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This paper describes the AIMMS presolve algorithm for nonlinear problems. This presolve algorithm uses 
standard techniques like removing singleton rows, deleting fi xed variables and redundant constraints, and 
tightening variable bounds by using linear constraints.  Our algorithm also uses the expression tree of 
nonlinear constraints to tighten variable bounds.

1 Introduction

The AIMMS modeling language [3] is linked to many fi rst class solvers for solving optimization problems.  All 
linear solvers in AIMMS (CPLEX, XA, XPRESS, MOSEK) use a presolve algorithm whereby the problem input 
is examined for logical reduction opportunities.  The goal is to reduce the size of the problem.  A reduction in 
problem size in general leads to a reduction in total run time (including the time spent in the presolve
algorithm itself).

Of all nonlinear solvers in AIMMS (CONOPT, KNITRO, MINOS, SNOPT, BARON, LGO, AOA) only CONOPT 
and BARON use preprocessing techniques.  When CONOPT [5] solves a model, it tries to detect recursive 
or triangular equations that can be solved before the optimization is started.  The equations identifi ed in 
this way can be solved independent of the optimization, and they can therefore be removed from the 
optimization process.  In BARON [14] range reduction is part of the branch and reduce algorithm and used 
at every node in the search tree.

Preprocessing for linear problems has been studied extensively; see e.g., [1,4,7,12]. Preprocessing for 
quadratic problems is discussed in, e.g., [8,9].  In global optimization, preprocessing mainly focuses on bound 
tightening techniques; see [2] and its references.  Some of these techniques have been applied to the primal 
presolve algorithm for nonlinear problems in the modeling language AMPL [6].

We have developed a nonlinear presolve algorithm in AIMMS with the goal to reduce the size of the problem 
and to tighten the variable bounds, which may help the solver to solve the problem faster.  Besides BARON, 
all nonlinear solvers in AIMMS are local solvers, i.e. the solution found by the solver is a local solution and 
cannot be guaranteed to be a global solution.  The presolve algorithm may help the solver in fi nding
a better solution.

A local solver might sometimes fail to fi nd a solution and then it is often not clear whether that is caused by 
the problem being infeasible or by the solver failing to fi nd a solution for a feasible problem.  The presolve 
algorithm may reveal inconsistent constraints and/or variable bounds and hence identify a problem as 
infeasible.
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2 Presolve Techniques

We consider the following constrained nonlinear optimization problem:
min    f(x)     (1)
s.t.     g(x) ≤ d    (2)
         Ax ≤ b    (3)
 l ≤ x ≤ u    (4)

where                                                                                                           .  The constraints (2) represent the 
nonlinear constraints in the problem and the constraints (3) the linear constraints.  The objective function 
in (1) might be linear or nonlinear.  In this paper we focus on problems that contain only continuous 
variables, although our presolve algorithm can also be used for problems that have integer variables.

The nonlinear presolve algorithm will:

• Remove singleton rows by moving the bounds to the variables.

• Tighten bounds of (primal) variables using linear and nonlinear constraints.

• Delete fi xed variables.

• Remove one variable of a doubleton.

• Delete redundant constraints.

2.1 Singleton Rows
A singleton row is a linear constraint that contains only one variable.  An equality singleton row fi xes the 
variable to the right-hand-side value of the row, and unless this value confl icts with the current bounds of the 
variable in which case the problem is infeasible, we can remove both the row and variable from the problem. 
An inequality singleton row introduces a new bound on the variable which can be redundant, tighter than 
an existing bound in which case we update the bound, or infeasible.  Our presolve algorithm will remove all 
singleton rows.

If a variable is fi xed then sometimes another row becomes a singleton row, and if that row is an equality row 
we can fi x the remaining variable and remove it from the problem.  By repeating this process we can solve 
any triangular system of linear equations that is part of the problem.

2.2 Bounds Tightening Using Linear Constraints 
In the following analysis we use a linear “less than or equal to” constraint. A similar analysis applies to 
other constraint types.  The technique described here is known in the global optimization literature as 
feasibility-based bounds tightening.  

Assume we have a linear constraint i that originally has the form

                                                  (5)
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If we assume that all variables in this constraint have fi nite bounds then we can determine the following lower 
and upper limits on constraint i:

      (6)

and

      (7)

where                                                             defi ne the sets of variables with a positive and a negative 
coeffi cient in constraint i respectively.  By comparing the lower and upper limits of a constraint with the 
right-hand-side value we obtain one of the following situations:

•             Constraint (5) cannot be satisfi ed and is infeasible.

•             Constraint (5) can only be satisfi ed if all variables in the constraint are fi xed on their lower bound 

if they have a positive coeffi cient, or fi xed on their upper bound if they have a negative coeffi cient.  The 

constraint and all its variables can be removed from the problem.

•             Constraint (5) is redundant, i.e. will always be satisfi ed, and can be removed from the problem.

•                   Constraint (5) cannot be eliminated but can often be used to improve the bounds of one or 

more variables as we will see below.

If we face the last situation mentioned above, i.e. ,                   then combining (5) with (6) gives the following 
bounds on a variable k in constraint i:

        (8)

and
        (9)

If the upper bound given by (8) is smaller than the current lower bound of variable k then the problem is 
infeasible.  If it is smaller then the current upper bound of variable k, we can update the upper bound for 
variable k.  A similar procedure can be applied to the lower bound as given by (9).  

Note that bounds (8) and (9) can only be derived if all bounds lj and uj in (6) are fi nite. But also if exactly one 
of the bounds in (6) is an infi nite bound, we can still fi nd an implied bound for the corresponding variable. 
Our algorithm also uses this technique but for the details we refer to [7].

2.3 Bounds Tightening Using Nonlinear Constraints
We can rewrite a nonlinear constraint i in (2) as

                          (10)

separating the linear variables x in this constraint from the nonlinear variables y.  As before, see (6) and (7), 

we can fi nd lower and upper limits on the linear part of the constraint, and again we denote them by    and    

respectively.  For this constraint we can derive the following upper bound on the nonlinear term in (10):
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   hi (y) ≤ di
 _   (11)

Note that if there are no linear terms in constraint (10) then     = 0.

Nonlinear expressions in AIMMS are stored in an expression tree.  By going through the expression tree from 
the top node to the leafs we can sometimes derive bounds on some of the variables in the expression.  For 
example, assume we have the constraint 

    sqrt( ln(x) ) ≤ 2

with x unbounded.  Figure 1 shows that then the ln(x) sub-expression should be in the range [0,4] since sqrt(y) 
is not defi ned for y (-∞,0), which implies that x should be in the range [1,e4].

If an expression is defi ned on a certain range only, then this range can sometimes we used to reduce a bound 
of a variable. For example, the function sqrt(x-1) is only defi ned for x ≥ 1 and therefore the presolve algorithm 
will derive 1 as a lower bound for x.

If we reverse the order of going through an expression tree, hence going up starting from the leaf nodes, we 
can bound the expression. Consider for example the constraint

   y + sqrt( ln(x) ) ≤ 10

and let x have a range of [e4,e16]. Then from Figure 2 it follows that the nonlinear expression has a range of 
[2,4] which implies that y ≤ 8.

Figure 1. Bound reduction using expression sqrt( ln(x) ).
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If an expression only contains unary operators then we only have to go through the tree from top to bottom 
once to get the bounds on the variables, and back once to get bounds on the expression.  For expressions 
that contain binary operators the bounding procedure is more complicated.  For example, consider the 
constraint

  ln( ex * y2 ) ≤ 4,

and let variable x have range [0,∞) and variable y be unbounded.  To process the multiplication operator we 
fi rst have to bound the ex * y2  sub-expression and the ex * y2 sub-expressions (Step 1 in Figure 3). Since 
expression ex * y2 has range (0,e4] and expression ex has range [1,∞) we can conclude that expression y2 must 
have a range of (0,e4] which implies that y is in the range [-e2,e2] (see Step 2 in Figure 3). 

If a bound of one of the variables in the nonlinear part of a constraint changes we process that constraint 
again immediately.  We stop if no bound was changed signifi cantly.  Like this we can solve the following 
constraint in one iteration of the algorithm:

  
where x is unbounded (free).  In the fi rst step the algorithm will determine that x ≥ 0 since        is not defi ned 

for x < 0.  In the next step we get that                             and in the following step                                    Then 

we get                            and so on.  Both the upper and lower bound of  x will converge to 4 but we stop this 

iterative process if the relative change of one of the bounds is smaller than an epsilon.

Figure 2. Bounding expression sqrt( ln(x) ).

www.aimms.com  |  support@aimms.com



The presolve algorithm can handle expressions build up by the operators mentioned in Table 1.  If a 
nonlinear constraint contains an operator that is not in this table then it will be ignored by the presolve 
algorithm.  A constraint will also be ignored if it contains an external function.

2.4 Doubletons
If a problem contains a constraint of the form x = a  *  y, a ≠ 0, then the variables x and  y defi ne a doubleton. 
If the presolve algorithm detects a doubleton then it will replace the variable x by the term a * y in every 
constraint in which x appears, and remove the variable x from the problem.

For some problems good initial values are given to the variables.  In case the initial value given to x does not 
match the initial value of y according to the relationship x = a  *  y, it is unclear which initial value we should 
assign to y.  Preliminary test results showed that in such a case it is better not to remove the doubleton, and 
pass both variables to the solver with their own initial value.  This has become the default behavior of our 
presolve algorithm regarding doubletons.

Figure 3. Bound reduction using expression ln( ex * y2 ) 

Table 1. Operators used by the presolve algorithm.
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3 The Algorithm

Below we present our presolve algorithm in pseudo-code.  We denote by C the set of all constraints in the 
problem, and by V the set of variables that changed during the bound reduction step for some constraint 
c     C.

RemoveDoubletons

for ( c     C ) do
     OutOfDate(c) := true;
endfor

Iter := 1;
SomeConstraintOutOfData := true;

while ( Iter ≤ MaxIter and SomeConstraintOutOfData ) do
SomeConstraintOutOfDate := false;

     for ( c | OutOfDate(c) ) do
 BoundChanged := DoBoundReduction( c, V );
 if ( not IsLinear(c) ) then
      /* Nonlinear constraint */
      NonlinearBoundChanged := true;
      while ( NonlinearBoundChanged ) do
  NonlinearBoundChanged := DoBoundReduction( c, V );
      endwhile
 endif

 OutOfDate(c) := false;

 if ( BoundChanged ) then
      SomeConstraintOutOfData := true;

      for ( v     V ) do
  /* If the bound of some variable changed then mark all constraints
      that contain this variable as out of date */
            MarkConstraintsAsOutOfDate( v )
     endfor
 endif
     endfor
endwhile

RemoveDoubletons

DeleteFixedVariables

DeleteRedundantConstraints
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Note that the algorithm removes doubletons before and after the loop for bound reductions.

In AIMMS there are several options that can be used to infl uence which presolve techniques will be used by the 
algorithm.  For instance a user can choose to only use linear constraints for reducing bounds, or to not remove 
doubletons.

4 Possible Improvements

Our presolve algorithm currently only uses feasibility-based bounds tightening. Our presolve algorithm could 
be extended with other bound tightening procedures.  Optimality-based bounds tightening solves two linear 
programming problems for each variable to tighten bounds [2,13].  Probing is a bound-tightening procedure 
often applied to mixed integer linear programming [12].  It explores the consequences of restricting a variable 
to a subinterval with the goal of tightening its bounds.  Recently it has also been applied to mixed integer 
nonlinear programming [2,10].  A drawback of both procedures is that they are more time consuming than the 
feasibility-based bounds tightening procedure.  We consider reduced-cost bound tightening [2,11] as less 
attractive.

A variable bound tightened during the bound reduction step of a linear constraint is redundant.  These 
redundant bounds make the problem more degenerate and might result in some solvers taking more 
iterations to solve the problem.  To overcome this problem the presolve algorithm in AMPL [6] maintains two 
sets of variable bounds, namely the strongest bounds the algorithm can deduce and bounds that the algorithm 
does not know to be redundant with the constraints passed to the solver.  In our algorithm we do not attempt 
to avoid degeneracy; clearly here there is some room for improvement.  

As a consequence of the presolve algorithm, dual information is lost.  For the resolve algorithm in AMPL a 
method is described in [6] to recover the values of the dual variables for the eliminated constraints.  The AMPL 
presolve algorithm, however, only uses linear constraints to reduce bounds and using nonlinear constraints 
makes the recovering of dual information more complicated.  Our current algorithm does not recover dual 
information.

5 Infeasibility Analysis

In case the nonlinear presolve algorithm detects that a model is infeasible, it can (optionally) display an 
infeasibility analysis.  The information displayed is the constraint that appeared to be infeasible and all other 
constraints that the nonlinear presolve algorithm used to reduce the bounds of the variables in this infeasible 
constraint.  Also the reductions on the variable bounds in these constraints are shown.  For many models the 
information displayed in the infeasibility analysis will help the modeler to quickly detect an error in the model. 
But for some models the amount of information can be large and will not be useful.
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Conclusions

A nonlinear presolve algorithm is a valuable add-on for any modeling system.  It can help to reduce the size 
of a model and to tighten the variable bounds, helping the nonlinear solver in fi nding a good solution.  
Preliminary test results have shown that for many models the model was solved faster or a better solution was 
found if the nonlinear presolve algorithm was used.  On the other hand, for many models the solving time 
increased although the amount of reductions done was large.  We suspect that this is caused by the models 
becoming more degenerated.

The nonlinear presolve algorithm offers a tool to quickly detect inconsistencies in an infeasible model.  Also 
this tool makes use of the expression trees of the nonlinear constraint to reduce variable bounds.
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