
The AIMMS Outer
Approximation Algorithm
for MINLP
(using GMP functionality)

By Marcel Hunting
marcel.hunting@aimms.com

November 2011

This document describes how to use the GMP variant of the AIMMS Outer Approximation (AOA) algorithm
for solving MINLP problems. We show how the AOA algorithm can be combined with the nonlinear
presolver and the multi-start algorithm.

1 Introduction

The AIMMS Outer Approximation (AOA) algorithm can be used to solve Mixed Integer Nonlinear
Programming (MINLP) problems. The algorithm solves an alternating sequence of nonlinear (NLP) models
and mixed-integer linear (MIP) models. The fi rst version of AOA was introduced in AIMMS 3.3. After the
introduction of the GMP library in AIMMS 3.5, the AOA algorithm was rewritten using the GMP functionality;
this GMP version of AOA was released in AIMMS 3.6.

The New GMP Version of AOA
Unlike the old version of AOA, the GMP version of AOA can be combined with the nonlinear presolver and
the multi-start algorithm which make the GMP version of AOA more powerful. In this document we focus on
the GMP version of AOA.

We start with a brief description of the Outer Approximation algorithm. Next we show how the GMP version
of AOA (GMP-AOA for short) is used in AIMMS and we briefl y discuss the nonlinear presolver that is used by
GMP-AOA. We provide tips in the troubleshooting section for the case that GMP-AOA seems to experience
diffi culties solving the model. Next we explain how GMP-AOA can be combined with the multistart
algorithm. And last but not least we discuss the other solvers available in AIMMS for solving MINLP
problems.

2 The Outer Approximation Algorithm

The Outer Approximation algorithm was introduced by Duran and Grossmann in 1986 [3] (see also [7]). The
basic Outer Approximation algorithm can be described in words as follows.

1. First, the problem is solved as a NLP with all the integer variables relaxed as continuous variables
between their bounds.

2. Then a linearization is carried out around the optimal solution, and the resulting constraints are added
to the linear constraints that are already present. This new linear model is referred to as the master MIP
problem.

3. The master MIP problem is solved.

4. The integer part of the resulting optimal solution is then temporarily fi xed, and the original MINLP
problem with fi xed integer variables is solved as a nonlinear problem.

www.aimms.com | support@aimms.com

5. Again, a linearization around the optimal solution is constructed and the new linear constraints are
added to the master MIP problem. To prevent cycling, one or more constraints are added to cut off the
previously found integer solution.

6. Steps 3-5 are repeated until the master MIP problem becomes infeasible or one of the termination
criteria (e.g., iteration limit) is satisfi ed.

A fl ow diagram of the algorithm is displayed in Figure 1.

The AIMMS Outer Approximation algorithm is described in more detail in chapter 23 of the AIMMS
Language Reference [1].

The Outer Approximation algorithm only guarantees to fi nd a global optimal solution if the MINLP problem
is convex. Note that AIMMS cannot detect whether a model is convex; the user has to tell it to the algorithm
(using parameter IsConvex; see next page).

Figure 1 - The Outer Approximation algorithm

www.aimms.com | support@aimms.com

3 Using AOA

The old version of AOA is available as a solver in the solver confi guration. It uses the system module
‘OuterApproximation’ to call several procedures implemented in the module. To solve a mathematical
program myMP you have to add the following code:

myMP.CallbackAOA := ‘ OuterApprox::BasicAlgorithm’;
solve myMP;

Here ‘OuterApprox’ is the prefi x of the ‘OuterApproximation’ module.

GMP-AOA is not a solver but an algorithm that is programmed in the AIMMS language using GMP functions.
The algorithm is available in the system module ‘GMPOuterApproximation’. To use GMP-AOA you have to
create an element parameter myGMP with range ‘AllGeneratedMathematicalPrograms’, and add the
following code:

myGMP := GMP::Instance::Generate(myMP) ;
GMPOuterApprox::DoOuterApproximation(myGMP);

where ‘GMPOuterApprox’ is the prefi x of the ‘GMPOuterApproximation’ module.

The GMP-AOA module contains a section ‘OA Control Declarations’ with several parameters that can be
used to control GMP-AOA. The most important control parameters (in AIMMS 3.12) are:

• IterationMax (default 20) controls the maximum number of iterations to be considered when the
iteration termination criterion is active (which it is by default).

• CreateStatusFile (default 0) controls whether a status fi le should be created.

• UseNonlinearPresolver (default 1) controls whether the algorithm should start with a call to the
nonlinear presolver.

• IsConvex (default 0) can be used to indicate that the model is convex in which case a different
termination criterion is used to guarantee global optimality.

• TerminateAfterFirstNLPIsInteger (default 1) indicates whether the algorithm should be terminated if
the initial NLP solution is integer.

• DeviationsPermitted (default 1) indicates whether linearizations do allow for deviations by using a
penalty term. Typically, deviations are not needed for convex problems but are needed for non-convex
problems.

• NLPUseInitialValues (default 1) determines the starting point strategy for solving the NLP problems.
The algorithm will either pass the initial level values of the variables (value 1) or the level values as
returned by the previous MIP problem that was solved (value 0) as a starting point to the NLP solver.

www.aimms.com | support@aimms.com

To set the maximum number of iterations to 10 and create a status fi le you should add the following
statements before the GMPOuterApprox::DoOuterApproximation call:

GMPOuterApprox::IterationMax := 10;
GMPOuterApprox::CreateStatusFile := 1;

3.1 Nonlinear Presolver
From AIMMS 3.12 (FR3) onwards GMP-AOA by default calls the nonlinear presolver of AIMMS [4]. (In
previous AIMMS versions GMP-AOA could also be combined with the nonlinear presolver but the user had
to take care of this.) The presolver can reduce the size of a model and tighten the variable bounds which
likely help the AOA algorithm to fi nd a better solution or improve its performance. Furthermore, the
presolver can often quickly detect inconsistencies in an infeasible model. By switching on the general solvers
option ‘display infeasibility analysis’ AIMMS will print the confl icting constraints and bounds in the listing fi le
to help you identify the cause of the infeasibility. Note that the presolver cannot detect inconsistencies in
many infeasible models.

3.2 Status fi le

The status fi le shows information about the individual NLP and MIP solves, e.g., the objective value and the
solution time. Figure 2 shows an example of the status fi le output.

A ‘#’ behind the objective value of a NLP problem indicates that a new best integer solution has been found.
In the example the algorithm fi nds an integer solution with objective value 3.6 at the fi rst iteration, and a
better integer solution with objective value of 2.925 at the second iteration which turns out to be the fi nal
(best) solution.

Figure 2. Example of status fi le output (minimization problem)

www.aimms.com | support@aimms.com

The status fi le will be printed as the fi le ‘gmp_oa.put’ in the ‘log’ subdirectory. The status fi le is especially
useful in case GMP-AOA seems to experience diffi culties when solving your model; we will discuss this in the
next section. As mentioned before, AIMMS cannot detect whether a model is convex. However, if the status
fi le shows that the MIP objective value becomes higher than the NLP objective value (in case of minimization)
in the fi rst iterations then this indicates that the model is non-convex. Unfortunately, the opposite is not true.
If the MIP objective value stays below the NLP objective value then there is no guarantee that the model is
convex.

4 Troubleshooting

If GMP-AOA seems to experience diffi culties when solving your model, you might fi rst check how the NLP
and master MIP sub problems are handled by the NLP and MIP solver respectively. For that purpose you
should create the status fi le as discussed in the previous section, rerun your program, and check the status
fi le to see which sub problems are infeasible or unbounded.

If you use CPLEX or GUROBI to solve the master MIP problems and the fi rst master MIP problem is declared
as InfeasibleOrUnbounded then you should rerun your program with the CPLEX/GUROBI presolver turned
off to fi nd out whether the master MIP problem is actually infeasible or unbounded.

4.1 AOA Returns Infeasible
AOA will declare a model as infeasible if the algorithm does not fi nd an integer feasible solution. This will
occur in the following situations:

• The fi rst master MIP problem is infeasible.

• The fi rst master MIP problem is unbounded.

• All NLP sub problems with fi xed integer variables (i.e., all NLP sub problems besides the initial NLP) are
infeasible.

4.1.1 First Master MIP Problem Is Infeasible
If the fi rst master MIP problem is infeasible then this implies that the original MINLP problem is infeasible
(unless the value of the parameter DeviationsPermitted has been changed to 0 and the MINLP problem is
non-convex). In fact, the linear problem that you obtain by removing all nonlinear constraints is infeasible.
AIMMS offers several tools to detect infeasibilities in linear models, e.g., the math program inspector and the
possibility to fi nd an irreducible infeasible set (IIS).

4.1.2 First Master MIP Problem Is Unbounded
If the fi rst master MIP problem is unbounded then you could add a fi nite upper and lower bound to the
variable that makes the problem unbounded. By (temporary) removing the nonlinear constraints from the
MINLP problem you obtain a MIP problem; if you can make that MIP problem bounded then all master MIP
problems will also be bounded.

www.aimms.com | support@aimms.com

4.1.3 All NLP sub problems are infeasible
(The suggestions in this subsection also apply if many (but not all) NLP sub problems are infeasible.)

If all NLP sub problems in which the integer variables have been fi xed are infeasible then you can try
increasing the iteration limit using parameter IterationMax.

The AOA algorithm uses a local NLP solver (e.g., CONOPT, IPOPT, KNITRO, MINOS and SNOPT) to solve
the NLP sub problems and that solver can sometimes not fi nd a feasible solution for a feasible NLP problem
(i.e., it might converge to an infeasible point). You might consider changing the setting of the parameter
NLPUseInitialValues. Local NLP solvers often need a good starting point to successfully solve a model. One
step further is to solve each NLP sub problem using the multi-start algorithm; in the next section we will
explain how multi-start can be incorporated into the AOA algorithm.

Note: If the NLP solver cannot solve the initial NLP problem (i.e., the NLP solver returns ‘infeasible’) then the
AOA algorithm might sometimes still be able to fi nd a feasible solution for the MINLP problem.

If none of the above suggestions work then that is a sign that AOA is not suitable for solving your MINLP
problem. You might want to try one of the other solvers available in AIMMS for solving MINLP problems;
these solvers will be discussed in the last section.

4.2 Master MIP Problems Take a Long Time
If solving one of the master MIP problems takes very long then you might consider increasing the value of
the general solvers option ‘MIP Relative Optimality Tolerance’ (to for instance 0.1). It is often suffi cient to
fi nd a good solution of the master MIP problem.

4.3 Solution Far from Optimum
If you think that the solution returned by AOA is not close to the optimal solution, you might consider
calling AOA twice. The fi rst solve with AOA is then used to fi nd a solution which will be used as a good
starting point for the second solve. For example:

myGMP := GMP::Instance::Generate(myMP) ;

GMPOuterApprox::IterationMax := 20;
GMPOuterApprox::DoOuterApproximation(myGMP);

GMPOuterApprox::IterationMax := 10;
GMPOuterApprox::DoOuterApproximation(myGMP);

This approach is especially useful if the NLP solver returns ‘infeasible’ for the initial NLP and AOA still
manages to fi nd a solution for the MINLP problem.

www.aimms.com | support@aimms.com

5 Combining AOA with Multi-Start

Replacing the NLP solves of the AOA algorithm by multi-start solves will increase the chance of ending up
with a (good) feasible solution. Because you have to modify the GMP-AOA algorithm it is best is to copy the
GMPOuterApproximation.aim fi le from the Modules folder of the AIMMS installation to your project folder,
make the fi le writable, and include it in your project.

Then in the procedure SolveNLPSubProblem of the GMP-AOA module replace the

GMP::SolverSession::Execute(ssNLP) ;
GMP::Solution::RetrieveFromSolverSession(ssNLP, SolNumb) ;
GMP::Solution::SendToModel(GNLP, SolNumb) ;

part by:

MulStart::DoMultiStart(GNLP, 10, 5); ! You can play with the input values
GMP::Solution::RetrieveFromModel(GNLP, SolNumb) ;
GMP::Solution::SendToSolverSession(ssNLP, SolNumb) ;

Finally, add

GMPOuterApprox::NLPUseInitialValues := 0;

before you call

GMPOuterApprox::DoOuterApproximation(myGMP);

Note that you have to include the MultiStart module in your project.

6 Other MINLP Solvers

Other solvers available in AIMMS for solving MINLP problems are KNITRO and BARON. KNITRO [2] offers a
nonlinear branch-and-bound method for solving MINLP problems. The branch-and-bound cannot guarantee
to fi nd a global optimum for nonconvex problems. KNITRO also implements the hybrid Quesada-Grossman
[5] method for convex MINLP. The Quesada-Grossman method has also been implemented in the GMP-AOA
module, namely in the ‘AOA Convex Algorithm‘ section.

BARON [6] uses a branch-and-reduce algorithm to fi nd a global optimal solution for MINLP problems. The
approach relies on constraint propagation, interval analysis, and duality to draw inferences regarding ranges
of integer and continuous variables in an effort to expedite the traditional branch-and-bound algorithm for
global optimization problems. Because considerable emphasis is placed on the reduction of variable bounds,

www.aimms.com | support@aimms.com

the overall methodology is referred to as branch-and-reduce. Because fi nding a global optimum (and
proving that it is indeed a global optimum) is much more diffi cult than fi nding a local optimum, the solving
time used by BARON will often be larger than the solving time needed by local solvers as AOA and KNITRO.
A restriction of BARON is that it cannot handle constraints containing goniometric functions.

Finally, the linear solvers CPLEX and MOSEK are capable of solving mixed integer quadratically constrained
programming (MIQCP) problems and mixed integer second-order cone programming (MISOCP) problems.

References

[1] Bisschop, J., M. Roelofs, AIMMS Language Reference, Version 3.12, Paragon Decision Technology, Haarlem, 2011.

[2] Byrd, R.H., J. Nocedal, R.A. Waltz, KNITRO: An Integrated Package for Nonlinear Optimization, in: Large-Scale
Nonlinear Optimization, G. di Pillo and M. Roma (eds), Springer-Verlag, 2006, pp. 35-59.

[3] Duran, M.A., I.E. Grossmann, An outer-approximation algorithm for a class of mixed-integer nonlinear programs,
Mathematical Programming 36 (1986), pp. 307-339.

[4] Hunting, M., A nonlinear presolve algorithm in AIMMS, An AIMMS white paper, Paragon Decision Technology BV, 2011.

[5] Quesada, I., I.E. Grossmann, An LP/NLP Based Branch and Bound Algorithm for Convex MINLP Optimization
Problems, Computers and Chemical Engineering 16 (1992), pp. 937-947.

[6] Tawarmalani, M., N.V. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and
computational study, Mathematical Programming 99(3) (2004), pp. 563-591.

[7] Viswanathan, J., I.E. Grossmann, A combined penalty function and outerapproximation method for MINLP
optimization, Computers and Chemical Engineering 14 (1990), pp. 769-778.

www.aimms.com | support@aimms.com

