box

Inspecting the

button

On your screen you should see a button containing a small grey box. By press-

ing the Page User Mode button on the left of the tool bar, the grey box

changes into the bitmap with an arrow pointing to the right. By again pressing

the Page Edit Mode button on the left of the tool bar, you are back in object

Edit mode and can create the remaining two buttons as shown in Figure 10.13.

Chapter 10. Management of Pages and Templates 112

Creating the

remaining two

buttons

The bitmap on the button with the left arrow corresponds with the bitmap

file ‘Bitmaps\Button Prev.bmp’. This button reflects the action ‘Go to Previous

Page’. The remaining button corresponds with the file ‘Bitmaps\Button Up.bmp’,

and reflects the action ‘Go to Parent Page’. Again, you can inspect the three

buttons by changing into User mode as described in the previous paragraph.

Figure 10.13: The three buttons on their page template

10.3 The Contents page

Referencing the

overview pages

The Contents page is the parent page in the hierarchy of pages within the Page

Manager. From this page you should be able to reference each of the five

overview pages. For this purpose, Aimms provides you with a so-called naviga-

tion object. The contents of such a navigation object can change dynamically

depending on the page structure in the Page Manager.

Creating a

navigation

object

To create a new navigation object on the Contents page you should perform

the following steps:

◮ open the Contents page,

◮ make sure that this page is in Edit mode,

◮ press the New Navigation Object button on the toolbar,

◮ use the mouse to draw a rectangle in the center of the page, and

◮ press the OK button.

Chapter 10. Management of Pages and Templates 113

Figure 10.14: The Navigation Object Properties dialog box

Default settingsAs you can see in Figure 10.14, the default settings in the Navigation Object

Properties dialog box are such that only child pages of the current reference

page will be shown. By changing the ‘Number of Generations from Reference’

parameter and/or the ‘Number of Ancestors (including Reference)’ parameter,

you can adjust the contents of the navigation object.

Changing the

font

You might have thought that the default font size in the navigation object is

rather small. To change the font size you should open the Navigation Proper-

ties dialog box using either the right-mouse to select Properties. . . command,

or clicking on the Properties button on the tool bar. Once you are in the

dialog box, you should execute the following steps:

◮ select the Font tab,

◮ press the Add button,

◮ select ‘Bold’ as the ‘Font Style’,

◮ select ‘20’ as the ‘Font Size’,

◮ press the OK button,

◮ specify ‘Navigation Object Font’ as the name of the new font, and

◮ press the OK buttons.

The font selections are shown in Figure 10.15, and they should be visible in

the navigation object on your screen.

Chapter 10. Management of Pages and Templates 114

Figure 10.15: The Font dialog box

Changing the

color

Figure 10.16 indicates how to set the foreground color to navy blue. Please

execute the following steps.

◮ re-open the Navigation Properties dialog box,

◮ select the Colors tab,

◮ select ’Transparent’ in the dropdown list of the background color

◮ select ‘User’ as the provider of the foreground color,

◮ set the foreground color to navy blue, and

◮ press the OK button.

Chapter 10. Management of Pages and Templates 115

Figure 10.16: The Colors tab of the Navigation Properties dialog box

Putting a logo

on the page

In many applications you will want to put a logo on a page. In this tutorial the

Aimms logo will be used by executing the following steps:

◮ open the Contents page in edit mode,

◮ select the Picture command from the Object menu,

◮ use the mouse to draw a rectangle in the upper right corner of the page,

◮ press the Wizard button to the right of the ‘File Name’ edit field,

◮ select the Select File Name command from the right-mouse pop-up

menu,

◮ select the file ‘Bitmaps\AIMMS Logo.bmp’ in the Picture Properties dialog

page,

◮ press the Open button to return to the Picture Properties dialog box,

and

◮ press the OK button.

The Contents page should now look like the one shown in Figure 10.17.

Chapter 10. Management of Pages and Templates 116

Figure 10.17: The Contents page

Testing the

initial interface

Once you have pressed the Page User Mode button , you can press any of

the five buttons on the Contents page. Aimms will automatically open the cor-

responding child page. You can then use the ‘Previous’, ‘Next’ or ’Up’ buttons

to navigate to another page.

Specifying a

startup page

In Aimms you can specify a startup page. This page is automatically shown

when the underlying application is opened. To make the Contents page the

default startup page of your application, you should execute the following

actions:

◮ select the Project Options command from the Settings menu,

◮ set the ‘Startup page’ as shown in Figure 10.18, and

◮ press the OK button.

Chapter 10. Management of Pages and Templates 117

Figure 10.18: The Aimms Options dialog box

Saving your

changes

The asterisk at the left of the title bar of the Aimms window indicates that

recent changes to your project have not yet been saved to disk. Save your

work by pressing the Save Project button on the toolbar.

Closing and

re-opening the

project

After having saved your project, you can close and subsequently re-open the

project to verify that the Contents page is displayed automatically. The process

of closing and re-opening a project has already been discussed in detail at the

end of Chapter 9.

Chapter 11

Production and Transport Overviews

This chapterIn this chapter you will build two end-user pages that display the solution cor-

responding to a single ‘roll’ in the rolling horizon process. The first page, the

Production Overview page, concentrates on the optimal production and main-

tenance schedule for every period in the current planning horizon. The second

page, the Transport Overview page, provides not only the optimal transport pat-

terns from the factories to the distribution centers, but also the corresponding

stock overviews for all locations considered.

11.1 Extending the model tree

Needing

additional

identifiers

Whenever you build a professional user interface, it is quite natural to intro-

duce additional identifiers to support such an interface. For instance, an ele-

ment parameter defined over the predefined set of AllColors can be used to

change the color of numbers when they drop below a particular threshhold

value. Another possibility is the introduction of parameters to control the

scrolling mechanism of a Gantt chart. Yet another option is an identifier to

control whether or not a particular object appears at all depending on data

elsewhere in your application.

Introducing

extra model

sections

You should now introduce five extra sections in your model tree corresponding

to the five end-user overview pages already introduced in the Page Manager.

All new page-specific identifiers introduced can then be inserted into the ap-

propriate section. The updated tree structure is shown in Figure 11.1.

Chapter 11. Production and Transport Overviews 119

Figure 11.1: Subdividing the The User Interface section

11.2 The Production Overview page

Viewing the

entire page

In this section you will construct the entire page as shown in Figure 11.2. Each

page object will be treated in a separate subsection.

Figure 11.2: The completed Production Overview page

Chapter 11. Production and Transport Overviews 120

11.2.1 Execution buttons

The Run Next

button

The first execution button you will add is designed to execute a single step in

the rolling horizon process. This allows you to track the behavior of the model

step by step. To create the Run Next button you should perform the following

actions:

◮ open the Production Overview page in Edit mode,

◮ press the New Button button on the toolbar,

◮ drag and create a small rectangle in the upper right corner of the page,

◮ specify ”Run Next” (with the quotes) in the ‘Title’ edit field,

◮ press the Actions tab,

◮ select the ‘Run’ action,

◮ press the Add button,

◮ select the ‘Procedure’ option (not the ‘Page Procedure’ option),

◮ use the Wizard button to select the procedure RollHorizonOnce,

◮ press the Finish button, and

◮ press the OK button.

The Run All

button

The second execution button to be added is designed to execute the entire

rolling horizon process from the current point forward. Just repeat the steps

in the previous paragraph while creating the Run All button, but select the

procedure RollHorizonToEnd.

The Restart

button

The third execution button is the Restart button which activates the proce-

dure MovePlanningIntervalToStartOfCalendar. Following the execution of this

procedure you can use either of the previous two execution buttons to execute

part or all of the rolling horizon process. Instead of creating the button from

scratch, as in the previous two paragraphs, you could use the ‘copy and paste’

facility as described in the following steps:

◮ in Edit mode, select the Run All button by clicking on it,

◮ press the Copy button on the toolbar,

◮ press the Paste button on the toolbar (the mouse cursor will change

as shown in Figure 11.3) ,

◮ use the mouse cursor to position the new button underneath the Run All

button,

◮ click the left-mouse button to confirm the position of the new button,

◮ double-click the left-mouse button to open the Button Properties dialog

box of the new button, and

◮ modify the button properties as appropriate.

Chapter 11. Production and Transport Overviews 121

Figure 11.3: The mouse cursor after having pressed the Paste button

11.2.2 The production lines table

Three identifiers

in one table

In the first table on the Production Overview page you will include three identi-

fiers, namely:

� the actual production level by factory, production line and time period,

� the number of working days in each week, and

� the current deterioration level associated with each production line.

Actual

production level

The actual level of production will be equal to potential production whenever a

production line is in use. Create a new declaration section Production Overview

Declaration in the Production Overview section, and insert the following param-

eter declaration:

Parameter ActualProduction {

IndexDomain : (f,p,t);

Unit : hl;

Definition : PotentialProduction(f,p,t)*ProductionLineInUse(f,p,t);

}

Creating a tableThe first part of the table can be created by executing the following steps:

◮ ensure that the Production Overview page is in Edit mode,

◮ press the New Table button on the toolbar,

◮ drag and create a rectangle that matches the desired table size on your

page,

◮ in the Identifier wizard select the parameter ActualProduction(f,p,t),

◮ press the Next button, and

◮ press the Finish button.

Adding an

identifier

To add the identifier DeteriorationLevel(f,p) as the first column of this new

table you should perform the following actions:

◮ select the existing table object,

◮ press the Properties button on the toolbar,

◮ select the Contents tab,

◮ press the Add button,

◮ select the identifier DeteriorationLevel(f,p) using the Identifier wizard,

◮ press the Next button,

Chapter 11. Production and Transport Overviews 122

◮ uncheck the ‘Automatic split row/column’ checkbox,

◮ select the ’split line’ entry that pops up in the listbox (see Figure 11.4),

◮ press the Down button,

◮ press the Finish button,

◮ press the Up button to display the identifier DeteriorationLevel as the

first column, and

◮ press the OK button.

Figure 11.4: Specifying the row and column domain

Moving the split

line

If you had not moved the split line, Aimms would have used the index f for

rows and the index p for columns. However, by moving the split line, both

indices can be used as row indices conforming to Figure 11.5.

Adding another

identifier

Following the routine specified above, you should now add the identifier Actu-

alNumberOfDaysInPeriod(t) as a new row in the table. The table on your screen

should then look like the one shown in Figure 11.5.

Chapter 11. Production and Transport Overviews 123

Figure 11.5: The initial production overview table

Creating week

labels . . .

The ‘period’ references in the table are somewhat abstract and not meaning-

ful. In Aimms you can change these references using a string parameter. You

should first create this string parameter in the section Production Overview

Declarations.

StringParameter PeriodDescription {

IndexDomain : t in Periods;

Definition : {

if (t in Periods.past) then

"past"

elseif (t in Periods.beyond) then

"beyond"

else

FormatString("%e", WeekInPeriod(t))

endif

}

}

The predefined function FormatString allows you to compose a string that is

built up from a combination of numbers, strings and set elements (see Chap-

ter 5 of The Language Reference).

. . . as part of

the table

The above string parameter PeriodDescription(t) can be used as element text

in the table after executing the following steps:

◮ open the Table Properties dialog box of the table,

◮ select the Element Text tab (see Figure 11.6),

◮ select the index t,

◮ press the Modify button,

◮ select the identifier PeriodDescription(t),

◮ press the Next button,

◮ press the Finish button, and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 124

Figure 11.6: The Element Text tab of the Table Properties dialog box

Viewing the

result

If the table does not show the constructed period descriptions, and you receive

an initialization warning, you should press the Run Next button once and the

period descriptions should then appear.

Specifying the

number format

. . .

Aimms chooses a default number format when displaying identifiers in a table.

However, you might want to change the number of digits and/or the number

of decimals. For example, the parameter ActualNumberOfDaysInPeriod should

be an integer, and the values of the parameter ActualProduction are too large

for the default format.

. . . first for

actual

production

You can execute the following steps to change the number format of Actual-

Production to a width of 8 digits with 2 decimals:

◮ open the Table Properties dialog box of the table,

◮ select the Format tab (see Figure 11.7),

◮ select the element ActualProduction(f,p,t) from the drop-down listbox,

◮ enter the number ‘8’ (without quotes) in the ‘Width’ field,

◮ enter the number ‘2’ (without quotes) in the ‘Decimals’ field, and

◮ press the Apply button.

Chapter 11. Production and Transport Overviews 125

Figure 11.7: The Format tab of the Table Properties dialog box

. . . and then for

the other two

identifiers

Next, you should change the format of the parameter DeteriorationLevel to a

width of 5 with 2 decimals, and also adjust the number format of the parame-

ter ActualNumberOfDaysInPeriod to a width of 5 with 0 decimals. An instance of

the completed table is shown in Figure 11.8.

Figure 11.8: The completed production line table

11.2.3 The factory production bar chart

Creating a bar

chart

The production lines table displays a production overview for each individual

production line. The following bar chart will provide a similar overview at

the factory level. To create this bar chart you should perform the following

actions:

Chapter 11. Production and Transport Overviews 126

◮ make sure that the Production Overview page is opened in Edit mode,

◮ press the New Bar Chart button on the toolbar,

◮ drag and create a rectangle underneath the Production Lines table with

the same width, and

◮ select the variable Production(f,t) using the Identifier wizard.

Creating week

labels

As before, you should change the abstract period references into week refer-

ences using the string parameter PeriodDescription. The resulting bar chart is

shown in Figure 11.9.

Figure 11.9: The completed factory production bar chart

11.2.4 The vacation table

Creating the

table

The created table will display all the weeks that correspond to a vacation pe-

riod with a 40% drop in production. To create this table you should complete

the following sequence of steps:

◮ make sure that the Production Overview page is in Edit mode,

◮ press the New Table button on the toolbar,

◮ drag and create a rectangle below the factory production bar chart with

the same dimensions,

◮ select the parameter IsVacationPeriod(f,t) using the Identifier wizard,

and

◮ change the element text of the index t to the string parameter PeriodDe-

scription(t).

Displaying

nonzero values

as crosses

The identifier IsVactionPeriod(f,t) is a binary parameter. A value of zero

means ’no vacation period’, while a value of one indicates a ‘vacation period’.

The chosen value of one is somewhat arbitrary, and for this reason you might

prefer to display a cross instead of a one. This minor modification can be

accomplished as follows:

◮ open the Table Properties dialog box of the table,

◮ select the Format tab (see Figure 11.10),

Chapter 11. Production and Transport Overviews 127

◮ check the ‘0–1 values’ check box, and

◮ press the OK button.

Figure 11.10: The Format tab of the Table Properties dialog box

Note that at this point the table is still empty since no vacation weeks have yet

been specified. Later, you will specify these vacation weeks using a Gantt chart

object on the Absentee Overview page.

11.2.5 The horizon-calendar tables

Creating your

first composite

table

In this subsection you will create two composite tables that establish the rela-

tionship between the abstract horizon periods and the weekly and daily calen-

dar periods. Composite tables in Aimms resemble the structure of relational

database tables, and you can adjust the width of columns from within the

graphical interface. To create your first composite table, you should execute

the following steps:

◮ press the New Composite Table button on the toolbar,

◮ draw a rectangle on the page,

◮ select the parameter WeekInPeriod(t),

◮ press the Next button, and

◮ press the Finish button.

Chapter 11. Production and Transport Overviews 128

Creating the

second table

For the second composite table you should select the indexed set DaysInPe-

riod(t). The two composite tables should look similar to the ones shown in

Figure 11.11.

Figure 11.11: The mapping between horizon and calendars

11.2.6 The maintenance and mode switches tables

Creating the

maintenance

table

As with vacation periods and holidays, maintenance periods also cause a de-

crease in production. Therefore, a maintenance overview can also contribute

to the interpretation of the results in the production line table and factory pro-

duction bar chart. By now you should be able to create the maintenance table

without guidance. This composite table needs only the identifier LineInMainte-

nance(f,p,t) as its domain, and the table will immediately contain the required

three columns. To complete the table you should again change the abstract pe-

riod references by specifying that the string parameter PeriodDescription(t) is

used as the element text of the index t (as you did previously).

Creating the

mode switch

table

The last composite table on the Production Overview page will display all the

optimal mode switches for the current planning horizon. It can be specified

in the same way as the table in the previous paragraph. The identifier Produc-

tionLineLevelChange(f,p,t) is used to specify the domain of the table. The two

composite tables are shown in Figure 11.12.

Figure 11.12: The maintenance (left) and mode switch (right) tables

Chapter 11. Production and Transport Overviews 129

11.2.7 The total costs bar chart

Declaring

auxiliary

parameters

The final data object on this page will display the four cost components that

together determine the overall total cost, in an aggregated way. As of yet, there

are no identifiers that contain the values of these four components. Therefore,

you must first declare four new parameters describing the aggregated produc-

tion, transport, stock and mode-switch costs which are to be placed at the end

of the Production Overview section. Note that the aggregated transport and

stock costs are expected costs.

Parameter TotalProductionCost {

Unit : $;

Definition : sum[(f,t), UnitProductionCost(f) * Production(f,t)];

}

Parameter TotalTransportCost {

Unit : $;

Definition : sum[(f,c,t,s), ScenarioProbability(s) * UnitTransportCost(f,c)

* Transport(f,c,t,s)];

}

Parameter TotalStockCost {

Unit : $;

Definition : sum[(l,t,s), ScenarioProbability(s) * UnitStockCost(l) * Stock(l,t,s)];

}

Parameter TotalModelSwitchCost {

Unit : $;

Definition : sum[(f,p,t), FixedCostDueToLeaveChange

* ProductionLineLevelChange(f,p,t)];

}

Creating a bar

chart

Following the declaration of the above four identifiers, you can now create a

bar chart object with as its first identifier TotalProductionCost. You can then

open the Bar Chart Properties dialog box and use the Contents tab to add the

remaining three identifiers (see Figure 11.13). You can ignore all the initializa-

tion warnings.

Chapter 11. Production and Transport Overviews 130

Figure 11.13: The Contents tab of the Bar Chart Properties dialog box

Viewing the

result

The completed total costs bar chart should look like the one shown in Fig-

ure 11.14.

Figure 11.14: The completed total cost bar chart

11.2.8 Completing the page

Changing fontsOne way to display more information within objects on a page is to reduce the

size of the font used. To create a new, small, font for use with all data objects

you should execute the following actions:

◮ make sure that the Production Overview page is in Edit mode,

◮ select a table, and then

◮ select the remaining seven tables and bar charts while keeping the Shift

key pressed,

◮ press the Properties button on the toolbar,

Chapter 11. Production and Transport Overviews 131

◮ select the Font tab, and

◮ press the Add button,

◮ enter ‘7’ as the ‘Font Size’ (see Figure 11.15),

◮ press the OK button,

◮ specify ‘Data Font’ as the name of the new font, and

◮ press the OK button twice.

Figure 11.15: The specification of a new font

Alignment of

objects

Several tables, bar charts and composite tables have been placed on the Pro-

duction Overview page. To complete the page you should first align and resize

the page objects in order to create a structured and attractive composition. For

this purpose Aimms offers several alignment tools that are accessible through

the Alignment submenu of the Edit menu. The following alignment options

are supported:

� aligning objects to the left, right, top or bottom,

� centering objects horizontally or vertically,

� spreading objects horizontally or vertically, and

� making object size equal in width or height.

Chapter 11. Production and Transport Overviews 132

Aligning the

Production

Overview page

You should now use the alignment tools described in the previous paragraph

to align all the page objects as shown in Figure 11.16. Remember, if you need

to select several objects at once, you should keep the Shift key pressed.

Figure 11.16: Aligned objects on the Production Overview page

Creating the

text objects

Adding text to objects will help the end-user of your application. In this para-

graph you will create a text object, and in the next paragraph you will change

the font associated with this text. Consider first the production line table in

the upper left corner, and add a line of text by following these steps:

◮ make sure that the Production Overview page is in Edit mode,

◮ select the Text command from the Object menu,

◮ draw a rectangle above the production line table,

◮ enter ‘Production Lines’ (without quotes) in the edit field (see also Fig-

ure 11.17), and

◮ press the OK button.

You should now create six more text objects as shown in Figure 11.2 at the

beginning of this chapter.

Chapter 11. Production and Transport Overviews 133

Figure 11.17: The Text tab of the Text Properties dialog box

Changing the

text font

To change the font size of the text objects referred to in the previous para-

graph, first select all of them using the Shift key, and create a new font named

‘Title Font’ with ‘Font Size’ 18. Again, you are referred to the text objects as

shown in Figure 11.2.

Creating the

rectangles

To improve the structure of your page even further, you can enclose one or

more page objects within a rectangle. The following steps are required:

◮ make sure that the Production Overview page is in Edit mode,

◮ select the Rectangle command from the Object menu, and

◮ draw the rectangle around an object on your page.

Again, you should try to match the six rectangles as shown in Figure 11.2.

Rectangle line

size

To embolden your rectangles you can enlarge their line thickness by executing

the following actions:

◮ make sure that the Production Overview page is in Edit mode,

◮ select all rectangles using the Shift key,

◮ press the Properties button on the toolbar,

◮ complete the Rectangle tab of the Rectangle Properties dialog box as

shown in Figure 11.18, and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 134

Figure 11.18: The Rectangle tab of the Rectangle Properties dialog box

Changing the

foreground

color

To change the default foreground color of all objects on the page from black

to navy blue, you need to execute the following steps:

◮ make sure that the Production Overview page is in Edit mode,

◮ press the Ctrl-A key combination to select all objects on the page,

◮ unselect the three execution button using the Shift key,

◮ press the Properties button on the toolbar,

◮ select the Colors tab,

◮ select ‘User’ as the determinant of the ‘Foreground’ color,

◮ select the color ‘Navy Blue’ from the drop-down list, and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 135

Figure 11.19: The Colors tab of the Properties dialog box

Changing text

inside objects

By default, Aimms will display the identifier names inside data objects. If this

default name needs to be changed for your end-user, you can enter your own

preferred string. You can even enter a string parameter, so that you can serve

end-users with different language needs. As an illustration, please change

the default representation of the identifier ActualNumberOfDaysInPeriod to the

string ‘Number of working days’ by performing the following steps:

◮ select the production lines table,

◮ open its Table Properties dialog box,

◮ select the Text tab,

◮ select the identifier ActualNumberOfDaysInPeriod(t),

◮ select ’Other’ from the drop-down list in the ‘Title’ section,

◮ specify ”Number of working days” (in quotes) as the new title (see Fig-

ure 11.20), and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 136

Figure 11.20: The Text tab of the Table Properties dialog box

Coloring data

entries

In Aimms it is even possible to color the individual data entries in tables. For

instance, you might want to display the deterioration levels in red instead

of blue whenever these levels have reached their maximum. To do this, you

should first create a so-called color parameter. Such a parameter is an element

parameter in the predefined Aimms set AllColors. The contents of this set

can be inspected or changed using the User Colors command from the Tools

menu.

Creating a color

parameter . . .

As an example, please declare the following color parameter in the Production

Overview Declarations section:

ElementParameter DeteriorationColor {

IndexDomain : (f,p) | p in FactoryProductionLines(f);

Range : AllColors;

Definition : {

if (DeteriorationLevel(f,p) > MaximumDeteriorationLevel(f,p)) then

’red’

else

’navy blue’

endif

}

}

Chapter 11. Production and Transport Overviews 137

. . . and linking it

to model data

To specify the actual link between the color parameter and the data in the table

you should perform the following actions:

◮ open the Table Properties dialog box of the production lines table,

◮ select the Colors tab,

◮ select the identifier DeteriorationLevel(f,p) in the ‘Identifier’ section (at

the bottom),

◮ select ‘Model’ as the color determiner,

◮ press the Wizard button (see Figure 11.21) to select the identifier De-

teriorationColor(f,p), and

◮ press the OK button.

Figure 11.21: The Colors tab of the Table properties dialog box

The completed

page

The completed Production Overview page is repeated in Figure 11.22, so that

you can compare it with the contents of your screen.

Chapter 11. Production and Transport Overviews 138

Figure 11.22: The completed Production Overview page

11.3 The Transport Overview page

Viewing the

entire page

In this section you will construct the entire Transport Overview page as shown

in Figure 11.23. Each page object is covered by a separate subsection.

Chapter 11. Production and Transport Overviews 139

Figure 11.23: The completed Transport Overview page

11.3.1 Scenario selection object

Scenario

dependency

The values of the identifiers Transport and Stock are different for each demand

scenario. Displaying these values for all scenarios on a single page would

overload the page. Therefore, the displayed information will be limited to one

scenario, and the end-user will be able to switch between scenarios. Aimms

provides a selection object for this purpose.

Creating a

scenario

parameter

In the model section Transport Overview you should first create a new declara-

tion section Transport Overview Declarations containing the following element

parameter:

ElementParameter DisplayScenario {

Range : Scenarios;

}

Creating a

selection object

The value of this element parameter is then determined by linking it to a se-

lection object through the following steps:

◮ open the Transport Overview page in Edit mode,

◮ press the New Selection Object button on the toolbar,

◮ drag and create a small rectangle in the upper left corner,

◮ select ‘Radio Buttons’ from the ‘Single Item Selection’ options,

Chapter 11. Production and Transport Overviews 140

◮ select ‘Element Parameter’ as the ‘Type of Data’,

◮ press the Wizard button next to the ‘Element’ field (see Figure 11.24),

◮ select the element parameter DisplayedScenario,

◮ press the Finish button, and

◮ press the OK button.

Figure 11.24: The New Selection Object dialog box

Using the

selection object

The selection object that you have created is shown in Figure 11.25. Selecting

a radio button in the selection object will set the corresponding value of the

element parameter DisplayedScenario. As you will see later in this section,

other page objects will be defined over this element parameter, and their data

will adjust accordingly.

Figure 11.25: The scenario selection object

11.3.2 Period selection object

Creating a

period

parameter

As with the element parameter DisplayedScenario, you can introduce another

element parameter to support the selection of a particular period. Please

Chapter 11. Production and Transport Overviews 141

declare the following element parameter at the end of the section Transport

Overview.

ElementParameter DisplayedPeriod {

Range : Periods;

}

Creating the

drop down list

When creating the selection object that sets the element parameter Displayed-

Period, you should select the ‘Drop Down List’ option rather than the ‘Radio

Buttons’ option (see Figure 11.26).

Figure 11.26: The New Selection Object dialog box

Specifying

element text

Once you have created the drop down list, you can open its Selection Object

Properties dialog box (either by double-clicking or using the right-mouse pop-

up menu), and change the element text from abstract period references to

specific week references. You can accomplish this change by selecting the

Element Text tab, and specifying the string parameter PeriodDescription(t)

as the element text of the index Periods.

Initializing

element

parameters

To initialize the two element parameters DisplayedScenario and DisplayedPe-

riod you should temporarily change the page mode to User mode, and use the

two selection objects to select ‘optimistic’ as the displayed scenario and ’week

27, 2000’ as the displayed period.

Chapter 11. Production and Transport Overviews 142

11.3.3 Transport network object

Copying the

network object

The third object to be created on the transport page is a network object dis-

playing the optimal transports for a given scenario and a given period in the

planning interval. In Chapter 5 you created a network object displaying all

locations and this will be used to create the new network object. To copy the

existing network from the Locations page to the Transport Overview page you

should perform the following steps:

◮ open both the Locations and the Transport Overview pages in Edit mode,

◮ select the Locations page tab,

◮ select the network object on the Locations page,

◮ press the Copy button on the toolbar,

◮ close the page by clicking on the cross in the upper right corner,

◮ select the Transport Overview page tab,

◮ press the Paste button ,

◮ position the network object underneath the selection object, and

◮ press the left-mouse button.

Adding arcs to

the network

The network object that you created in Chapter 5 only showed the locations.

You can now add arcs to the network object to represent the optimal transport

between the factories and the distribution centers for a given period and a

given scenario. To add these arcs, you should take the following actions:

◮ select the network object in Edit mode,

◮ open its Network Object Properties dialog box,

◮ select the Contents tab,

◮ select the ‘----- Arcs -----’ entry from the listbox,

◮ press the Add button,

◮ select the variable Transport(f,c,t,s), and

◮ press the Next button.

Next you need to specify that the indices t and s will assume the values of the

element parameters DisplayedPeriod and DisplayedScenario respectively:

◮ select the index t from the list box,

◮ select the ‘Element Parameter’ radio button,

◮ select the element parameter DisplayedPeriod from the drop-down list,

◮ select the index s from the list box,

◮ select the ‘Element Parameter’ radio button,

◮ select the element parameter DisplayedScenario from the drop-down list,

◮ press the Finish button (see Figure 11.27), and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 143

Figure 11.27: Fixing indices of the variable Transport

Specifying arc

thickness

The network object will display arcs for all transport values that have a non-

zero value. To distinguish between small and large transport values the thick-

ness of the arc can be varied depending on the transport value. To achieve this

you should execute the following actions:

◮ select the network object in Edit mode,

◮ open its Network Object Properties dialog box,

◮ select the Arcs tab,

◮ press the Wizard button to the right of the ‘Size’ field,

◮ select the identifier Transport(f,c,t,s),

◮ press the Next button,

◮ link the index t to the element parameter DisplayedPeriod,

◮ link the index s to the element parameter DisplayedScenario,

◮ press the Finish button, and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 144

Figure 11.28: The Arcs tab of the Network Properties dialog box

Viewing the arcsAssuming that you have already solved the model for the first step, the arcs in

the network object should now have different widths as shown in Figure 11.29.

Figure 11.29: Using arc thickness to illustrate transport volumes

Chapter 11. Production and Transport Overviews 145

Node and arc

dependent

information

Aimms has facilities to display node and arc dependent information whenever

an end-user selects a node or an arc in the network object. Consider, for

instance, Figure 11.23. The data block displayed in the lower right corner

of that page deals with a particular distribution center, while the data block

displayed in the upper right corner deals with a particular factory. In the

following paragraphs you will specify how the selection of a particular arc will

update both of these data blocks, while the selection of a particular node will

update one of these data blocks.

Declaring

location

identifiers

The following two element parameters will be needed to hold the current

choice of factory and distribution center. Please add their declarations to the

Transport Overview Declarations.

ElementParameter DisplayedFactory {

Range : Factories;

}

ElementParameter DisplayedCenter {

Range : Centers;

}

Specifying arc

dependency

Arc dependency can then be specified with the aid of the above two element

parameters. Whenever an arc is selected, the locations of the corresponding

two end nodes should become the current values of DisplayedFactory and Dis-

playedCenter. As soon as their values change, the data blocks in Figure 11.23

will be updated accordingly. To implement this action, you should execute the

following steps:

◮ select the network object in Edit mode,

◮ open its Network Object Properties dialog box,

◮ select the Contents tab,

◮ select the arc Transport(f,c,DisplayedPeriod,DisplayedScenario),

◮ press the Modify button,

◮ press the Next button,

◮ select the index f from the ‘Index specification’ list box,

◮ use the drop-down list under ‘Link Index Entry’ to select the element

parameter DisplayedFactory,

◮ repeat the previous two steps to link the index c the element parameter

DisplayedCenter,

◮ press the Finish button, and

◮ press the OK button.

By simply linking an index to an element parameter as shown in Figure 11.30

you have specified the linkage between a selection and a data block. This

powerful facility is also available for other data objects in Aimms.

Chapter 11. Production and Transport Overviews 146

Figure 11.30: The Contents tab of the Network Object Properties dialog box

Specifying node

dependency

Specifying node dependency is not as straightforward as with arc dependency,

because a node is a location that can be either a factory or a distribution center.

This makes the linkage between a node and one of the data blocks less trivial to

specify. A straightforward procedure, however, can resolve this choice. Once

you have specified such a procedure, it is then straightforward to link it to the

network object.

The selection

procedure . . .

Create a procedure SelectLocationInNetwork(SelectedLocation), where the ar-

gument SelectedLocation is declared as a local element parameter with Range

attribute Locations and with the Property attribute ‘Input’ as shown in Fig-

ure 11.31. The following conditional statement will constitute the Body at-

tribute of this procedure:

if (SelectedLocation in Factories)

then DisplayedFactory := SelectedLocation ;

else DisplayedCenter := SelectedLocation ;

endif;

Chapter 11. Production and Transport Overviews 147

Figure 11.31: The contents of the Transport Overview section

. . . linked to the

network object

The above procedure will be linked to the network object as a procedure upon

selection by executing the following steps:

◮ select the network object in Edit mode,

◮ open its Network Properties dialog box,

◮ select the Procedure tab,

◮ verify that ‘Node: l’ is selected as the ‘Identifier’,

◮ select the procedure SelectLocationInNetwork as the ‘Upon Selection’ pro-

cedure,

◮ press the Next button,

◮ select the ‘Index’ radio button,

◮ select the index l from the ‘Index’ drop-down list (see Figure 11.32),

◮ press the Finish key, and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 148

Figure 11.32: The Procedure tab of Network Object Properties dialog box

Increasing the

node size

In order to see nodes in the network more clearly, you can increase their size

by changing the Nodes tab of the network object as shown in Figure 11.33. If

you want, you can also change their color using the Colors tab.

Chapter 11. Production and Transport Overviews 149

Figure 11.33: The Nodes tab of the Network Object Properties dialog box

Viewing the

result

Once you have increased the node size, the network object should look like the

one shown in Figure 11.34. If you had used separate node sets for factories

and centers, different icons could have been used to represent them in the

network object.

Chapter 11. Production and Transport Overviews 150

Figure 11.34: The network object with increased node size

11.3.4 Factory text object

Factory

description

The upper right data block in the Transport Overview page contains data per-

taining to a particular factory. The name of that factory is displayed at the top

of this block using a text object. The following string parameter is needed to

fill this object:

StringParameter FactoryDescription {

Definition : FormatString("%e", DisplayedFactory);

}

You should add this declaration at the end of the Transport Overview Declara-

tions section.

Creating a text

object

You should now create a text object that will display the contents of the string

parameter you have just declared. Try to create the text object on your own.

To display the string parameter FactoryDescription you should complete the

Text tab of the Text Properties dialog box as shown in Figure 11.35. You can

also try changing its color and font size.

Chapter 11. Production and Transport Overviews 151

Figure 11.35: The Text tab of the Text Properties dialog box

11.3.5 The factory production bar chart

Creating the

bar chart

You will begin by creating a bar chart containing the production data corre-

sponding to the currently selected factory. The name of this factory is the

value of the element parameter DisplayedFactory. You should execute the fol-

lowing steps:

◮ make sure the Transport Overview page is opened in Edit mode,

◮ press the New Bar Chart button on the toolbar,

◮ drag a rectangle underneath the factory description text object,

◮ select the variable Production(f,t) in the Identifier wizard,

◮ press the Next button,

◮ link the index f to the element parameter DisplayedFactory, and

◮ press the Finish button.

Adjusting the

element text

The period references along the x-axis are probably too long to fit. The Period-

Description parameter contains even longer strings. To create short references

you should now create the following string parameter:

Chapter 11. Production and Transport Overviews 152

StringParameter ShortPeriodDescription {

IndexDomain : t;

Definition : {

if (WeekInPeriod(t))

then FormatString("%n" , TimeslotCharacteristic(WeekInPeriod(t), ’week’))

else ""

endif

}

}

You should change the element description of the period index t to be the

string parameter ShortPeriodDescription using the Element text tab of the Bar

Chart Properties dialog box.

The page so farAt this point, the page on your screen should resemble the partially completed

Transport Overview page shown in Figure 11.36.

Figure 11.36: The current Transport Overview page

11.3.6 The factory stock bar chart

Copying the

previous bar

chart

To create a bar chart containing the stock values for the currently selected

factory, you can make use of the following copy, paste and adjust actions:

◮ select the production bar chart you have just created,

◮ press the Copy button on the toolbar,

◮ press the Paste button on the toolbar,

Chapter 11. Production and Transport Overviews 153

◮ position and drop the new bar chart underneath the production bar

chart,

◮ press the Properties button on the toolbar,

◮ select the Contents tab,

◮ select the identifier Production(DisplayedFactory,t) from the listbox,

◮ press the Modify button,

◮ select the identifier Stock(l,t,s),

◮ press the Next button,

◮ link the index l to the element parameter DisplayedFactory,

◮ link the index s to the element parameter DisplayedScenario,

◮ press the Finish button, and

◮ press the OK button.

11.3.7 Factory transport composite table

Specifying the

table . . .

The network object only displays transport values for the selected period. To

view the transport values for all periods in the planning interval you can create

a composite table by executing the following steps:

◮ press the New Composite Table button on the toolbar,

◮ draw a rectangle on the page,

◮ select the variable Transport(f,c,t,s),

◮ press the Next button,

◮ link the index f to the element parameter DisplayedFactory,

◮ link the index s to the element parameter DisplayedScenario,

◮ press the Finish button,

. . . and

improving its

appearance

You can improve the overall appearance of the table by taking the following

actions:

� specify the string parameter PeriodDescription(t) as the element text of

the index t, and

� change the font to the ‘Data Font’ that you specified in Subsection 11.2.8.

The resulting table should now look like the one shown in Figure 11.37.

Figure 11.37: The factory transport composite table

Chapter 11. Production and Transport Overviews 154

11.3.8 Factory properties scalar object

To be able to view the minimum and maximum stock levels as well as the

maximum transport capacity for the selected factory, you should first create a

scalar object with the first of these identifiers:

◮ create a scalar object,

◮ select the identifier MinimumStock(l), and

◮ link its index l to the element parameter DisplayedFactory.

Next, you should add the remaining two identifiers to the scalar object by

performing the following actions:

◮ open the Properties dialog box,

◮ select the Contents tab,

◮ press the Add button,

◮ select the identifier MaximumStock(l),

◮ press the Next button,

◮ link the index l to the element parameter DisplayedFactory,

◮ press the Finish button,

◮ press the Add button,

◮ select the identifier MaximumTransportCapacity(f),

◮ press the Next button,

◮ link the index f to the element parameter DisplayedFactory,

◮ press the Finish button, and

◮ press the Apply button.

Identifier MinimumStock(l) and MaximumStock(l) have different unit from Max-

imumTransportCapacity(f). The unit of each identifier will be shown by the

following steps:

◮ select the Units tab of the Properties dialog box,

◮ it shows the setting of the first identifier MinimumStock(DisplayedCenter),

◮ select the Show per Value radio button under Display as Figure 11.38,

◮ click the drop down list on top of the dialog,

◮ select the second identifier MaximumStock(DisplayedCenter),

◮ again, select the Show per Value radio button under Display,

◮ repeat this for MaximumTransportCapacity(DisplayedCenter) as well, and

◮ press the OK button.

Chapter 11. Production and Transport Overviews 155

Figure 11.38: The Property dialog of factory scalar object

The resulting table should look like the one shown in Figure 11.39 including

the appropriate values.

Figure 11.39: The factory scalar object containing factory limitations

11.3.9 Factory production line table

Copying the

production line

table

The factory production line table is essentially the same as the production

line table on the Production Overview page with the exception that the index

f is replaced by the element parameter DisplayedFactory. The following steps

involve copying the table from one page to the next:

◮ open both the Production Overview and the Transport Overview page in

Edit mode,

◮ select the Production Overview page tab,

◮ select the production line table,

◮ press the Copy button on the toolbar,

◮ close the page,

◮ select the Transport Overview page tab,

◮ press the Paste button ,

Chapter 11. Production and Transport Overviews 156

◮ position the object underneath the other factory information objects,

and

◮ press the left-mouse button.

Changing table

properties

The following changes are required to display only the information for the

currently selected factory:

◮ open the Properties dialog box of the new table,

◮ select the Contents tab,

◮ select the DeteriorationLevel(f,p) entry in the list,

◮ press the Modify button,

◮ press the Next button,

◮ link the index f to the element parameter DisplayedFactory and close the

wizard,

◮ select the ActualProduction(f,p,t) entry in the list,

◮ press the Modify button,

◮ press the Next button,

◮ link the index f to the element parameter DisplayedFactory and close the

wizard,

◮ select the ActualNumberOfDaysInPeriod(t) entry from the list,

◮ press the Delete button, and

◮ press the Apply button.

An error dialog will appear due to the fact that on the Colors tab there is still

reference to the index f. By pressing the Ok on the dialog window, Aimms

will get rid of the index reference (i.e. removing the DeteriorationColor(f,p)).

Therefore, you have to specify color for the DeteriorationLevel(f,p) again and

change the index reference. This can done by executing the following steps:

◮ select the Colors tab,

◮ in the ‘Identifier’ section select ‘Model’ as the color determiner,

◮ press the Wizard button again to select the identifier Deterioration-

Color(f,p)

◮ link the index f to the element parameter DisplayedFactory,

◮ press the Finish button, and

◮ press the OK button.

The resulting table is shown in Figure 11.40.

Figure 11.40: The factory production line table

Chapter 11. Production and Transport Overviews 157

Arranging the

factory objects

At this stage you should use the aligning and resizing facilities that were dis-

cussed in Subsection 11.2.8 to rearrange the composition objects as shown in

Figure11.41. Once the factory data block is neatly organized, you can copy it

in its entirety to create a similar data block for distribution centers.

Figure 11.41: The factory data block

11.3.10 The distribution center data block

To create the four page objects for a particular distribution center you should

execute the following steps:

◮ select all objects in the factory data block except for the production lines

table at the bottom using the Shift key,

◮ press the Copy button on the toolbar,

◮ press the Paste button on the toolbar,

◮ position the five objects underneath the factory information area (see

Figure 11.42), and

◮ press the left-mouse button.

Chapter 11. Production and Transport Overviews 158

Figure 11.42: The copy and paste process illustrated

Making the

required

modifications

By now you should have enough experience to make a series of modifications

to transform the factory data block into a distribution center data block. First

add the following declaration at the end of the Transport Overview Declara-

tions section.

StringParameter CenterDescription {

Definition : FormatString("%e" , DisplayedCenter);

}

The following list of actions now needs to be executed, using the detailed

knowledge gained so far:

◮ change the string parameter FactoryDescription to the string parameter

CenterDescription using the Text tab of the Text Properties dialog box

of the copy of the text object,

◮ remove MaximumTransportCapacity(DisplayedFactory) from the Contents

tab of the scalar object,

◮ find Production(DisplayedFactory,t) on the Contents tab of the produc-

tion bar chart,

◮ change this to Demand(DisplayedCenter,t,DisplayedScenario),

◮ find Transport(DisplayedFactory,c,DisplayedPeriod,DisplayedScenario)

on the Contents tab of the factory transport composite table,

Chapter 11. Production and Transport Overviews 159

◮ change this to Transport(f,DisplayedCenter,DisplayedPeriod,Displayed-

Scenario),

◮ open, in sequence, the Contents tab of the Properties dialog box associ-

ated with the table, the scalar object and the two bar charts, and

◮ replace all references to the element parameter DisplayedFactory with

one to the element parameter DisplayedCenter.

11.3.11 Completing the page

Copying the

execution

buttons

At this point you should copy the three execution buttons (Run Next, Run All

and Restart) from the Production Overview page, and paste them at the same

position on the Transport Overview page. You could introduce a new template

page for this purpose.

Beautifying the

page

Finally, you could enhance the page by adding rectangles, changing text color

and sizes as discussed in Subsection 11.2.8. Figure 11.43 will serve as a guide

while completing the Transport Overview page on your screen.

Figure 11.43: The completed Transport Overview page

Chapter 12

Absentee and Planning Overviews

This chapterIn this chapter you will construct two end-user pages including Gantt charts

and composite tables for the display of model data. A Gantt chart is an ad-

vanced page object that is especially useful for displaying scheduling and plan-

ning data defined over time.

12.1 Gantt charts

Gantt chart

description

A Gantt chart typically contains a number of interrelated tasks/processes/jobs

viewed against a time scale. Such a chart consists of one or more rows in which

horizontal bars are displayed. Each individual bar represents a single task, and

the length of the bar gives a visual impression of when and for how long that

specific task is to be performed. The rows typically refer to resources that

are consumed by the individual tasks. It could be that your schedule involves

several types of tasks (e.g. maintenance tasks and line usage tasks). In this

case, the Gantt chart can be configured using colors and/or text inside bars to

indicate what type of task is performed for each resource.

Controlling

appearance

You can use several Aimms identifiers to control the appearance of the Gantt

chart. The extensive controls cannot be explained in a single paragraph. You

can, however, exercise control over the time scales along the x-axis (see Fig-

ure 12.2), and over the position and color of each individual bar.

Three Gantt

charts

In this chapter you will construct three Gantt charts. The first Gantt chart will

be used to plan the vacation periods for each factory on a weekly basis. The

second Gantt chart will be used to schedule official holidays on a daily basis.

Using these two Gantt charts your end-user will be able to graphically schedule

holidays and vacations by merely clicking on the bars inside these charts. The

third Gantt chart is not designed for data input, but will be used to display the

overall maintenance and line usage output of the model.

Chapter 12. Absentee and Planning Overviews 161

12.2 The Absentee Overview page

Viewing the

entire page

In this section you will construct the entire page shown in Figure 12.1. The two

Gantt charts and the composite tables will be treated in separate subsections.

Figure 12.1: The completed Absentee Overview page

12.2.1 The vacation Gantt chart

Row and bar

specification

The vacation Gantt chart will contain a single row for each factory. A factory

can be viewed as a resource with workers. An amount of the resource is con-

sumed when workers are on vacation. In this Gantt chart there will be two

types of colored bars in each row. One bar is to denote that a particular week

is scheduled as a ‘Vacation’, while the other bar denotes the opposite. Part of

the Gantt chart you will develop is shown in Figure 12.2.

Chapter 12. Absentee and Planning Overviews 162

Figure 12.2: Part of the vacation planning Gantt chart

Required

declarations

The Gantt chart will display all possible weeks along the x-axis. Every bar in

this chart is specified by a start, indicating the specific week in which it starts,

plus a duration to indicate the length of the bar. The vacation Gantt chart en-

ables end-users to specify the vacation periods through mouse clicks. To build

this facility you need to declare a few identifiers plus a simple procedure to

toggle the bars between ‘Vacation’ and ‘No Vacation’. Insert a new declaration

section Vacation Gantt Chart Declarations in the Absentee Overview section of

your model, and add the following declarations.

Set VacationGanntChartBarTypes {

Index : v;

Definition : data { ’Vacation’, ’No Vacation’ };

}

ElementParameter VacationGanttChartStartingWeek {

IndexDomain : w;

Range : Weeks;

Definition : w;

}

Parameter VacationGanttChartDuration {

IndexDomain : (f,w,v);

}

Toggling the

bars

You can make Aimms execute a particular procedure whenever an end-user

selects a bar in the Gantt chart. In this example you want the procedure to

toggle between ‘Vacation’ and ‘No Vacation’. The following single statement

achieves this task:

VacationGanttChartDuration(f,w,v) := 1 - VacationGanttChartDuration(f,w,v);

Whenever the corresponding procedure is executed, the value of the duration

parameter switches between 0 and 1.

Chapter 12. Absentee and Planning Overviews 163

Declaring the

toggling

procedure

Create a new procedure called ToggleVacationGanttChart(f,w) as shown in Fig-

ure 12.3. Use the Argument wizard to declare f as an element parameter in

the set Factories and with property ‘Input’. Similarly, declare w as an element

parameter in the calendar Weeks also with property ‘Input’. Next, enter the

statement from the previous paragraph in the Body attribute.

Using ‘Duration’

three ways

The duration parameter will be used in three different ways. First, as men-

tioned previously, it will be used to denote the length of a bar. The value 1

corresponds exactly to the length of the time interval along the x-axis, namely

one week. In addition, this parameter will be used as a domain parameter of

the Gantt chart, indicating which bars are to be drawn. Finally, the duration

parameter will be used to establish the link between the Gantt chart and the

set VacationWeeks(t) used in the mathematical program.

Gantt chart

initialization

The procedure to initialize the Gantt chart is as short as the procedure to

toggle the duration parameter. Only the following statement is needed in the

Body attribute:

VacationGanttChartDuration(f,w,’No Vacation’) :=

1 - VacationGanttChartDuration(f,w,’Vacation’)

With all values at their initial default of zero, this statement will initialize all

weeks to ‘No Vacation’ weeks. Please add a procedure InitializeVacation-

GanttChart as shown in Figure 12.3, and insert the above statement into the

Body attribute.

Figure 12.3: The contents of the Absentee Overview section

Adding to Main-

Initialization

At this point you should go back to the MainInitialization procedure, and

add the statement InitializeVacationGanttChart; at the end of its Body at-

tribute. You can quickly locate this procedure in your model tree by pressing

the Ctrl-F key combination, or by pressing the Find button on the toolbar

(see Figure 12.4).

Chapter 12. Absentee and Planning Overviews 164

Figure 12.4: The Find & Replace dialog box

Executing the

procedure

To prevent any initialization error when specifying the Gantt chart, you can

now execute the InitializeVacationGanttChart procedure by selecting it in the

model tree and issuing the Run Procedure command from the right-mouse

pop-up menu.

Creating the

Gantt chart

object

You are now ready to create the vacation planning Gantt chart on a page by

following the steps below:

◮ open the Absentee Overview page in Edit mode,

◮ press the New Gantt Chart button on the toolbar,

◮ drag a rectangle that matches the desired Gantt chart size on your page,

and

◮ use the Wizard buttons to complete the Gantt Chart dialog box as

shown in Figure 12.5.

Figure 12.5: The Gantt Chart dialog box for vacation planning

Chapter 12. Absentee and Planning Overviews 165

Specifying the

x-axis

The x-axis of the Gantt chart will initially display the descriptions of the el-

ements in the calendar Weeks. Aimms can change the labels along the x-axis

by mapping the calendar element descriptions to the corresponding moments

in time. In this tutorial, the element descriptions contain references to weeks,

months and years. To change the time reference along the x-axis in the Gantt

chart, you should execute the following steps:

◮ select the Gantt chart,

◮ open its Properties dialog box,

◮ select the X-axis tab,

◮ select ‘Real-time Calendar’ as the ‘Type of X-axis’,

◮ check ‘Weeks’, ‘Months’ and ‘Years’ as in Figure 12.6,

◮ select ‘weeks’ as the ‘Unit of Measurement’,

◮ enter ”2000-06-26” (with the quotes) as the ‘Reference Time’,

◮ use the Wizard button to select the ‘String Parameter’ BeginDateOfCal-

endar as the ‘Left Bound’,

◮ use the Wizard button to select the ‘String Parameter’ EndDateOfCalen-

dar as the ‘Right Bound’, and

◮ press the Apply button.

Figure 12.6: The X-axis tab of the Gantt Chart Properties dialog box

Chapter 12. Absentee and Planning Overviews 166

Implementing

automatic

toggling

To implement automatic toggling between the ‘Vacation’ and ‘No Vacation’ bar

type, you should complete the Procedure tab as in Figure 12.7.

Figure 12.7: The Procedure tab of the Gantt Chart Properties dialog box

Changing the

font size

Depending on the size of your Gantt chart, and the size of your screen, the

default font used in the Gantt chart might be too large. You are advised to

create a new ‘Gantt Chart Font’ with size 7 instead of the default 8 in the same

manner as that shown in Section 10.3.

Testing the

Gantt chart

The Gantt chart should now look like the one in Figure 12.8. To test the chart

you should put the page in user-mode by pressing the Page User Mode button

on the page toolbar. When clicking the mouse on any particular bar, its

color should change and the status line at the bottom of the Gantt chart will

be adjusted accordingly.

Figure 12.8: The completed vacation Gantt chart

Chapter 12. Absentee and Planning Overviews 167

Linking the

Gantt chart

By clicking on a bar of the Gantt chart, the end-user modifies the value of the

parameter VacationGanttChartDuration(f,w,v). This change in input data must

be passed to the set VacationWeeks used in the mathematical program. You can

accomplish this data link quite easily by providing the following statement as

the Definition attribute of this set:

{ w | VacationGanttChartDuration(f,w,’Vacation’) }

12.2.2 The holiday Gantt chart

Similar Gantt

charts

The holiday Gantt chart is similar to the vacation Gantt chart. The main differ-

ences are that the holiday Gantt chart is specified in terms of days instead of

weeks, and that it contains a single row rather than three.

Bar specificationThe holiday Gantt chart will contain two types of bars. One bar type indicates

that a particular day is an official holiday, while the other bar type denotes

the opposite. These two bar types will also form the legend as shown in Fig-

ure 12.1.

Required

declarations

You should now insert a new declaration section named Holiday Gantt Chart

Declarations inside the section Absentee Overview. In the new declaration sec-

tion the following three identifiers need to be entered:

Set HolidayGanttChartBarTypes {

Index : h;

Definition : data { ’Official Holiday’, ’No Official Holiday’ };

}

ElementParameter HolidayGanttChartStartingDay {

IndexDomain : d;

Range : Days;

Definition : d;

}

Parameter HolidayGanttChartDuration {

IndexDomain : (d,h);

}

Toggling

procedure

Then, introduce a procedure ToggleHolidayGanttChart(d) in the same way as

the procedure ToggleVacationGanttChart(f,w) in the previous subsection. Its

argument d should be declared as an element parameter in the set Days with

Property attribute ‘Input’, and its Body attribute should contain the following

statement:

HolidayGanttChartDuration(d,h) := 1 - HolidayGanttChartDuration(d,h);

Chapter 12. Absentee and Planning Overviews 168

Gantt chart

boundaries . . .

Due to the large number of days in the overall planning period, it is impossible

to view all individual days in a single Gantt chart. Scroll bars are needed.

Aimms allows you to specify string parameters as the left and right bounds of

the Gantt chart. When the string parameters are updatable model identifiers

the values of these parameters will adjust as you scroll through time. Note that

the bound parameters of the vacation Gantt chart in the previous subsection

were string parameters with a definition and are therefore not updatable. Their

values cannot be changed and, as a result, Aimms does not show any scroll

bars.

. . . need to be

declared

Please add the following two declarations to the Holiday Gantt Chart Declara-

tions section:

StringParameter HolidayGanttChartLeftBound;

StringParameter HolidayGanttChartRightBound;

Gantt chart

initialization

Both bound parameters plus the duration parameter need to be initialized in a

new procedure InitializeHolidayGanttChart. You can place this procedure di-

rectly underneath the procedure ToggleHolidayGanttChart. The Body attribute

should be specified as follows:

HolidayGanttChartLeftBound := BeginDateOfCalendar;

HolidayGanttChartRightBound := "2000-08-01";

HolidayGanttChartDuration(d,’No Official Holiday’) :=

1 - HolidayGanttChartDuration(d,’Official Holiday’);

Note that the duration parameter initialization is identical to the one in the

vacation Gantt chart.

Adding to Main-

Initialization

At this point you should go back to the MainInitialization procedure, and add

the statement InitializeHolidayGanttChart; at the end of its Body attribute.

As shown previously, you can quickly locate this procedure in your model tree

by pressing the Ctrl-F key combination or by pressing the Find button on

the toolbar

Executing the

procedure

To prevent any initialization error while specifying the Gantt chart, you should

now execute the InitializeHolidayGanttChart procedure by selecting it in the

model tree and issuing the Run Procedure command from the right-mouse

pop-up menu.

Chapter 12. Absentee and Planning Overviews 169

Model treeFigure 12.9 shows part of the model tree that contains the declarations asso-

ciated with the holiday Gantt chart.

Figure 12.9: The contents of the Absentee Overview section

Creating the

holiday chart

You are now ready to actually create the holiday specification Gantt chart un-

derneath the vacation specification Gantt chart following the steps below:

◮ open the Absentee Overview page in Edit mode,

◮ press the New Gantt Chart button on the toolbar,

◮ drag a rectangle that matches the desired Gantt chart size on your page,

and

◮ use the Wizard buttons to complete the Gantt Chart dialog box as

shown in Figure 12.10.

Chapter 12. Absentee and Planning Overviews 170

Figure 12.10: The Gantt Chart dialog box for holiday planning

Specifying the

x-axis

The x-axis of the Gantt chart will initially display the descriptions of the ele-

ments in the calendar ‘Days’. To change the reference of time to days, months

and years along the x-axis in the Gantt chart, execute the following steps:

◮ select the Gantt chart,

◮ open its Properties dialog box,

◮ select the X-axis tab,

◮ select ‘Real-time Calendar’ as the ‘Type of X-axis’,

◮ check ‘Days (Sun-Sat)’, ‘Days (1-31)’, ‘Months’ and ‘Years’ as illustrated in

Figure 12.11,

◮ select ‘days’ as the ‘Unit of Measurement’,

◮ use the Wizard button to select the ‘String Parameter’ BeginDateOfCal-

endar as the ‘Reference Time’,

◮ use the Wizard button to select the ‘String Parameter’ HolidayGantt-

ChartLeftBound as the ‘Left Bound’,

◮ use the Wizard button to select the ‘String Parameter’ HolidayGantt-

ChartRightBound as the ‘Right Bound’, and

◮ press the Apply button.

Chapter 12. Absentee and Planning Overviews 171

Figure 12.11: The X-axis tab of the Gantt Chart Properties dialog box

Viewing the

holiday chart

Once you have followed the instructions in the previous two paragraphs, your

screen should resemble the picture shown in Figure 12.12.

Figure 12.12: The holiday and vacation specification page

Chapter 12. Absentee and Planning Overviews 172

Implementing

automatic

toggling

To implement automatic toggling between the ‘Official Holiday’ and ‘No Official

Holiday’ bar types, you should complete the Procedure tab as in Figure 12.13.

Figure 12.13: The Procedure tab of the Gantt Chart Properties dialog box

Linking the

Gantt chart

By clicking on a bar of the Gantt chart, the end-user modifies the value of the

parameter HolidayGanttChartDuration(d,h). This change in input data must be

passed to the set OfficialHolidays, declared in Chapter 6, and used inside the

mathematical program. You can accomplish this data link quite easily by using

the following statement as the Definition attribute of the set OfficialHolidays:

{ d | HolidayGanttChartDuration(d,’Official Holiday’) }

12.2.3 Completing the page

Adding four

more tables

You still need to add four more tables to your current page before it resembles

the one shown in Figure 12.1. These tables provide a clear summary of the

vacation and holiday information as specified in the two Gantt charts.

Creating a first

composite table

A composite table in Aimms can contain several identifiers provided that they

share the same index domain. The first such table that you will create how-

ever, contains only a single identifier, namely the set to display all vacation

weeks for the ‘Eindhoven’ factory. To create this table you should perform the

following actions:

Chapter 12. Absentee and Planning Overviews 173

◮ make sure the page is in Edit mode,

◮ press the New Composite Table button ,

◮ draw a rectangle on the page,

◮ select the set VacationWeeks on the first tab of the Identifier wizard box,

and

◮ select ‘Eindhoven’ as the ‘Fixed Element’ of the index f as shown in Fig-

ure 12.14

Figure 12.14: The contents of the identifier wizard box

Checking the

table

Having created your first composite table, you can immediately verify its cor-

rect response to changes in the vacation Gantt chart. Simply click somewhere

in the ‘Eindhoven’ row of the vacation Gantt chart, and the contents of the

table should adjust immediately.

Copying and

Pasting

To create two similar composite tables for the factory in ‘Haarlem’ and the fac-

tory in ‘Zwolle’, you can either follow the same steps, or create the tables using

copy-and-paste facilities. The latter option requires the following actions:

◮ copy and paste the composite table for ‘Eindhoven’,

◮ open the Properties dialog box of the copied composite table,

◮ go to the Contents tab,

◮ select the domain identifier VacationWeeks(’Eindhoven’,Weeks),

Chapter 12. Absentee and Planning Overviews 174

◮ press the Modify button,

◮ press the Next button in the Identifier wizard ,

◮ change the ‘Fixed Element’ from ‘Eindhoven’ to ‘Haarlem’ (or ‘Zwolle’),

◮ press the Finish button, and

◮ press the OK button.

Creating the

fourth table

You can create the fourth composite table in the same way as you created the

first table. This new table should contain the set Official Holidays.

Enhancing the

page

The page on your screen does not yet look like the one shown in Figure 12.15.

If you like, you can enhance your page by, for instance, aligning the data ob-

jects, adding text objects and rectangles, and changing font sizes and colors.

Figure 12.15: The completed Absentee Overview page

12.3 The Planning Overview page

Viewing the

entire page

In this section the entire page as shown in Figure 12.16 will be constructed.

The Gantt chart and the tables will be treated in separate subsections.

Chapter 12. Absentee and Planning Overviews 175

Figure 12.16: The completed Planning Overview page

12.3.1 The planning Gantt chart

Row and bar

specification

The planning overview page should display a Gantt chart that summarizes

the planning and maintenance schedule for each combination of factory and

production line. Therefore, each such combination will be a row of the Gantt

chart. In each row there will be two types of bars. One type of bar denotes that

the corresponding production line is ‘In Use’, while the other type denotes that

the line is ‘In Maintenance’. These two bar types will form the legend in the

Gantt chart.

Required

declarations

The planning Gantt chart contains one new feature compared to the Gantt

charts discussed earlier. In the description of each row there is a reference

to two elements instead of one, namely a factory and a production line. As

a result, a compound set rather than a simple set is needed to specify each

row description. Please insert a new declaration section Planning Gantt Chart

Declarations in the Planning Overview section, and enter the following declara-

tions:

Chapter 12. Absentee and Planning Overviews 176

Set PlanningGanttChartRows {

SubsetOf : (Factories, ProductionLines);

Index : r;

Definition : {

{ (f,p) | p in FactoryProductionLines(f) }

}

}

Set PlanningGanttChartBarTypes {

Index : b;

Definition : data { ’In Use’, ’In Maintenance’ };

}

ElementParameter PlanningGanttChartStartingWeek {

IndexDomain : w;

Range : Weeks;

Definition : w;

}

Parameter PlanningGanttChartDuration {

IndexDomain : (r,w,b);

}

Refreshing the

planning Gantt

chart

After each step in the rolling horizon procedure the zero-one parameters Over-

allLineUsagePlanning(f,p,w) and OverallMaintenancePlanning(f,p,w) are both

updated to contain the planning information of the first week of the plan-

ning horizon as produced by the mathematical program. It is precisely this

‘first week’ information that is needed to update the corresponding ‘duration’

parameter used in redrawing the planning Gantt chart. Once the duration pa-

rameter has been updated, Aimms will automatically refresh the Gantt chart

on the Planning Overview page.

Update

procedure

You should now insert a new procedure UpdatePlanningGanttChart(iw) in the

Planning Overview section of the model (as shown in Figure 12.17). Its argu-

ment iw should be declared as an element parameter in the set Weeks with

Property attribute ‘Input’. Its Body attribute should contain the following

statements:

PlanningGanttChartDuration(f,p,iw,’In Use’) := 1 onlyif

(OverallLineUsagePlanning(f,p,iw) and not OverallMaintenancePlanning(f,p,iw));

PlanningGanttChartDuration(f,p,iw,’In Maintenance’) := 1 onlyif

OverallMaintenancePlanning(f,p,iw);

Chapter 12. Absentee and Planning Overviews 177

Figure 12.17: The Planning Overview section of the model tree

Inserting the

update

procedure

The above UpdatePlanningGanttChart(iw) procedure needs to be run after each

step of the rolling horizon process. Due to its link with the parameters Overal-

lLineUsagePlanning(f,p,w) and OverallMaintenancePlanning(f,p,w), it is logical

to insert the procedure call as the last statement inside the procedure Regis-

terInOverallPlanning(iw,ip) as shown in Figure 12.18.

Figure 12.18: The Body attribute of the procedure RegisterInOverallPlanning

Creating the

planning chart

You are now ready to create the maintenance planning Gantt chart on the

Planning Overview page by following the steps outlined below.

◮ open the Planning Overview page in Edit mode,

◮ press the New Gantt Chart button on the toolbar,

◮ drag a rectangle that matches the desired Gantt chart size on your page,

and

◮ use the Wizard buttons to complete the Gantt Chart dialog box as

shown in Figure 12.19.

Chapter 12. Absentee and Planning Overviews 178

Figure 12.19: The Gantt Chart dialog box for the maintenance planning Gantt

chart

Specifying the

x-axis

The x-axis of the planning Gantt chart should be the same as in the vacation

specification Gantt chart discussed earlier, namely with references to weeks,

months and years. To change the current time reference along the x-axis of

the Gantt chart, you should execute the following steps:

◮ select the Gantt chart,

◮ open its Properties dialog box,

◮ select the X-axis tab,

◮ select ‘Real-time Calendar’ as the ‘Type of X-axis’,

◮ check ‘Weeks’, ‘Months’ and ‘Years’ as in Figure 12.20,

◮ enter ”2000-06-26” (with the quotes) as the ‘Reference Time’,

◮ select BeginDateOfCalendar as the ‘Left Bound’,

◮ select EndDateOfCalendar as the ‘Right Bound’, and

◮ press the Apply button.

Chapter 12. Absentee and Planning Overviews 179

Figure 12.20: The X-axis tab of the Gantt Chart Properties dialog box

12.3.2 Completing the page

Adding three

tables

Once you have finished the planning overview Gantt chart, all that is left to

do is to add the three composite tables shown in Figure 12.21. Add the three

tables displaying the identifiers

� OverallMaintenancePlanning(’Eindhoven’,p,w),

� OverallMaintenancePlanning(’Haarlem’,p,w), and

� OverallMaintenancePlanning(’Zwolle’,p,w)

in the same way that you added such tables on the Absentee Overview page.

Enhancing your

page

The page on your screen does not yet look like the one shown in Figure 12.21.

If you like, you can enhance your page by, for instance, aligning the data ob-

jects, adding text objects and rectangles, and changing font sizes and colors.

Chapter 12. Absentee and Planning Overviews 180

Figure 12.21: The completed Planning Overview page

Chapter 13

Building User-Menus

This chapterIn this chapter you will enhance the end-user interface by adding a menubar

to your application.

13.1 Menu management

MenubarsA menubar is displayed as a horizontal bar at the top of a page, and contains

pop-up menus to activate commands. Menus can be opened using point-and-

click actions.

ToolbarsA toolbar is an optional horizontal bar positioned just below the menubar, and

contains a row of bitmap buttons. These buttons provide easy access to the

most frequently used commands.

Pop-up menusA pop-up menu consists of a set of menu items and other pop-up menus. Pop-

up menus are opened from menubars and right-mouse actions.

Menu itemsMenu items represent the commands that are actually executed. They contain

text describing the command plus details of an optional shortcut to activate

the command from the keyboard.

SeparatorsSeparators are used to structure menu items within a pop-up menu. Separa-

tors are visible as horizontal separation lines in pop-up menus or as spaces

between buttons on toolbars (see Figure 13.1).

Default barsBy default, an Aimms page in User mode will contain the menubar and toolbar

as shown in Figure 13.1.

Figure 13.1: The default page menubar and toolbar

Chapter 13. Building User-Menus 182

13.2 The Softdrink Planning menubar

Designing for

end-users

In general, you design menubars and toolbars for your end-users to use in User

mode. Developer-specific commands, such as providing access to the model

tree, should not appear on end-user pages.

Using

conventions

When you structure your menubars, you should try to adhere to acceptable

conventions wherever possible. In addition, your end-users will find it easier

if menubars are consistent across pages. A typical example of a convention

is to include an Exit command as the last menu item in the first menu of the

menubar.

Menubar

structure

The menubar structure that you will use in this tutorial contains the following

seven menus:

� the File menu for backups, printing and quitting,

� the Edit menu for performing common edit manipulations,

� the Data menu for storing and retrieving data,

� the Run menu to control the rolling horizon process,

� the Overview menu to provide easy access to the other pages,

� the Window menu to keep track of open windows, and

� the Help menu to provide application-specific help.

The Aimms

Menu Builder

User menus are created and specified using the Aimms Menu Builder. This

tool displays a tree that contains all menubars and toolbars in a hierarchical

fashion. The look and feel of this menu tree is similar to the other tree-based

Aimms tools.

Opening the

Menu Builder

To create the desired menubar structure you should first open the Menu Buil-

der by pressing the Menu Builder button on the Aimms toolbar or by pressing

the Ctrl+F9 key, and open the Default Page Menubar in the menu tree. The

initial menu tree is shown in Figure 13.2.

Chapter 13. Building User-Menus 183

Figure 13.2: The Menu Builder with the initial menu tree

Default bars

can help you

The Default Page Menubar and the Default Page Toolbar in the initial menu tree

are read-only. This property is indicated by the disabled icons in the menu

tree. Nevertheless, these bars can be used as a base construct from which you

can start building your own menubars and toolbars. In this tutorial you will

be asked to copy and paste several parts of the Default Page Menubar while

creating your own Softdrink Planning Menubar.

Creating a

menubar

To create your first menubar you should take the following actions:

◮ select the User Menu Tree,

◮ press the New Menubar button on the tool bar,

◮ specify ‘Softdrink Planning Menubar’ as its name, and

◮ press the Enter key to register this name.

13.2.1 The File menu

Menu contentsFigure 13.3 shows the proposed File menu containing one submenu and five

menu items. The Backup submenu relates to the backup of data, while the

Print menu item prints the contents of the active window. The other menu

items are self-explanatory.

Chapter 13. Building User-Menus 184

Figure 13.3: The proposed File menu

Creating the

File menu

To create this File menu you need to perform the following actions:

◮ select the Softdrink Planning Menubar in the tree,

◮ double-click on the menubar icon to open this node,

◮ press the New Menu button ,

◮ specify ‘&File’ as the name of this new menu, and

◮ press the Enter key to register the name.

Ampersand

character

The ampersand in the string ‘&File’ will automatically create a shortcut trig-

gered by the Alt-F key combination. The letter following the ampersand will

be underlined in the actual menu (see Figure 13.3). The ampersand can be

placed in front of any character in the string.

Creating the

Backup menu

To create the Backup submenu of the File menu, you should follow these steps:

◮ select the File menu in the menu tree,

◮ double-click on the menu icon to open this node,

◮ press the New Menu button ,

◮ specify ‘Backup’ as the name of this new menu, and

◮ press the Enter key to register the name.

The Menu Builder on your screen should resemble Figure 13.4.

Chapter 13. Building User-Menus 185

Figure 13.4: The File menu so far

Using duplicate

menus

Duplicating existing menus and menu items offers two main advantages. First

of all, duplication provides a quick and easy way to construct menus: you

do not have to re-enter the corresponding menu actions. Secondly, duplicate

menu items are easier to maintain, since an update of one of them is automat-

ically propagated to all the others.

Duplicating

menu items

All menu items in the File menu will be duplicates of already existing menu

items. Please carry out the following groups of steps relating to various menu

items:

◮ go to the File-Backups-Data menu of the Default Page Menubar,

◮ select the two menu items ‘Create’ and ‘Restore’ simultaneously,

◮ press the Copy button on the toolbar,

◮ select the Backup menu created previously,

◮ open it and click on ‘Insert Menu item here’, and

◮ select the Paste as Duplicate command from the Edit menu.

◮ press the minus sign in front of the Backup menu, and

◮ press the Separator button on the toolbar.

◮ go to the File menu of the Default Page Menubar,

◮ select the menu items Print Setup and Print simultaneously,

◮ press the Copy button on the toolbar,

◮ select the separator you just created, and

◮ select the Paste as Duplicate command from the Edit menu.

◮ press the New Separator button on the toolbar.

◮ go to the File menu of the Default Page Menubar,

Chapter 13. Building User-Menus 186

◮ select the menu item Exit,

◮ press the Copy button on the toolbar,

◮ select the separator you just created, and

◮ select the Paste as Duplicate command from the Edit menu.

The complete File menu should be as shown in Figure 13.5.

Figure 13.5: The complete File menu

13.2.2 The Edit and Data menus

Menu contentsThe Edit and Data menus to be created should be identical to the correspond-

ing menus already in the Default Page Menubar.

Creating the

Edit and Data

menus

To create the Edit and Data menus you should follow these steps:

◮ go to the Default Page Menubar,

◮ select the Edit and Data menus simultaneously,

◮ press the Copy button on the toolbar,

◮ select the File menu from the Softdrink Planning Menubar,

◮ make sure it is closed, and

◮ select the Paste as duplicate command from the Edit menu.

The Softdrink Planning Menubar with the new Edit and Data menus is shown

in Figure 13.6.

Chapter 13. Building User-Menus 187

Figure 13.6: The new File and Data menu

13.2.3 The Run menu

Menu contentsThe Run menu will contain commands to control the rolling horizon process.

There are no standard actions, and you will have to create the menu items

plus their actions explicitly. You should first create the three menu items plus

separator, as shown in Figure 13.7 using the following steps:

◮ select the Data menu from the menu tree,

◮ close this menu if it is open,

◮ press the New Menu button ,

◮ specify ‘&Run’ as the name of this new menu,

◮ press the Enter key to register the name,

◮ open it by double clicking on its icon,

◮ press the New Item button on the toolbar,

◮ enter ‘Run Next’ (unquoted) as its text,

◮ press again the New Item button on the toolbar,

◮ enter ‘Run All’ (unquoted) as its text,

◮ press the New Separator button on the toolbar,

◮ press once again the New Item button on the toolbar, and

◮ enter ‘Restart’ (unquoted) as its text.

Chapter 13. Building User-Menus 188

Figure 13.7: The Run menu

Specifying the

first menu

action

Having created the three menu items you now have to specify the commands

that are executed when these menu items are selected. The following steps

specify the command associated with the Run Next menu item:

◮ select the Run Next menu item,

◮ press the Properties button on the toolbar,

◮ press the Actions tab,

◮ select the ‘Run’ action,

◮ press the Add button,

◮ select the ‘Procedure’ option (not the ‘Page Procedure’ option),

◮ use the Wizard button to select the procedure RollHorizonOnce,

◮ press the Finish button, and

◮ press the OK button.

The completed Action tab of the Menu Properties dialog box should be as

shown in Figure 13.8.

Chapter 13. Building User-Menus 189

Figure 13.8: The Action tab of the Menu Properties dialog box

Specifying the

remaining two

menu actions

Repeat the above steps to link the procedure RollHorizonToEnd to the Run All

menu item. Then repeat these steps once more to link the procedure MovePlan-

ningIntervalToStartOfCalendar to the Restart menu item.

13.2.4 The Overview menu

Menu contentsThe Overview menu will provide separate menu items to access each of the

five overview pages. You do not need to specify these menu items separately,

you can make use of the page structure in the Page Manager.

Navigation

menus

The New Navigator button allows you to add navigation menus to your ap-

plication. These navigation menus, with menu items and possibly submenus,

all refer to pages. The menus are structured in the same hierarchical fash-

ion as the corresponding pages in the Page Manager. As a result, navigation

menus are automatically updated in Aimms whenever the structure of pages in

the page tree is modified.

Creating the

Overview

menu

To create the complete Overview menu as a navigation menu you should exe-

cute the following steps:

◮ select the Run menu from the menu tree,

◮ close this menu if it is open,

◮ press the New Menu button ,

◮ specify ‘&Overview’ as the name of the menu,

Chapter 13. Building User-Menus 190

◮ press the Enter key to register the name,

◮ open the new Overview menu,

◮ press the New Navigator button on the toolbar,

◮ specify ‘Overview Pages’ as the name of the menu, and

◮ press the Enter key to register the name.

The menu tree on your screen should look like the one shown in Figure 13.9.

Figure 13.9: The menu tree so far

Specifying the

navigation

properties

To specify the pages that are to be displayed through the Overview menu you

should perform the following actions:

◮ select the ‘Overview Pages’ navigation item from the menu tree,

◮ press the Properties button button on the toolbar,

◮ select the Navigation tab,

◮ select ‘Other Page’ as the option within ‘Reference Page’ (see also Fig-

ure 13.10),

◮ press the Wizard button at the right of the ‘Other Page’ edit field,

◮ select the Contents page, and

◮ press the OK button twice.

Chapter 13. Building User-Menus 191

Figure 13.10: The completed Navigation tab of the Menu Properties dialog

box

Viewing the

Overview

menu

The resulting Overview menu will look like the one shown in Figure 13.11.

Figure 13.11: The Overview menu

13.2.5 The Window menu

Menu contentsThe Window menu of the Softdrink Planning Menubar will be identical to the

Window menu of the Default Page Menubar.

Duplicating the

Window menu

To duplicate the Window menu from the Default Page Menubar you should per-

form the following actions:

◮ select the ‘Window’ menu from the Default Page Menubar,

◮ press the Copy button on the toolbar,

◮ select Overview menu from the Softdrink Planning Menubar,

Chapter 13. Building User-Menus 192

◮ make sure it is closed, and

◮ select the Paste as Duplicate command from the Edit menu.

13.2.6 The Help menu

Menu contentsThe contents of the Help menu is shown in Figure 13.12. The first menu item

will open the Aimms Help document. The second menu item will display the

model summary in a PDF viewer. The third menu item will open an ‘About’

dialog box with some application-specific information.

Figure 13.12: The Help menu in the Softdrink Planning Menubar

Creating the

Help menu

By now, you should be able to create the Help menu and its three menu items

on your own. Note that the three menu items should be created from scratch

using the New Item button on the toolbar.

Specifying the

first menu item

Rather than duplicating the first menu item, you are asked to specify the menu

command directly by executing the following actions:

◮ select the ‘Aimms Help’ menu item,

◮ press the Properties button on the toolbar,

◮ press the Actions tab,

◮ select the ‘Menu Command’ option,

◮ press the Add button,

◮ select the ‘Help-Contents and Index’ entry (see Figure 13.13), and

◮ press the OK button.

Chapter 13. Building User-Menus 193

Figure 13.13: The Action tab of the Menu Properties dialog box

Creating a

procedure . . .

To specify the Model Summary menu command you need to declare an aux-

iliary Aimms procedure. To keep your model tree well-organized you should

first create a new model section called Softdrink Planning Menubar underneath

the Scenario Overview section, and then create a procedure ShowModelSummary

inside this section as shown in Figure 13.14. This procedure should have the

following Body attribute:

ShowHelpTopic("section.3.4", "Tutorial/AIMMS_tutorial_for_professionals.pdf");

Note that you might need to change the path of the tutorial file that is passed

as the second argument of the function ShowHelpTopic.

Chapter 13. Building User-Menus 194

Figure 13.14: The Softdrink Planning Menubar section of the model tree

. . . and

specifying the

second menu

item

You are now ready to link the procedure you have just created to the Model

Summary menu command using the following actions:

◮ select the ‘Model Summary’ menu item,

◮ press the Properties button on the toolbar,

◮ press the Actions tab,

◮ select the ‘Run’ action,

◮ press the Add button,

◮ select the ‘Procedure’ option,

◮ use the Wizard button to select the procedure ShowModelSummary,

◮ press the Finish button, and

◮ press the OK button.

Creating a

dialog page . . .

The last item in the Help menu opens an ‘About’ dialog box providing some

application-specific information such as a version number or copyright infor-

mation. In Aimms you can create a dialog page with the following actions:

◮ open the Page Manager,

◮ create a new page with the name ‘About Softdrink Planning’ (see Fig-

ure 13.15),

◮ open the page in Edit mode,

◮ open the Page Properties dialog box

◮ check the ‘Behaves as Dialog’ checkbox underneath ‘Style’,

◮ press the OK button, and

◮ resize it to give a reasonably sized dialog box.

Chapter 13. Building User-Menus 195

Figure 13.15: The page tree with the new About Softdrink Planning dialog page

Providing its

contents . . .

You can insert whatever contents into the About Softdrink Planning dialog

page you want. Figure 13.16 serves as an example, and contains a Close but-

ton, a logo, plus text displaying information about the application. This page

is also available for import from the ‘Pages’ subdirectory. The page import

process was described in the last section of the previous chapter.

Figure 13.16: The About Softdrink Planning dialog box

. . . and

specifying the

third menu item

Please specify the third menu command by performing the following steps:

◮ select the About menu item,

◮ press the Properties button on the toolbar,

◮ press the Actions tab,

◮ select ‘Linked Page(s)’ as the action to add,

◮ press the Add button,

◮ press the New Page Link button ,

◮ select the About Softdrink Planning page (see Figure 13.17), and

◮ press the OK button twice in a row.

Chapter 13. Building User-Menus 196

Figure 13.17: The Action tab of the menu Item Properties dialog box

13.2.7 Linking the menubar to pages

Instead of

linking to pages

. . .

You have now completed the specification of the Softdrink Planning Menubar.

Instead of linking this menubar to each individual page, it is much more con-

venient to link it to the Background Color template. This template is shared by

all pages, and menubars on pages are, by default, inherited from templates.

. . . link to a

single template

To link the menu bar to the Background Color template the following actions

are required:

◮ open the Background Bitmap template in Edit mode,

◮ open its Page Properties dialog box,

◮ select the Menu tab,

◮ select ‘Other’ as the Menu Bar option (see Figure 13.18),

◮ press the Wizard button on the right of the ‘Other’ edit field,

◮ select Softdrink Planning Menubar, and

◮ press the OK button twice.

Chapter 13. Building User-Menus 197

Figure 13.18: The Menu tab of the Page Properties dialog box

Chapter 13. Building User-Menus 198

Viewing the

result

You are now ready to use the newly created menubar. Change the page mode

by pressing the Page User Mode button on the toolbar. The Softdrink Plan-

ning Menubar created in this chapter should appear on all your pages, and is

shown in Figure 13.19.

Figure 13.19: The complete ‘Softdrink Planning Menubar’

Chapter 14

Data Management

This chapterIn this chapter, you will learn how to manage your model data using cases.

Such management is typically based on using menu commands. You will also

write a procedure to generate cases automatically during an Aimms session.

These cases are then viewed and compared in a multiple case overview.

14.1 Storing the solution in a case

What is a case?A case is a set of data values at an instant in time and contains the values of

a subset of all model identifiers. Such a subset is referred to as a case type.

The default case type is the set of all identifiers. Cases enable you to save

intermediate data values for inspection at a later moment. You can also use a

case to continue your work during a later Aimms session.

Creating a caseFollowing an iteration of the rolling horizon process, initiated by pressing the

Run Next button, you can save both your input and the solution values in a

new case by executing the following steps:

◮ select the Save Case as. . . command from the Data menu,

◮ specify ‘Solution After First Roll.data’ (without the quotes) in the ‘File

Name’ edit field, and

◮ press the Save button (see Figure 14.1).

Chapter 14. Data Management 200

Figure 14.1: Creating your first case

Loading a caseThe following commands close and re-open your Aimms project. Then, by load-

ing the case you have just saved, you will have incorporated all your current

data values. Please follow these instructions:

◮ change to the default page menubar by setting the current page to Edit

mode,

◮ select the Close Project command from the File menu,

◮ open the project again,

◮ select the Load Case submenu from the Data menu,

◮ select the as Active. . . command,

◮ select the ‘Solution After First Roll.data’ entry from the list box, and

◮ press the Open button (see Figure 14.2).

Chapter 14. Data Management 201

Figure 14.2: Loading your first case

The active caseIn Aimms, all the data that you are currently working with are referred to as

the active case. The name of the currently active case is displayed in the status

bar at the bottom of the Aimms window as shown in Figure 14.3.

Figure 14.3: Part of the Aimms status bar

14.2 Saving holidays and vacations in a case file

Creating an

identifier . . .

First you need to declare and specify a subset of AllIdentifiers with the iden-

tifiers for the vacation and holidays. Please create a model section named Data

Management directly underneath the section Softdrink Planning Menubar. In this

section create a declaration and name it Data Management Declaration. There

you will put the new set called VacationAndHolidayIdentifiers.

. . . and specify

its contents

To specify which model identifiers are to be stored in the new case file you

need to take the following actions:

◮ open the attribute of the set VacationAndHolidayIdentifiers you just cre-

ated,

◮ in the Subset of open the Wizard and in the dialog box type ‘AllIdenti-

fiers’,

Chapter 14. Data Management 202

◮ press the OK button to close the Wizard,

◮ in the Definition open the Wizard and select the HolidayGanttChartDura-

tion and VacationGanttChartDuration identifiers from the ‘Subset of: Al-

lIdentifiers’ list,

◮ press the Close and the OK to close the Wizard

◮ finally press the Check, Commit and Close button.

Specifying a

case . . .

Next, you should open the Absentee Overview page in User mode, and specify

the vacation weeks and official holidays as listed in Table 14.1 by clicking on

the two Gantt charts.

Vacation Weeks Official

Eindhoven Haarlem Zwolle Holidays

week 27, 2000 week 30, 2000 week 29, 2000 Dec 25, 2000

week 28, 2000 week 31, 2000 week 30, 2000 Dec 26, 2000

week 29, 2000 week 32, 2000 week 31, 2000 Jan 1, 2001

week 30, 2000 week 33, 2000 week 32, 2000 Apr 15, 2001

week 31, 2000 week 34, 2000 week 33, 2000 Apr 16, 2001

week 32, 2000 week 35, 2000 week 34, 2000 Apr 30, 2001

week 33, 2000 week 36, 2000 week 35, 2000 May 5, 2001

week 34, 2000 week 37, 2000 week 36, 2000 May 24, 2001

week 50, 2000 week 50, 2000 week 50, 2000 Jun 3, 2001

week 51, 2000 week 51, 2000 week 51, 2000 Jun 4, 2001

week 52, 2000 week 52, 2000 week 52, 2000

week 7, 2001 week 9, 2001 week 8, 2001

week 8, 2001 week 10, 2001 week 9, 2001

week 9, 2001 week 11, 2001 week 10, 2001

week 10, 2001 week 12, 2001 week 11, 2001

Table 14.1: Vacation weeks and official holidays

. . . and saving itTo save the holiday and vacation data you have just specified you will need to

create a new procedure in the Data Management section and name it HolidayAnd-

VacationDataSave and specify the following statement in its Body attribute:

CaseFileSave(

url : "Cases\\Vacation and Holidays.data",

contents : VacationAndHolidayIdentifiers);

Selecting a

startup case

To load the Vacation and Holidays.data case file during project startup, you

will need to make it a startup case in the Aimms Options dialog box. You

should follow the same steps used when you specified a startup page at the end

of Chapter 10. The corresponding Options dialog box is shown in Figure 14.4.

Chapter 14. Data Management 203

Figure 14.4: The Aimms Options dialog box

14.3 Automatic case generation

This sectionIn this section, you will first build your own procedure that automatically gen-

erates cases. After this, you will develop an experiment in which you will study

the effect of the length of the planning horizon on the total cost of running the

company. Finally, you will create a multiple case object to view and compare

the results of this investigation.

‘What If’

experiments

In a typical ‘What If’ experiment, you want to study the output of your model

as a result of changes in data input. You can perform such an experiment

through an interactive session. If the experiment is extensive and/or requires

a great deal of CPU time, an alternative approach is to write a procedure to

execute the entire experiment. It is then important to save the results in cases

that are generated as the experiment evolves. The following paragraphs will

show you how to construct an extensive experiment using an automatic case

saving procedure.

Declaring

required

identifiers

The total cost of running the company will be the output of an experiment

in which the length of the planning horizon is changed from 4 to 10 weeks.

Please create a Data Management Declarations declaration section underneath

the Data Management section in the model tree (see Figure 14.5) and declare the

following identifiers in this declaration section:

ElementParameter CurrentPeriod {

Chapter 14. Data Management 204

Range : Periods;

}

Parameter TotalCostInCurrentPeriod {

Unit : $;

Definition : {

sum[s, ScenarioProbability(s) * (

sum[(f,p), FixedCostDueToLeaveChange *

ProductionLineLevelChange(f, p, CurrentPeriod)] +

sum[f, UnitProductionCost(f) * Production(f, CurrentPeriod)] +

sum[l, UnitStockCost(l) * Stock(l, CurrentPeriod, s)]+

sum[(f,c), UnitTransportCost(f, c) * Transport(f, c, CurrentPeriod , s)])]

}

}

Parameter AccumulatedTotalCost {

Unit : $;

}

Set AccumulateTotalCostIdentifiers{

Subset of : AllIdentifiers

Definition : ’AccumulatedTotalCost’

}

Figure 14.5: The Data Management Declarations section

Creating a new

case type

To create a case that contains only a single identifier, namely AccumulatedTo-

talCost, you have to perform the following actions:

◮ create a set in the Data Management Declarations and name it Accumulat-

edTotalCostIdentifiers

◮ set AllIdentifiers in the Subset of attribute

◮ select the AccumulatedTotalCost identifier on the Body attributes wizard

Chapter 14. Data Management 205

◮ press the Check, Commit and Close button.

Building a

SaveCase

procedure . . .

Next you need to create a procedure called SaveCase(CaseName) as shown in

Figure 14.6. Use the Argument wizard to declare CaseName as a string parame-

ter with property ‘Input’. The Body attribute of the new procedure should be

entered as follows:

CaseFileSave(

url : FormatString("Cases\\\%s.data", CaseName),

contents : AccumulateTotalCostSet);

As noted previously, you can find explanations of predefined Aimms functions

in The Function Reference.

Figure 14.6: The SaveCase procedure in the model tree

. . . and

specifying the

experiment

Finally, you are now ready to specify the procedure RunExperiment in the Data

Management section as shown in Figure 14.7. The contents of this procedure are

extensive, but should be mostly self-explanatory. Note the use of the previ-

ously specified SaveCase procedure inside the following Body attribute:

NumberOfPeriodsInPlanningInterval := 4;

repeat "outer-loop"

MovePlanningIntervalToStartOfCalendar;

AccumulatedTotalCost := 0;

CurrentPeriod := FirstPeriodInPlanningInterval;

while (LastWeekInPlanningInterval < LastWeekInCalendar) do "inner-loop"

RollHorizonOnce;

AccumulatedTotalCost += TotalCostInCurrentPeriod;

Chapter 14. Data Management 206

PageRefreshAll;

break "inner-loop" when (LeastCostPlan.ProgramStatus <> ’Optimal’);

endwhile;

if (LeastCostPlan.ProgramStatus <> ’Optimal’) then

AccumulatedTotalCost := 0;

else

for (t | t > FirstPeriodInPlanningInterval) do

CurrentPeriod := t;

AccumulatedTotalCost += TotalCostInCurrentPeriod;

endfor;

endif;

SaveCase(formatstring("Length-\%n", NumberOfPeriodsInPlanningInterval));

break "outer-loop" when (NumberOfPeriodsInPlanningInterval = 10);

NumberOfPeriodsInPlanningInterval += 1;

endrepeat;

The completed Data Management section of the model tree should be as shown

in Figure 14.7.

Figure 14.7: The final Data Management section

Preparing to

run the

experiment

Execution of the above experiment may take a while, depending on the speed

of your computer. However, before executing the experiment, you should first

comment out the halt with part of the solve statement in the procedure Solve-

LeastCostPlan. This line is useful to give an appropriate error message when

solving the model for one particular period, but we don’t want the experiment

Chapter 14. Data Management 207

to stop running upon finding a non-optimal solution for a certain period. The

break "inner-loop" statement takes care of such situations in the RunExperi-

ment procedure. To comment out this block, please do the following:

◮ locate the SolveLeastCostPlan procedure, by using the Find function of

Aimms,

◮ select the 3 lines of the halt clause of the solve statement, as illustrated

in Figure 14.8,

◮ open the right-mouse pop-up menu and select Comment Block, and

◮ add a semicolon after the SolveLeastCostPlan statement.

Figure 14.8: Commenting out the halt clause

Running the

experiment

To initiate the actual experiment, you should perform the following actions:

◮ select the RunExperiment procedure node in the model tree, and

◮ select the Run Procedure command from the right-mouse pop-up menu.

The run could produce a number of warnings about the model being infeasible

or unbounded. This is caused by some subproblems in the inner loop of the

experiment having become insolvable. You can ignore these warnings for this

tutorial.

After the experiment is complete, several cases should have been created in

the ’Cases’ directory in your project directory.

Creating a table

. . .

You are now in a position to create a table that displays the value of the pa-

rameter AccumulatedTotalCost for every case that has been generated during

the experiment by executing the following steps:

◮ create a new page at the bottom of the page tree,

◮ enter ‘Multiple Case Overview’ as its name,

Chapter 14. Data Management 208

◮ press the Enter key to register the name,

◮ open the new page in edit mode,

◮ press the New Table button on the toolbar,

◮ draw a rectangle on the page, and

◮ select the parameter AccumulatedTotalCost.

. . . into a

multiple case

table

To transform this table into a multiple case object, you should do the following:

◮ open the Table Properties dialog box of the table object,

◮ select the Table tab if necessary,

◮ check the ‘Multiple Case Object’ checkbox (see Figure 14.9), and

◮ press the OK button.

Figure 14.9: Creating a multiple case table

Specifying the

case selection

The table should have been extended with an empty column. To specify the

multiple case selection, you should perform the following steps:

◮ press the Page User Mode button on the toolbar,

◮ select the Multiple Cases. . . command from the Data menu,

◮ open the ’Cases’ directory in your project directory and select ‘Length 4’

through ‘Length 10’ from the right list-box in the Select Multiple Case

Files dialog box,

◮ press the Add to Selection button to transfer the selected cases to the

right list-box (see Figure 14.10), and

◮ press the OK button.

Chapter 14. Data Management 209

Figure 14.10: The Select Multiple Cases dialog box

Viewing the

result

Having specified the multiple case selection, Aimms will automatically load the

required data from the cases and complete the table as in Figure 14.11.

Figure 14.11: A table displaying data for multiple cases

It is interesting to note that some entries in the table are left blank reflecting

the fact that one of the subproblems in the ”inner loop” of the experiment

became insolvable. It is also interesting to note that the overall total cost does

not decrease monotonically as the number of periods in the planning horizon

increases. The experiment would seem to indicate that the number of periods

should be greater than 10.

Chapter 14. Data Management 210

A-4 Available Aimms Documents List

� Aimms Getting Started

� Aimms User’s Guide

� Aimms Language Reference

� Aimms Function Reference

� Aimms Optimization Modeling

� Aimms Excel Add-in

� Aimms Open Solver Interface

� Aimms Tutorial For Beginners

� Aimms Tutorial For Professionals

	Contents
	Common AIMMS Shortcut Keys
	 Introduction
	Introduction
	Problem Description
	Initial problem components
	Maintenance and vacation planning
	Multiple demand scenarios
	Planning objective
	A rolling horizon approach

	Model Description
	Product flow
	Mode switches
	Objective
	Model summary

	 Model Declarations
	Auxiliary Project Files
	Directory structure
	External project files
	Importing model sections
	Loading cases

	Getting Acquainted
	Starting a new project
	The Model Explorer
	Entering a set identifier

	Reading data
	A first page

	Quantities and Time
	Model Structure
	Entering quantity declarations
	Entering time declarations
	Horizon-related declarations
	Calendar-related declarations

	Production and Maintenance Model
	Model structure
	Topology
	Demand scenarios
	Production
	Supply and demand
	Maintenance and vacations
	Costs
	Optimization model

	 Model Procedures and Functions
	Linking to the Database
	Database tables
	Entering the first database table declaration
	Entering additional database table declarations

	Database procedures
	SQL queries
	Stored procedures

	Functions and Procedures
	Reading from a database
	External DLL functions
	Specifying the rolling horizon
	Rolling horizon declarations
	Single step procedures
	Rolling Procedures
	Initialization procedures

	Running the model

	 Building an End-User Interface
	Management of Pages and Templates
	Page management
	Template management
	The Contents page

	Production and Transport Overviews
	Extending the model tree
	The Production Overview page
	Execution buttons
	The production lines table
	The factory production bar chart
	The vacation table
	The horizon-calendar tables
	The maintenance and mode switches tables
	The total costs bar chart
	Completing the page

	The Transport Overview page
	Scenario selection object
	Period selection object
	Transport network object
	Factory text object
	The factory production bar chart
	The factory stock bar chart
	Factory transport composite table
	Factory properties scalar object
	Factory production line table
	The distribution center data block
	Completing the page

	Absentee and Planning Overviews
	Gantt charts
	The Absentee Overview page
	The vacation Gantt chart
	The holiday Gantt chart
	Completing the page

	The Planning Overview page
	The planning Gantt chart
	Completing the page

	Building User-Menus
	Menu management
	The Softdrink Planning menubar
	The File menu
	The Edit and Data menus
	The Run menu
	The Overview menu
	The Window menu
	The Help menu
	Linking the menubar to pages

	Data Management
	Storing the solution in a case
	Saving holidays and vacations in a case file
	Automatic case generation
	Available AIMMS Documents List

