
AIMMS
The User’s Guide

AIMMS 4

AIMMS
The User’s Guide

AIMMS

Marcel Roelofs

Johannes Bisschop

Copyright c© 1993–2019 by AIMMS B.V. All rights reserved.

Email: info@aimms.com

WWW: www.aimms.com

ISBN 978–0–557–06360–4

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

About Aimms

HistoryAimms was introduced as a new type of mathematical modeling tool in 1993—

an integrated combination of a modeling language, a graphical user inter-

face, and numerical solvers. Aimms has proven to be one of the world’s

most advanced development environments for building optimization-based

decision support applications and advanced planning systems. Today, it is

used by leading companies in a wide range of industries in areas such as sup-

ply chain management, energy management, production planning, logistics,

forestry planning, and risk-, revenue-, and asset- management. In addition,

Aimms is used by universities worldwide for courses in Operations Research

and Optimization Modeling, as well as for research and graduation projects.

What is Aimms?Aimms is far more than just another mathematical modeling language. True,

the modeling language is state of the art for sure, but alongside this, Aimms

offers a number of advanced modeling concepts not found in other languages,

as well as a full graphical user interface both for developers and end-users.

Aimms includes world-class solvers (and solver links) for linear, mixed-integer,

and nonlinear programming such as baron, cplex, conopt, gurobi, knitro,

path, snopt and xa, and can be readily extended to incorporate other ad-

vanced commercial solvers available on the market today. In addition, con-

cepts as stochastic programming and robust optimization are available to in-

clude data uncertainty in your models.

Mastering

Aimms

Mastering Aimms is straightforward since the language concepts will be intu-

itive to Operations Research (OR) professionals, and the point-and-click graph-

ical interface is easy to use. Aimms comes with comprehensive documentation,

available electronically and in book form.

Types of Aimms

applications

Aimms provides an ideal platform for creating advanced prototypes that are

then easily transformed into operational end-user systems. Such systems can

than be used either as

� stand-alone applications, or

� optimization components.

vi About Aimms

Stand-alone

applications

Application developers and operations research experts use Aimms to build

complex and large scale optimization models and to create a graphical end-

user interface around the model. Aimms-based applications place the power of

the most advanced mathematical modeling techniques directly into the hands

of end-users, enabling them to rapidly improve the quality, service, profitabil-

ity, and responsiveness of their operations.

Optimization

components

Independent Software Vendors and OEMs use Aimms to create complex and

large scale optimization components that complement their applications and

web services developed in languages such as C++, Java, .NET, or Excel. Appli-

cations built with Aimms-based optimization components have a shorter time-

to-market, are more robust and are richer in features than would be possible

through direct programming alone.

Aimms users Companies using Aimms include

� ABN AMRO

� Areva

� Bayer

� Bluescope Steel

� BP

� CST

� ExxonMobil

� Gaz de France

� Heineken

� Innovene

� Lufthansa

� Merck

� Owens Corning

� Perdigão

� Petrobras

� Philips

� PriceWaterhouseCoopers

� Reliance

� Repsol

� Shell

� Statoil

� Unilever

Universities using Aimms include Budapest University of Technology, Carnegie

Mellon University, George Mason University, Georgia Institute of Technology,

Japan Advanced Institute of Science and Technology, London School of Eco-

nomics, Nanyang Technological University, Rutgers University, Technical Uni-

versity of Eindhoven, Technische Universität Berlin, UIC Bioengineering, Uni-

versidade Federal do Rio de Janeiro, University of Groningen, University of

Pittsburgh, University of Warsaw, and University of the West of England.

A more detailed list of Aimms users and reference cases can be found on our

website www.aimms.com.

Contents

About Aimms v

Contents vii

Preface xii

What’s new in Aimms 4 . xii

What is in the Aimms documentation xiii

What is in the User’s Guide . xv

The authors . xvii

Part I Introduction to Aimms 3

1 Aimms and Analytic Decision Support 3

1.1 Analytic decision support . 3

1.2 Aimms as an ADS development environment 5

1.3 What is Aimms used for? . 8

1.4 Comparison with other ADS tools 9

2 Getting Started 13

2.1 Getting started with Aimms . 13

2.2 Creating a new project . 15

2.3 Modeling tools . 17

2.4 Dockable windows . 19

2.5 Additional files related to an Aimms project 21

2.5.1 Project user files . 23

2.6 Aimms licensing . 25

2.6.1 Personal and machine nodelocks 26

2.6.2 Installing an Aimms license 28

2.6.3 Managing Aimms licenses 30

2.6.4 Location of license files 31

3 Collaborative Project Development 34

3.1 Library projects and the library manager 35

3.2 Guidelines for working with library projects 37

viii Contents

Part II Creating and Managing a Model 41

4 The Model Explorer 41

4.1 What is the Model Explorer? . 41

4.2 Creating and managing models 45

4.2.1 Working with modules and libraries 48

4.3 Working with trees . 50

5 Identifier Declarations 54

5.1 Adding identifier declarations 54

5.2 Identifier attributes . 57

5.2.1 Navigation features . 60

5.3 Committing attribute changes 61

5.4 Viewing and modifying identifier data 63

6 Procedures and Functions 66

6.1 Creating procedures and functions 66

6.2 Declaration of arguments and local identifiers 67

6.3 Specifying the body . 69

6.4 Syntax checking, compilation and execution 72

7 Viewing Identifier Selections 73

7.1 Creating identifier selections . 73

7.2 Viewing identifier selections . 77

8 Debugging and Profiling an Aimms Model 80

8.1 The Aimms debugger . 80

8.2 The Aimms profiler . 87

8.3 Observing identifier cardinalities 93

9 The Math Program Inspector 95

9.1 Introduction and motivation . 95

9.2 Functional overview . 96

9.2.1 Tree view basics . 96

9.2.2 Advanced tree manipulation 98

9.2.3 Inspecting matrix information 99

9.2.4 Inspecting solution information 102

9.2.5 Performing analysis to find causes of problems 105

9.3 A worked example . 110

9.3.1 Model formulation . 110

9.3.2 Investigating infeasibility 112

9.3.3 Investigating unboundedness 113

9.3.4 Analyzing an unrealistic solution 115

Bibliography . 119

Contents ix

Part III Creating an End-User Interface 123

10 Pages and Page Objects 123

10.1 Introduction . 123

10.2 Creating pages . 124

10.3 Adding page objects . 125

10.3.1 Displaying expressions in page objects 128

10.3.2 Creating advanced page objects 131

10.4 Selecting identifier slices and linking objects 132

11 Page and Page Object Properties 136

11.1 Selecting and rearranging page objects 136

11.2 Modifying page and object properties 138

11.3 Using pages as dialog boxes . 145

11.4 Defining user colors . 147

12 Page Management Tools 150

12.1 The Page Manager . 150

12.1.1 Pages in library projects 152

12.1.2 Navigational interface components 153

12.2 The Template Manager . 157

12.2.1 Templates in library projects 159

12.3 The Menu Builder . 160

12.3.1 Menus in library projects 163

13 Page Resizability 165

13.1 Page resizability . 165

13.2 Resizable templates . 169

13.3 Adapting to changing screen resolutions 170

14 Creating Printed Reports 172

14.1 Print templates and pages . 172

14.2 Printing large objects over multiple pages 176

15 Deploying End-User Applications 180

15.1 Running end-user applications 181

15.2 Preparing an Aimms application for distribution 182

Part IV Data Management 187

16 Case Management 187

16.1 Working with cases . 187

16.2 Managing multiple case selections 189

x Contents

16.2.1 Viewing multiple case data 190

16.2.2 Case referencing from within the language 191

16.3 Working with selections of identifiers 192

Part V Miscellaneous 197

17 User Interface Language Components 197

17.1 Updatability of identifiers . 197

17.2 Setting colors within the model 198

17.2.1 Creating non-persistent user colors 199

17.3 Interfacing with the user interface 199

17.3.1 Page functions . 200

17.3.2 Print functions . 201

17.3.3 File functions . 201

17.3.4 Dialog box functions . 202

17.3.5 Case management functions 203

17.3.6 Execution control functions 205

17.3.7 Debugging information functions 205

17.3.8 Obtaining license information 206

18 Calling Aimms 207

18.1 Aimms command line options . 207

18.2 Calling Aimms from external applications 212

18.3 The Aimms command line tool 213

19 Project Security 216

19.1 Encryption . 216

19.1.1 Public key encryption . 217

19.1.2 Encrypting your application: some use cases 219

19.2 User authentication and authorization 219

20 Project Settings and Options 221

20.1 Aimms execution options . 221

20.2 End-user project setup . 224

20.3 Solver configuration . 225

20.4 Print configuration . 227

21 Localization Support 230

21.1 Localization of end-user interfaces 230

Appendices 241

Contents xi

Index 241

Preface

Three Aimms

books

The printed Aimms documentation consists of three books

� Aimms—The User’s Guide,

� Aimms—The Language Reference, and

� Aimms—Optimization Modeling.

The first two books emphasize different aspects in the use of the Aimms sys-

tem, while the third book is a general introduction to optimization modeling.

All books can be used independently.

Available online In addition to the printed versions, these books are also available on-line in the

Adobe Portable Document Format (PDF). Although new printed versions of the

documentation will become available with every new functional Aimms release,

small additions to the system and small changes in its functionality in between

functional releases are always directly reflected in the online documentation,

but not necessarily in the printed material. Therefore, the online versions of

the Aimms books that come with a particular version of the system should

be considered as the authoritative documentation describing the functionality

regarding that particular Aimms version.

Release notes Which changes and bug fixes are included in particular Aimms releases are

described in the associated release notes.

What’s new in Aimms 4

From Aimms 4.1 onwards, we will only publish this ”What’s New” section on

our website. It can be found at the following location:

https://aimms.com/english/developers/downloads/product-information/new-features/

Preface xiii

What is in the Aimms documentation

The User’s

Guide

The Aimms User’s Guide provides a global overview of how to use the Aimms

system itself. It is aimed at application builders, and explores Aimms’ capabil-

ities to help you create a model-based application in an easy and maintainable

manner. The guide describes the various graphical tools that the Aimms sys-

tem offers for this task. It is divided into five parts.

� Part I—Introduction to Aimms—what is Aimms and how to use it.

� Part II—Creating and Managing a Model—how to create a new model in

Aimms or manage an existing model.

� Part III—Creating an End-User Interface—how to create an intuitive and

interactive end-user interface around a working model formulation.

� Part IV—Data Management—how to work with cases and datasets.

� Part V—Miscellaneous—various other aspects of Aimms which may be

relevant when creating a model-based end-user application.

The Language

Reference

The Aimms Language Reference provides a complete description of the Aimms

modeling language, its underlying data structures and advanced language con-

structs. It is aimed at model builders only, and provides the ultimate reference

to the model constructs that you can use to get the most out of your model

formulations. The guide is divided into seven parts.

� Part I—Preliminaries—provides an introduction to, and overview of, the

basic language concepts.

� Part II—Nonprocedural Language Components—describes Aimms’ basic

data types, expressions, and evaluation structures.

� Part III—Procedural Language Components—describes Aimms’ capabili-

ties to implement customized algorithms using various execution and

flow control statements, as well as internal and external procedures and

functions.

� Part IV—Sparse Execution—describes the fine details of the sparse execu-

tion engine underlying the Aimms system.

� Part V—Optimization Modeling Components—describes the concepts of

variables, constraints and mathematical programs required to specify an

optimization model.

� Part VI—Data Communication Components—how to import and export

data from various data sources, and create customized reports.

� Part VII—Advanced Language Components—describes various advanced

language features, such as the use of units, modeling of time and com-

municating with the end-user.

xiv Preface

Optimization

Modeling

The book on optimization modeling provides not only an introduction to mod-

eling but also a suite of worked examples. It is aimed at users who are new

to modeling and those who have limited modeling experience. Both basic con-

cepts and more advanced modeling techniques are discussed. The book is

divided into five parts:

� Part I—Introduction to Optimization Modeling—covers what models are,

where they come from, and how they are used.

� Part II—General Optimization Modeling Tricks—includes mathematical

concepts and general modeling techniques.

� Part III—Basic Optimization Modeling Applications—builds on an under-

standing of general modeling principles and provides introductory appli-

cation-specific examples of models and the modeling process.

� Part IV—Intermediate Optimization Modeling Applications—is similar to

part III, but with examples that require more effort and analysis to con-

struct the corresponding models.

� Part V—Advanced Optimization Modeling Applications—provides appli-

cations where mathematical concepts are required for the formulation

and solution of the underlying models.

Documentation

of deployment

features

In addition to the three major Aimms books, there are several separate docu-

ments describing various deployment features of the Aimms software. They

are:

� Aimms—The Function Reference,

� Aimms—The COM Object User’s Guide and Reference,

� Aimms—The Excel Add-In User’s Guide, and

� Aimms—The Open Solver Interface User’s Guide and Reference.

These documents are only available in PDF format.

Help files The Aimms documentation is complemented with a number of help files that

discuss the finer details of particular aspects of the Aimms system. Help files

are available to describe:

� the execution and solver options which you can set to globally influence

the behavior of the Aimms’ execution engine,

� the finer details of working with the graphical modeling tools, and

� a complete description of the properties of end-user screens and the

graphical data objects which you can use to influence the behavior and

appearance of an end-user interface built around your model.

The Aimms help files are both available as Windows help files, as well as in PDF

format.

Preface xv

Aimms tutorialsTwo tutorials on Aimms in PDF format provide you with some initial work-

ing knowledge of the system and its language. One tutorial is intended for

beginning users, while the other is aimed at professional users of Aimms.

Searching the

documentation

As the entire Aimms documentation is available in PDF format, you can use the

search functionality of Acrobat Reader to search through all Aimms documen-

tation for the information you are looking for.

Aimms model

library

Aimms comes with an extensive model library, which contains a variety of ex-

amples to illustrate simple and advanced applications containing particular

aspects of both the language and the graphical user interface. You can find

the Aimms model library in the Examples directory in the Aimms installation

directory. The Examples directory also contains an Aimms project providing an

index to all examples, which you can use to search for examples that illustrate

specific aspects of Aimms.

What is in the User’s Guide

Introduction to

Aimms

Part I of the User’s Guide provides a basic introduction to Aimms, its position

among other technologies, and its use.

� Chapter 1—Aimms and Analytic Decision Support—discusses the concept

of Analytic Decision Support (ADS), Aimms as an ADS development envi-

ronment, as well as a comparison to other ADS tools.

� Chapter 2—Getting Started—explains how to create a new Aimms appli-

cation, and provides an overview of both the modeling tools available in

Aimms and the files associated with an Aimms project.

� Chapter 3—Organizing a Project into Libraries—describes the facilities

available in Aimms to allow multiple developers to collaborate on a single

project.

Creating and

managing a

model

Part II discusses all aspects of the Aimms system that are relevant for enter-

ing and maintaining the model source associated with a particular modeling

application.

� Chapter 4—The Model Explorer—introduces the main graphical tool avail-

able in Aimms for accessing the model source. It discusses various as-

pects that are specific to the model tree, as well as the basic concepts

common to all trees used in the Aimms system.

� Chapter 5—Identifier Declarations—explains how you can add identifier

declarations to the model tree, and how you can modify the various at-

tributes of an identifier in its attribute window.

� Chapter 6—Procedures and Functions—explains how you can create pro-

cedures and functions within your model, how to add arguments to

such procedures and functions, and describes the Aimms concepts that

xvi Preface

help you to sub-divide procedure and function bodies into smaller more

meaningful entities.

� Chapter 7—Viewing Identifier Selections—discusses the flexible identifier

selector tool in Aimms, which allows you to create and simultaneously

view selections of identifiers in your model.

� Chapter 8—Debugging and Profiling an Aimms Model—discusses Aimms’

debugger and profiler, which can help you to track the modeling errors

in an Aimms model, or to find and speed up time-consuming statements

in your model.

� Chapter 9—The Math Program Inspector—introduces a graphical debug-

ging tool for finding infeasibilities or unexpected results of a math pro-

gram contained in your model.

Creating an

end-user

interface

Part III introduces the fundamental concepts and design tools available in

Aimms to create a graphical end-user interface for your modeling application,

as well as Aimms’ reporting facilities.

� Chapter 10—Pages and Page Objects—introduces the Aimms concept of

end-user pages. In addition, it explains how to add graphical (data) ob-

jects to such pages, and how to link these data objects to identifiers in

your model.

� Chapter 11—Page and Page Object Properties—discusses the options for

pages and page objects that you can modify to alter the behavior and

appearance of your end-user interface.

� Chapter 12—Page Management Tools—describes the Aimms tools that

can help you create and manage a large collection of end-user pages in

an easily maintainable fashion.

� Chapter 13—Page Resizability—explains the basic concepts available in

Aimms to define the behavior of pages when resizing.

� Chapter 14—Creating Printed Reports—discusses the concept of print

pages which you can use to create a printed report of your model results.

� Chapter 15—Deploying End-User Applications—discusses the several op-

tions that Aimms has to offer to deploy your Aimms applications.

Data

management

Part IV focuses on the facilities within Aimms for performing case manage-

ment tasks. Chapter 16—Case Management—describes the case management

facilities and tools in Aimms. It also provides you with an overview of Aimms’

capabilities to work with multiple case data, both in the model and the end-

user interface.

Miscellaneous Part V discusses the various miscellaneous concepts that may be of interest to

both Aimms developers and/or end-users.

� Chapter 17—User Interface Language Components—provides a complete

overview of the function library available in Aimms for communication

Preface xvii

with the end-user through the various tools available in the Aimms end-

user interface.

� Chapter 18—Calling Aimms—describes Aimms’ command line options,

the restrictions with respect to end-user licenses, and the possibilities of

calling an Aimms model from within your own application.

� Chapter 19—Project Security—discusses various security aspects such as

encrypting your project, and adding a user database to a model to pro-

vide user authentication.

� Chapter 20—Project Settings and Options—describes the tools available

in Aimms to alter the execution behavior of your model, the appearance

of its interface, and various other aspects concerning Aimms itself and

its solvers.

� Chapter 21—Localization Support—discusses Aimms’ built-in support for

localizing the end-user interface of your project (i.e. making it capable of

dealing with multiple languages).

The authors

Marcel RoelofsMarcel Roelofs received his Ph.D. in Applied Mathematics from the Technical

University of Twente in 1993 on the application of Computer Algebra in Math-

ematical Physics. From 1993 to 1995 he worked as a post-doc at the Centre for

Mathematics and Computer Science (CWI) in Amsterdam in the area of Com-

puter Algebra, and had a part-time position at the Research Institute for the

Application of Computer Algebra. In 1995 he accepted his current position as

CTO of AIMMS B.V. His main responsibilities are the design and documentation

of the Aimms language and user interface.

Johannes

Bisschop

Johannes Bisschop received his Ph.D. in Mathematical Sciences from the Johns

Hopkins University in Baltimore USA in 1974. From 1975 to 1980 he worked

as a Researcher in the Development Research Center of the World Bank in

Washington DC, USA. In 1980 he returned to The Netherlands and accepted a

position as a Research Mathematician at Shell Research in Amsterdam. After

some years he also accepted a second part-time position as a full professor in

the Applied Mathematics Department at the Technical University of Twente.

From 1989 to 2003 he combined his part-time position at the University with

managing Paragon Decision Technology B.V. and the continuing development

of Aimms. From 2003 to 2005 he held the position of president of Paragon

Decision Technology B.V. His main interests are in the areas of computational

optimization and modeling.

xviii Preface

Other contribu-

tors to Aimms

In addition to the main authors, various current and former employees of

Aimms B.V. (formerly known as Paragon Decision Technology B.V.) and exter-

nal consultants have made a contribution to the Aimms documentation. They

are (in alphabetical order):

� Pim Beers

� John Boers

� Peter Bonsma

� Mischa Bronstring

� Ximena Cerda Salzmann

� Michelle Chamalaun

� Horia Constantin

� Guido Diepen

� Robert Entriken

� Floor Goddijn

� Thorsten Gragert

� Koos Heerink

� Nico van den Hijligenberg

� Marcel Hunting

� Roel Janssen

� Gertjan Kloosterman

� Joris Koster

� Chris Kuip

� Gertjan de Lange

� Ovidiu Listes

� Peter Nieuwesteeg

� Franco Peschiera

� Bianca Rosegaar

� Diego Serrano

� Giles Stacey

� Richard Stegeman

� Selvy Suwanto

� Jacques de Swart

� Martine Uyterlinde

Part I

Introduction to Aimms

Chapter 1

Aimms and Analytic Decision Support

What is Aimms?The acronym Aimms stands for

Advanced Integrated Multidimensional Modeling Software.

Aimms offers you an easy-to-use and all-round development environment for

creating fully functional Analytic Decision Support (ADS) applications ready

for use by end-users. The software is constructed to run in different modes to

support two primary user groups: modelers (application developers) and end-

users (decision makers). Aimms provides the ability to place all of the power of

the most advanced mathematical modeling techniques directly into the hands

of the people who need this to make decisions.

This chapterThis chapter is aimed at first-time users of the Aimms modeling system. In a

nutshell, it provides

� a description of the characteristics of Analytic Decision Support (ADS)

applications,

� an overview of Aimms as an ADS development environment, and

� some examples of its use in real-life applications.

1.1 Analytic decision support

Analytic

decision support

Analytic decision support applications are usually interactive decision sup-

port systems with a strong internal emphasis on advanced computational tech-

niques and that pertain to extensive problem analysis on the outside. They

typically

� represent a complex and large-scale reality,

� organize and use large amounts of interrelated multidimensional data

based on corporate and market information,

� use advanced arithmetic manipulations and/or optimization tools to find

a solution,

� apply analytic techniques or perform “what-if” experiments to assess the

consequences of making a decision under different scenarios,

� employ advanced visualization techniques to provide an insight into the

solution and/or the problem complexity, and

4 Chapter 1. Aimms and Analytic Decision Support

� are subject to permanent change due to a changing reality or improved

insights.

Increasing

market need

With the world becoming daily more complex, decision makers around the

world are in search of advanced decision support tools. Such tools can help

them get insights into their decision problems, monitor the consequences

of previous decisions, and help them take new decisions on a regular ba-

sis. There is substantial evidence that analytic decision support applications

are becoming increasingly popular throughout industry and government, as

the improved decisions generated by ADS applications imply increased profit

and/or efficiency.

Supporting

developments

A number of major developments in the last decade have increased the suit-

ability of analytic decision support to tackle such problems:

� corporate databases are becoming increasingly mature and allow a quick

follow-up to market changes,

� the increasing speed of PCs allows interactive use, even with complex

applications,

� the visually attractive and convenient presentation using the standard-

ized and user-friendly Windows environment makes complex processes

more accessible to decision makers, and

� the availability of standardized and improved optimization tools allows

ADS application developers to specify the problem without having to

specify a complicated algorithm to solve it.

Applicable

problem areas

Analytic decision support lends itself to a wide variety of decision support

problems. The following list provides a non-exhaustive overview of the areas

in which analytic decision support is applicable:

� strategic and tactical planning of resources in industry and government,

� operational scheduling of machines, vehicles, product flow and person-

nel,

� strategic evaluation studies in the areas of energy, environment, forestry

and social policies,

� financial decision-making to support asset-liability management,

� economic decision-making to control market clearing and economic de-

velopment, and

� technical decision-making to support the design and calibration of sys-

tems and objects.

1.2. Aimms as an ADS development environment 5

1.2 Aimms as an ADS development environment

Aimms as ADS

development

environment

As an ADS development environment, Aimms possesses a unique combina-

tion of advanced features and design tools which allow you to build complex

ADS applications which are easily maintainable—in a fraction of the time re-

quired with conventional programming languages. Figure 1.1 provides a top-

level overview of the components available in Aimms.

Aimms

Aimms PRO Platform

Databases
ODBC/Xml/Excel

External Programs
Fortran/C/C++/Java/.NET

Aimms Api/SDK

GUI Builder
Point & Click

Modeling Layer
Interactive Model Editor

Solvers
Cplex, Gurobi, Xa,

Conopt

Figure 1.1: Graphical overview of Aimms components

Multidimen-

sional modeling

language

The multidimensional modeling language in Aimms offers a powerful index

notation which enables you to capture the complexity of real-world problems

in an intuitive manner. In addition, the language allows you to express very

complex relationships in a compact manner without the need to worry about

memory management or sparse data storage considerations. The combined

declarations and procedures using these multidimensional structures can be

organized, edited and displayed using an advanced interactive model editor.

Optimization

modeling

One of the outstanding features of Aimms is the capability of specifying and

solving linear and nonlinear constraint-based optimization models. Using the

same compact and rich notation available for procedural statements, symbolic

constraints can be formulated in a simple and concise manner. With only a

single instruction, an optimization model can be transferred to, and solved by,

world- class solvers such as Cplex, Gurobi and Conopt.

6 Chapter 1. Aimms and Analytic Decision Support

Advanced

language

features

Selected advanced Aimms language features include:

� a rich set of mathematical, statistical and financial functions,

� a powerful combination of (automatically updated) multidimensional

definitions and procedural execution,

� the ability to easily express time-based models through the use of calen-

dars and horizons, including support for rolling horizons with automatic

aggregation and disaggregation, and

� the ability to associate units of measurement with model identifiers as-

suring unit consistency within expressions.

Integrated GUI

builder

In addition to its versatile modeling language Aimms offers an integrated tool

for constructing a custom graphical user interface (GUI) for your decision sup-

port application. End-user screens can be created in an easy point-and-click

manner, and can include such common graphical objects as tables, charts and

curves, all closely linked to multidimensional identifiers in your model. In-

cluded, amongst other more advanced objects, are a Gantt chart for visualizing

time-phased planning/scheduling applications, and a network flow object for

visualizing two-dimensional maps and flows.

Advanced GUI

tools

To support you in creating complete end-user interfaces in a quick and main-

tainable fashion, Aimms offers the following advanced tools:

� the template manager enables you to create a uniform look and feel by

allowing common objects (such as headers, footers, and navigation but-

tons) to be placed on hierarchically organized templates which can be

inherited by multiple pages,

� the page manager allows you to specify a natural page order, with which

you can guide an end-user through your application by adding special

page manager-driven navigation controls to templates or pages,

� the menu builder enables you to create customized end-user menus and

toolbars to be added to your templates and pages,

� the identifier selection wizard assists you not only in selecting complete

model identifiers, or slices thereof, for graphical display, but also in

quickly linking data from various page objects.

Integrated case

management

Case management forms an important part of any decision support applica-

tion, and enables end-users to run the model with varying scenarios. Aimms

also offers advanced data management, which allows you to create data cate-

gories for holding blocks of related data (for instance topology data, or supply

and demand scenarios). Data sets associated with these data categories can

be combined to form a single case, and thus can be shared by more than one

case. In addition, to perform an extensive what-if analysis, you can select a

large number of cases and run them in batch mode overnight.

1.2. Aimms as an ADS development environment 7

Database

connectivity

As data form the life blood of any decision support application, Aimms offers

extensive facilities to link your application to corporate databases using ODBC.

Specialized wizards help you relate columns in a database table with the cor-

responding multidimensional identifiers in your Aimms model. Once you have

established such relationships, you can specify straightforward read and write

statements to transfer data to and from the database.

Linkages to

other

applications

To facilitate the re-use of existing code, or to speed up computationally in-

tensive parts of your application, Aimms allows you to execute external pro-

cedures or functions in a DLL from within your model. External functions

can even be used within the constraints of an optimization model. In addition,

Aimms offers an in-process Application Programming Interface (API) for C/C++,

as well as the out-of-process Aimms SDK for Java/.Net/C++ which enables you

to use your Aimms model as a component from within an external application,

to communicate data in a sparse fashion, and to execute procedures written in

Aimms.

User

management

The Aimms system has integrated facilities to create a database of end-users

and link this database to one or more Aimms-based applications. The end-user

database contains information on the level of authorization of all end-users

within an application. Through these authorization levels you can specify

whether an end-user is allowed to access case data, view pages, modify data,

and execute particular parts of the model.

Protecting your

investment

The development of a professional decision support application usually repre-

sents a considerable investment in time and thus money. Aimms offers facili-

ties to protect this investment and to prevent unauthorized use of particular

applications. Your project and the source code of your model can be encrypted

using either a password or key based encryption scheme.

Extensive

documentation

Aimms comes complete with extensive documentation in the form of three

books:

� a User’s Guide to explain the overall functionality and use of Aimms,

� a Language Reference giving a detailed description of the Aimms lan-

guage, and

� a Modeling Guide introducing you to both basic and advanced modeling

techniques.

All of these books are available in hard copy as well as in electronic form. In

addition, each system comes complete with a collection of example applica-

tions elucidating particular aspects of the language and end-user interface.

8 Chapter 1. Aimms and Analytic Decision Support

1.3 What is Aimms used for?

Aimms usage Aimms is used worldwide as a development environment for all kinds of ana-

lytic decision support applications. To give you some insight into the areas in

which Aimms has been used successfully, this section describes a small subset

of ADS applications, namely those in which AIMMS itself has been involved

(sometimes actively, sometimes at a distance).

Crude oil

scheduling

The crude oil scheduling system covers the allocation, timetabling, blending

and sequencing activities from the waterfront (arrival of crude ships) via the

crude pipeline to the crude distillation units. The result is a schedule for the

discharge of crudes, the pipeline and the crude distillers (sequencing, timing

and sizing of crude batches), plus planning indications on the arrival of new

crude deliveries. Enhanced decision support includes improved and timely

reaction to changes and opportunities (e.g. distressed crude cargoes, ship and

pumping delays, operation disturbances) and improved integration between

crude acquisition and unit scheduling.

Strategic forest

management

The strategic forest management system allows foresters to interactively re-

present large forested areas at a strategic level. Such a flexible decision frame-

work can help in understanding how a forest develops over time. The system

also allows one to explore forest management objectives and their trade-offs,

plus the preparation of long-term forest management plans.

Transport

scheduling in

breweries

The transport scheduling system for breweries allows end-users to interac-

tively steer the flow of products through all phases of the brewing process

from hops to bottled beer. The application can be used either in an automatic

mode where the flow of products is totally determined by the system, or it

can be used in a manual mode where the user can set or alter the flow using

the Gantt chart. The system can also be used in a simulation mode to test

the response of the entire brewery to varying demands over a longer period of

time.

Risk

management

The risk management system for market makers and option traders has a wide

functionality including the theoretical evaluation of derivatives, an extensive

sensitivity analysis, the display of risk profiles, the generation of scenarios, the

generation of price quotes and exercise signals, minimization of risk exposure,

the calculation of exercise premiums and implied data (volatilities and interest

rates), plus an overview of all transactions for any day.

1.4. Comparison with other ADS tools 9

Refinery

blending

The refinery blending system is a blend scheduling and mixture optimization

system. It is able to handle the complete pooling and blending problem, and

optimizes both the blend schedules and the mixes under a complete set of

(real- life) operational constraints. The system offers user flexibility in that the

user can decide upon the number of components, fuel mixtures, long versus

short term scheduling, and stand-alone versus refinery-wide scheduling.

Catalytic

cracker support

Catalytic cracking refers to a refining process in which hydrocarbons are con-

verted into products with a lower molecular mass. The catalytic cracking

support system has three major components: (a) a graphical user interface

consisting of interactive pages, validation routines, plus reporting and data

handling facilities, (b) the model equations, including those for heat, yields,

product properties, economics, and (c) an on-line process control environment

with an off-line mode in which multiple studies with differing parameters and

variables can be compared.

Data

reconciliation

Data reconciliation is the process of making the smallest possible adjustment

to a collection of measurements within a system such that the adjusted data

values satisfy all the balance constraints applicable to the system. In the par-

ticular application in question, data reconciliation was applied to a chemical

process, requiring that the relevant mass, component and thermodynamic bal-

ances be satisfied for all units within the system.

1.4 Comparison with other ADS tools

ADS

development

tools

There are several tools available in the market that can, in principle, be used

as a development environment for analytic decision support applications. The

most well-known are:

� spreadsheets,

� databases,

� programming languages, and

� multidimensional modeling languages.

ComparisonSpreadsheets, databases and programming languages all have their strengths

as development tools for a large variety of applications. Advanced modeling

systems such as Aimms should not be seen as a complete replacement for these

three development environments, but rather as a tool specifically designed for

developing analytic decision support applications. The following paragraphs

outline the advantages and disadvantages of each of these tools with respect

to their suitability as a development environment for ADS.

10 Chapter 1. Aimms and Analytic Decision Support

Spreadsheet If you are a fervent spreadsheet user, it seems only natural to build your ADS

applications on top of a spreadsheet. However, this may not always be the best

choice. A spreadsheet approach works well when:

� you don’t need to specify a large number of relationships,

� there are only a few procedures to be written,

� the size of your data sets remains stable,

� the need to add or remove dimensions is limited, and

� you will carry out all the maintenance activities yourself.

When this is not the case, the Aimms approach may offer a suitable alternative,

because:

� specifying a large number of (often similar) relationships can be done

using indexed identifiers and definitions for these identifiers,

� adding and managing both internal and external procedures is a straight-

forward task using the Aimms language and model editor,

� modifying the size of any (index) set in Aimms is natural, as there is a

complete separation between structure and data,

� adding or removing dimensions takes place in the language and does not

require the copying of cells or creating more worksheets, and

� not only can the structure of the entire model be made visible, but also

the model editor allows someone else to create customized overviews of

model structure for further maintenance.

Database If you are a fervent database user, it seems only natural to build your ADS

applications using a language such as Visual-C/C++, Delphi or PowerBuilder

on top of a database such as Microsoft Access, and Oracle. However, this may

not always be the best choice. Using a database approach works well when:

� all of the data for your application is already stored in a database,

� the end-user GUI requires relatively little programming,

� speed of data transfer is not crucial,

� there is a limited need to link to external solvers, and

� maintenance is carried out by yourself or another experienced program-

mer.

1.4. Comparison with other ADS tools 11

When this is not the case, the Aimms approach may offer a suitable alternative,

because:

� data transfer works well not only for data stored in a database, but also

for data in text and case files,

� the compact modeling language combined with the point-and-click GUI

builder minimizes the amount of programming required,

� internal data transfer during (the sparse) execution is extremely fast and

does not require the repeated transfer of data between external pro-

grams,

� standard links to solvers are built into Aimms, and

� compact and simple data structures on the one hand, and point-and-click

GUI construction on the other hand, help ease maintenance.

Programming

language

If you are a fervent programmer, it seems only natural to build your ADS ap-

plications using languages such as C/C++ or Fortran. However, this may not

always be the best choice. Using a programming language works well when:

� efficient data structures require relatively little effort,

� there are many procedures to be written,

� development times are not crucial,

� there is a limited need to link to external programs, and

� maintenance is carried out by yourself or another experienced program-

mer.

When this is not the case, the Aimms approach may offer a suitable alternative,

because:

� the standard multidimensional data structures in Aimms require no spe-

cial effort, and are efficient since all data storage and data manipulations

are carried out in a sparse manner,

� writing procedures in Aimms is at least as easy as in a programming lan-

guage: their control structures are similar, and Aimms has the advantage

that no special data structures are required,

� specially developed tools for the construction of programs and GUIs min-

imize development time,

� standard links to databases and solvers are built into Aimms, and

� compact and simple data structures on the one hand, and point-and-click

GUI construction on the other, help to ease maintenance.

12 Chapter 1. Aimms and Analytic Decision Support

Comparison

summary

Table 1.1 summarizes the most important issues that determine the suitabi-

lity of the above development tools as a development environment for ADS

applications. The table focuses on

� the initial development effort to create an ADS application,

� the subsequent time required for product maintenance (extremely im-

portant due to the permanently changing nature of ADS applications),

and

� the openness of the environment with respect to data entry formats and

third party components.

A ‘+’ indicates that the product scores well in this area, a ‘–’ indicates that it

does not perform well in this area.

Building Development Maintenance Openness Suitability as

tool time time an ADS tool

Spreadsheet + –– ++ +

Database + – + +

Programming

language
– – ++ ++

Aimms ++ ++ + ++

Table 1.1: Comparison of ADS development tools

Developer quote In support of the comparison in Table 1.1, the following quote, from one of our

customers, clearly expresses the advantages of using Aimms as a development

environment for ADS applications.

“Software development requires four tasks: definition, design, imple-

mentation and testing. When using Aimms, the focus is on definition.

The result is an implementation which can be immediately tested. I

now spend the majority of my time working on the customer’s prob-

lem, and verifying that we have got the requirements correct. My job

is now that of an applications engineer, rather than a software engi-

neer. One of our customers stated that our recent project with them

(using Aimms) was the first software project in their history not to have

a single ‘Software Functionality Problem Report’ generated.”

Chapter 2

Getting Started

This chapterThis chapter provides pointers to the various Aimms examples that are avail-

able online and may help you to get a quick feel for the system. It explains

the principle steps involved in creating a new Aimms project, and it provides

you with an overview of the various graphical tools available in Aimms to help

you create a complete Analytic Decision Support application. In addition, the

chapter discusses the files related to an Aimms project.

2.1 Getting started with Aimms

Learn by

example

For most people, learning to use a new software tool like Aimms is made sub-

stantially easier by first getting to see a few examples of its use. In this way

you can get a quick feel for the Aimms system, and begin to form a mental

picture of its functionality.

Getting started

quickly

In addition, by taking one or more illustrative examples as a starting point,

you are able to quickly create simple but meaningful Aimms projects on your

own, without having to read a large amount of documentation. Building such

small projects will further enhance your understanding of the Aimms system,

both in its use and in its capabilities.

Aimms tutorialTo get you on your way as quickly as possible, the Aimms system comes with

a tutorial consisting of

� a number of live demos illustrating the basic use of Aimms,

� an extensive library of small example projects each of which demon-

strates a particular component of either the Aimms language or the end-

user interface,

� a number of complete Aimms applications, and

� worked examples corresponding to chapters in the book on optimization

modeling.

14 Chapter 2. Getting Started

Example

projects

The library of small example projects deals with common tasks such as

� creating a new project,

� building a model with your project,

� data entry,

� visualizing the results of your model,

� case management, and

� various tools, tips and tricks that help you to increase your productivity.

What you learn By quickly browsing through these examples, you will get a good understand-

ing of the paradigms underlying the Aimms technology, and you will learn the

basic steps that are necessary to create a simple, but fully functional modeling

application.

This User’s

Guide

Rather than providing an introduction to the use of Aimms, the User’s Guide

deals, in a linear and fairly detailed fashion, with all relevant aspects of the

use of Aimms and its modeling tools that are necessary to create a complete

modeling application. This information enables you to use Aimms to its full

potential, and provides answers to questions that go beyond the scope of the

example projects.

The Language

Reference

The Language Reference deals with every aspect of Aimms data types and the

modeling language. You may need this information to complete the attribute

forms while adding new identifiers to your model, or when you specify the

bodies of procedures and functions in your model.

The

Optimization

Modeling guide

The Optimization Modeling guide provides you with the basic principles of op-

timization modeling, and also discusses several advanced optimization tech-

niques which you may find useful when trying to accomplish nontrivial opti-

mization tasks.

How to proceed The following strategy may help you to use Aimms as efficiently and quickly as

possible.

� Study some of the working examples to get a good feel for the Aimms

system.

� Select an example project that is close to what you wish to achieve, and

take it as a starting point for your first modeling project.

� Consult any of the three Aimms books whenever you need more thor-

ough information about either the use of Aimms, its language or tips on

optimization modeling.

2.2. Creating a new project 15

2.2 Creating a new project

Project

components

Every Aimms application consists of two main components:

� an Aimms project file (with a .aimms extension), which contains references

to the main application project and all library projects contained in your

application,

� for the main project and every library project all source files are stored

in a separate folder:

– the Project.xml file holding a reference to the project’s main model

source file (with an .ams extension), as well as all additional model

source files included in the main model source file, together con-

taining all identifier declarations, procedures and functions that

are relevant to the project,

– PageManager.xml, TemplateManager.xml and MenuBuilder.xml files de-

scribing the page, template and menu tree defined in the project,

with all individual pages and templates being stored in the Pages

and Templates subfolder,

– Settings and Tools subfolders containing the options for the exe-

cution engine, and the saved settings for user colors, fonts, and the

various tools in the Aimms IDE, and

– the User Files folder for storing all user files that you store within

the project.

Creating a new

project

Within an Aimms session, you can create a new project through the File-New

Project menu. Note that this menu is only available when no other project

is currently open. It will open the Aimms New Project wizard illustrated in

Figure 2.1. In this wizard you can enter the name of the new project, along

with the directory in which the project is to be stored, and the model file (with

the .ams extension) to be associated with the project.

Project

directory

By default, the Aimms New Project wizard suggests that the new project be

created in a new subdirectory with the same name as the project itself. You can

use the wizard button to the right of the location field to modify the location

in which the new project is created. However, as Aimms creates a number of

additional files and directories in executing a project, you are strongly advised

to store each Aimms project in a separate directory.

Model fileBy default, the Aimms New Project wizard assumes that you want to create

a new model file with the same name as the project file (but with a different

extension). You can modify the name suggested by the wizard to another

existing or nonexisting model file. If the model associated with the project

does not yet exist, it will be automatically created by Aimms.

16 Chapter 2. Getting Started

Figure 2.1: The Aimms New Project wizard

The Model

Explorer

After you have finished with the New Project wizard, Aimms will open the

Model Explorer, an example of which is illustrated in Figure 2.2. The Model Ex-

Figure 2.2: The Aimms Model Explorer

plorer is the main tool in Aimms to build an Aimms model, the starting point of

building any Aimms application. In the Model Explorer, the model is presented

as a tree of identifier declarations, allowing you to organize your model in a

2.3. Modeling tools 17

logical manner and make it easy—both for you and others who have to inspect

your model—to find their way around. Besides the Model Explorer, Aimms pro-

vides a number of other development tools for model building, GUI building

and data management. An overview of these tools is given in Section 2.3.

Starting an

existing project

You can open an existing Aimms project in two ways. You can either

� start Aimms and open the project via the File-Open Project menu, or

� double click on the Aimms project file (with a .aimms extension) in Win-

dows Explorer.

After opening a project, Aimms may take further actions (such as automatically

opening pages or executing procedures) according to the previously stored

project settings.

2.3 Modeling tools

Modeling toolsOnce you have created a new project and associated a model file with it, Aimms

offers a number of graphical tree-based tools to help you further develop the

model and its associated end-user interface. The available tools are:

� the Model Explorer,

� the Identifier Selector,

� the Page Manager,

� the Template Manager, and

� the Menu Builder tool.

These tools can be accessed either through the Tools menu or via the project

toolbar. They are all aimed at reducing the amount of work involved in de-

veloping, modifying and maintaining particular aspects of your model-based

end-user application. Figure 2.3 provides an overview of the windows associ-

ated with each of these tools.

The Model

Explorer

The Aimms Model Explorer provides you with a simple graphical representa-

tion of all the identifiers, procedures and functions in your model. All relevant

information is stored in the form of a tree, which can be subdivided into named

sections to store pieces of similar information in a directory-like structure.

The leaf nodes of the tree contain the actual declarations and the procedure

and function bodies that make up the core of your modeling application. The

Model Explorer is discussed in full detail in Chapter 4.

The Identifier

Selector

While the Model Explorer is a very convenient tool to organize all the informa-

tion in your model, the Identifier Selector allows you to select and simultane-

ously view the attributes of groups of identifiers that share certain functional

aspects in your model. By mutual comparison of the important attributes,

such overviews may help you to further structure and edit the contents of

18 Chapter 2. Getting Started

Figure 2.3: Overview of Aimms tools

your model, or to discover oversights in a formulation. The Identifier Selector

is discussed in full detail in Chapter 7

The Page

Manager

The Page Manager allows you to organize all end-user windows associated

with an Aimms application (also referred to as end-user pages) in a tree-like

fashion. The organization of pages in the page tree directly defines the naviga-

tional structure of the end-user interface. Relative to a particular page in the

page tree, the positions of the other pages define common relationships such

as parent page, child page, next page or previous page, which can used in navi-

gational controls such as buttons and menus. The Page Manager is discussed

in full detail in Section 12.1.

The Template

Manager

Within the Template Manager, you can make sure that all end-user pages have

the same size and possess the same look and feel. You can accomplish this by

creating page templates which define the page properties and objects common

to a group of end-user pages, and by subsequently placing all end-user pages

into the tree of page templates. The Template Manager is discussed in full

detail in Section 12.2.

2.4. Dockable windows 19

The Menu

Builder

With the Menu Builder you can create customized menu bars, pop-up menus

and toolbars that can be linked to either template pages or end-user pages in

your application. In the menu builder window you can define menus and tool-

bars in a tree-like structure similar to the other page-related tools, to indicate

the hierarchical ordering of menus, submenus and menu items. The Menu

Builder is discussed in full detail in Section 12.3.

2.4 Dockable windows

Support for

dockable

windows

Dockable windows are an ideal means to keep frequently used tool windows

in an development environment permanently visible, and are a common part

of modern Integrated Development Environments (IDE) such as Visual Studio

.NET.

Docking statesDockable windows can be used in a docked, auto-hidden, or floating state.

Whether a dockable window is in a docked, auto-hidden or floating state can

be changed at runtime through drag-and-drop.

Docked

windows

When docked, the tool windows are attached to the left, right, top or bottom

edge of the client area of the main Aimms window. By default, all modeling

tools discussed in Section 2.3 are docked at the left edge of the Aimms window,

as illustrated in Figure 2.4.

Figure 2.4: Example of a Model Explorer docked at the left edge

20 Chapter 2. Getting Started

Tool windows

persistence

Aimms automatically stores the location and size of each tool window. This

information is used to restore the location and size of each tool window when-

ever an Aimms session is started.

Dragging

windows

By dragging the windows caption of a docked window and moving the cursor

around the edges of the Aimms window, you can move the docked window

to another position. While hovering over a drop target, a blue rectangle (as

illustrated in Figure 2.5) snaps into place at the appropriate location, whenever

a dockable window is ready to be docked at the location corresponding to the

drop target. The area of a docked window can also be split into two by dragging

another dockable window into the upper, lower, left or right part of docked

window. In all these cases, a blue rectangle shows how a dockable window will

be docked when you release the mouse at that time.

Figure 2.5: Drag-and-drop windows

Auto-hidden

windows

In auto-hidden state, a dockable window is normally collapsed as a button to

the upper, lower, left or right edge of the main Aimms window. When you

push the button associated with a collapsed window, it is expanded. When an

expanded tool window looses focus, it is collapsed again. By clicking the push-

pin button in the caption of a docked/collapsed window, you can change

the window’s state from docked to auto-hide and back.

Floating tool

windows

By dragging a tool window away from an edge of the main Aimms window, it

becomes floating. When Aimms is the active application, floating tool windows

are always visible on top of all other (non-floating) Aimms windows. Floating

windows can also be shown outside the main Aimms window frame.

2.5. Additional files related to an Aimms project 21

Tabbed MDI

mode

By default, all pages and attribute forms are shown in tabbed MDI mode. In

Figure 2.4 the main page of the application is displayed in tabbed MDI mode,

with the attribute windows of two identifiers in the model accessible through

tabs. Tabbed MDI windows occupy the remaining space of the client area of

the main Aimms window that is not occupied by docked windows. This implies

that you do not have control over the size of tabbed MDI windows. Therefore,

if you use tabbed MDI mode in your Aimms application, it makes sense to

make all the pages in your model resizable (see Chapter 13). However, the

display mode of a page can be changed to docked (by checking the Allow User

Dockable option on the Page Properties dialog box). This would for example

allow you to turn a page into a floating window and display it on you second

monitor.

Tab groupsWhen you drag the tab associated with a document window in the document

window area, you can move the document window into a new or existing tab

group, at the left, right, top or bottom of the current tab group. Tab groups

effectively split the document window area into multiple parts, each of which

can hold one ore more tabbed MDI windows. As with dragging dockable win-

dows, a drag rectangle shows where the window will be positioned if you drop

it at that moment. Tab groups are very convenient, for instance, if you want to

view two attribute windows simultaneously.

2.5 Additional files related to an Aimms project

Project-related

files

In addition to the Aimms project folders and files associated discussed in Sec-

tion 2.2, using an Aimms project either during development or in a deployment

scenario may actually result in the creation of a number of files not mentioned

before:

� the name change file (with a .nch extension),

� one or more case files (with a .data extension),

� a user database file (with a .usr extension),

� data backup files (with a .bak extension),

� log, error and listing files from both Aimms and its solvers (with .log,

.err, .lis or .sta extensions).

Name change

file

Aimms has the capability to keep track of the name changes you performed on

identifiers in your model, and automatically replace an old identifier name by

its new one whenever Aimms encounters a renamed identifier. Aimms keeps

track of the list of such name changes in the name change file (with a .nch

extension). Each name change is listed in this file on a separate line containing

the old name, the new name and the (GMT) time stamp at which the change

was actually performed. The automatic name change capabilities of Aimms are

explained in full detail in Section 5.3

22 Chapter 2. Getting Started

. . . and version

control

If you are using a version control system to manage your Aimms sources, it

makes sense to also include the name change files under version control. When

you change an identifier name, Aimms will not directly refactor all pages to

reflect the name change directly, but use the name change file to refactor a

page when it is opened. The same is true when opening cases that contain data

for the identifier the name of which has been changed. When your changes in a

project are merged with another developer’s changes, the merged name change

file will actually contain all name changes made by both developers.

Case files Whenever you save a case in your Aimms project (see also Chapter 16), this will

result in the creation of a .data file on disk. By default these case files will be

stored in the data subfolder of project’s main folder.

The user

database

With every end-user project created with Aimms, you can associate an end-

user database containing the names and passwords of all end-users entitled to

run the project or view its results. Such end-user information is stored in an

encrypted format in a user database file (with a .usr extension). You can use a

single user database file with more than one project.

Log, error and

listing files

During the execution of your model, all log, error and listing information from

both Aimms and its solvers (whether visible in the Aimms Message window or

not) is copied to log, error and listing files, which, by default, are stored in

the Log subdirectory of the project directory. If you are not interested in this

information, you can reduce the amount of information that is copied to these

log files by modifying the relevant execution options.

Data backups Through the AutoSave & Backups-Data menu, you can specify that you want

Aimms to automatically create backups of the data used during a particular

session of your project. The menu will pop up the Data Backup dialog box

illustrated in Figure 2.6. Similarly as with the project backup files, you can

Figure 2.6: The Data Backup dialog box

indicate whether Aimms should automatically create backup backup files of

the session data at regular intervals, as well as how many data backup files

2.5. Additional files related to an Aimms project 23

should be retained. Data backup files also have the .bak extension and contain

a reference to the date/time of the backup.

Manually

creating backup

files

Besides the automated backup scheme built into Aimms, you can also create

backup files of your session data manually. You can create manual backup

files through the File-Data Backups menu. When you create a data backup file

manually, Aimms will request a name of a .bak file in which the backup is to be

stored.

Restoring

backup files

Through the File-Data Backups menu, you can restore the data in your appli-

cation back to the state stored in the data backup files.

2.5.1 Project user files

Project user filesAlong with the project-related files created by Aimms, you may need to dis-

tribute some other files with your project when deploying it to your end-users.

Such files include, for instance, bitmap files displayed on buttons or in the

background of your end-user pages, or files that contain project-related con-

figuration data. Instead of having to include such files as separate files in the

project directory, Aimms also allows you to save them within the project file

itself. Both within the Aimms language as well as in the end-user interface, you

can reference such project user files as if they were ordinary files on disk.

Why use project

user files?

User project files are convenient in a number of situations. The most common

reasons to store files as project user files are listed below.

� You want to reduce the number files that you have to ship to your end

users. This situation commonly occurs, for instance, when the end-user

interface of your project references a large number of bitmap files.

� You want to hide particular configuration data files from your end-users,

which might otherwise only confuse them.

� User project cannot be modified by your end-users.

Importing

project user files

You can import files into the project file through the Tools-Project User Files

menu, which will pop up the Project User Files dialog box illustrated in Fig-

ure 2.7. In this dialog box, you can create new folders to organize the files

you want to import into the project file. The dialog box of Figure 2.7 already

contains a folder bitmaps, which is automatically added to each new Aimms

project and filled by Aimms with the bitmaps used on Aimms’ data pages (see

Section 5.4). When you are inside a folder (or just within the main project file),

you can import a file into it through the Import File button, which will open

an ordinary file selection dialog box to select the disk file to be imported.

24 Chapter 2. Getting Started

Figure 2.7: The Project User Files dialog box

User files in

library projects

When your project, next to the main project file, also includes a number of

library project files (see Section 3.1), Aimms allows you to store user files in

the library project files as well. Thus, if a page defined in a library refers to

a particular bitmap file, you can also store that bitmap as a user file directly

into the corresponding library project file. In the dialog box of Figure 2.7, the

CoreModel node at the root of the tree refers to a library that is included in the

project that serves as the running example throughout this book. Underneath

this node you can add user files that will be stored in the library project file

for the CoreModel library.

Referencing

project user files

You can reference project user files both from within the Aimms language and

the properties of various objects with the graphical end-user interface. The

basic rule is that Aimms considers the project file as a virtual disk indicated

by “<prj>”. You can use this virtual drive in, for instance, READ, WRITE and PUT

statements within your model. Thus, the statement

READ from file "<prj>:config\\english.dat";

reads the model data from the project user file "english.dat" contained in a

(developer-created) config folder within the project file.

Referencing

user files in

library projects

You can access project files in library projects by using the virtual disk no-

tation “<lib:library-name>”, where library-name is the name of the library

project. Thus, to read the same file as in the previous paragraph from the

CoreModel library shown in Figure 2.7, the following statement can be used.

2.6. Aimms licensing 25

READ from file "<lib:CoreModel>:config\\english.dat";

Use in end-user

interface

Similarly, you can reference project user files on page objects in the end-user

interface of your project. Figure 2.8 illustrates the use of a bitmap file stored

in the project file on a bitmap button. For all object properties expecting a file

Figure 2.8: Bitmap button referencing a project user file

name (such as the File Name property of the bitmap button illustrated in Fig-

ure 2.8), you can easily select a project user file by pressing the wizard button

, and selecting the Select Project File menu item. This will pop up a project

user file selection dialog box similar to the dialog box shown in Figure 2.7.

2.6 Aimms licensing

Aimms licensingAimms offers the following two types of licenses:

� single-user licenses, and

� network licenses.

Each of these two types of licenses are protected in a different manner.

Single-user

license

protection

Single-user licenses can be used by a single user on a single computer. To

enforce the single-user character, Aimms requires that single-user licenses be

protected by a nodelock file, which must be activated to match the hardware

characteristic of your computer.

26 Chapter 2. Getting Started

Nodelocks Nodelock files are stored on the harddisk of your computer, and are, therefore,

much less vulnerable to loss. Only if you computer is stolen, or in case of a

harddisk crash, you must contact AIMMS before being able to activate your

nodelock on a replacement computer. In addition, you need access to the

internet to activate or deactivate a nodelock.

Network

licenses

If you have ordered an Aimms network license, no license protection needs to

be installed locally on your computer. Instead, you need the host name and

port number of the server running the Aimms network license server. For more

information about installing the network license server itself, please refer to

the documentation of the Aimms network license server.

2.6.1 Personal and machine nodelocks

Two types of

nodelocks

Aimms offers two types of nodelocks:

� personal nodelocks, and

� machine nodelocks.

If you choose for nodelock protection you are free to choose between a per-

sonal or a machine type of nodelock. In this section you will find the charac-

teristics of both types of nodelocks. If you are unsure which type of nodelock

to choose, we recommend that you start with a personal nodelock, as you can

change a personal nodelock into a machine nodelock at any time, but not the

other way around.

Personal

nodelock

Personal nodelocks are intended for use by a single Aimms user, who still

wishes to have the freedom to use Aimms on multiple computers, for instance

if you want to easily switch between your desktop computer at work, a note-

book computer and your home computer. Personal nodelocks have the follow-

ing characteristics:

� Personal nodelocks can be transferred to another computer 3 times per

24 hours. This allows you to take your Aimms license home in the

evening and back to work the next morning without any problems.

� Personal nodelocks have a limited lifetime of 60 days, and should be

renewed within that period to extend the lifetime to its full 60-day pe-

riod. If the nodelock is not renewed within its 60-day lifetime, this does

not invalidate your Aimms license in any way—you only have to renew

your nodelock prior to being able to use your Aimms system again. Note

that the renewal process does not require any manual intervention, as

Aimms will try to automatically connect to our internet license database

to renew your nodelock once every day you are using Aimms.

� Both activation and nodelock renewal of personal nodelocks require a

working connection to the internet. As a consequence, in the absence

of an internet connection you can continue to work uninterrupted for

2.6. Aimms licensing 27

a period of 60 days, before an internet connection is required to renew

your nodelock.

� With every activation or nodelock renewal Aimms will also update your

license files if new license files are available (e.g. if your system is in

maintenance), and will inform you of any messages that are available for

you in our database.

� Because of their volatile nature, AIMMS will replace a personal nodelock

without any questions asked in case of loss of or damage to your com-

puter.

� You can switch your personal nodelock to a machine nodelock at any

time.

Machine

nodelock

Machine nodelocks are intended for permanent use on a single computer. They

are recommended for server applications, and can also be used for personal

use if you are sure you will be using Aimms on a single computer, or do not

have internet access. Machine nodelocks have the following characteristics:

� Machine nodelocks can be transferred to a replacement computer 3 times

per 365 days.

� Machine nodelocks have an unlimited lifetime (unless deactivated).

� Machine nodelocks can be either activated online if your computer is

connected to the internet, or offline through the license activation area

on the Aimms website.

� License files will only be retrieved when the machine nodelock is acti-

vated, or by explicit request.

� In case of failure, AIMMS will, in principle, only replace machine node-

locks on the same computer.

� Once you have chosen for a machine nodelock, it is not possible to switch

back to a personal nodelock.

PrivacyAlthough a personal nodelock and the software version check on the start page

make a regular connection to the internet (the personal nodelock connects to

a license database for nodelock renewal and the version check connects to a

version database), we do respect your privacy and will not register patterns in

your personal usage of the Aimms software in any way. During activation no

personal information will be transferred, only your computer name and some

of its hardware characteristics. During deactivation we register the date and

time of deactivation to enforce the transfer limit.

Internet

connection and

proxy settings

The connection to our internet license database is implemented as a web ser-

vice. Thus, if you are able to browse the web, you should also have no trou-

ble activating an Aimms nodelock. If your computer connects to the internet

through a proxy server, Aimms by default tries to detect and use the proxy

settings also used by Microsoft Internet Explorer.

28 Chapter 2. Getting Started

Automatic

configuration

scripts

It should be noted that the use of auto-configuration scripts in determining the

proxy server will fail if these use any other scripting language than Javascript.

This is due to the libraries underlying the SOAP library used by Aimms to con-

nect to our license server. If you are in this situation, you should manually

configure the proxy settings, as described below.

Manual proxy

setting

If Aimms does not succeed in automatically detecting the proxy settings that

apply in your network environment, Aimms also allows you to manually set

the proxy settings during the activation process. If the online activation pro-

cess does not succeed directly, Aimms gives you the option to either continue

with an offline activation process, or to manually supply the proxy settings

that apply to your network environment through the dialog box illustrated in

Figure 2.9. In this dialog box you can choose between

� the Current User settings also used by Microsoft Internet Explorer (de-

fault),

� the Local Machine settings which are stored in the registry, if these are

available on your machine, or

� Custom proxy settings that you have received from your IT department.

In the latter case, you can also (optionally) provide a user name and password

to authenticate with the proxy server. In most cases, however, setting these

will not be necessary, and Windows authentication will be sufficient.

Figure 2.9: The Aimms Proxy Configuration dialog box

2.6.2 Installing an Aimms license

Managing your

Aimms licenses

When you start up Aimms for the first time after installation, Aimms will open

the License Configuration dialog box illustrated in Figure 2.10. Through this

dialog box you can install new Aimms licenses and manage all Aimms licenses

that already have been installed on your computer.

2.6. Aimms licensing 29

Figure 2.10: The License Configuration dialog box

Installing a new

license

To install a new license, press the Install License . . . button in the License

Configuration dialog box. This will start a wizard, that will guide you through

the license installation procedure step by step. The wizard can help you to

install

� existing Aimms licenses,

� nodelocked licenses,

� network licenses,

� evaluation licenses, and

� student licenses.

To successfully complete the installation of licenses of each type, you should

make sure to have the following information available.

Single-user

nodelocked

licenses

To install a single-user Aimms license that is protected by a nodelock, you need

the following information:

� your Aimms license number, and

� the associated activation code that you received from AIMMS.

You have the choice to request a personal nodelock or a machine nodelock.

A personal nodelock must be requested online, a machine nodelock can be

requested online or offline. Refer to Section 2.6.1 for a more detailed introduc-

tion to personal and machine nodelocks.

30 Chapter 2. Getting Started

Network

licenses

To install an Aimms network license, you need the following information from

your system administrator:

� the name of the Aimms network license server,

� the port number of the Aimms network license server, and

� the name of the license profile to which you want to connect (optional).

Evaluation

licenses

To install an Aimms evaluation license you need the following information

� your Aimms evaluation license number, and

� the associated activation code that you received from AIMMS when re-

questing an evaluation license.

You must have a working connection to the internet (not necessarily on the ma-

chine on which you installed Aimms) to activate an evaluation license. Evalua-

tion licenses expire 30 days after activation. Note that each evaluation license

can be activated only once, and that you can only activate a single evaluation

license per Aimms release on a specific computer, regardless of the number of

evaluation licenses you have requested on our web site.

Student licenses To install an Aimms student license you need the following information:

� your Aimms student license number, and

� the associated activation code that you received from the university that

purchased the Aimms Educational Package.

You must have a working connection to the internet to activate a student li-

cense. Student licenses expire one month after the end of the current academic

year. Student licenses can be activated multiple times.

2.6.3 Managing Aimms licenses

Managing

multiple Aimms

licenses

Aimms allows you to have multiple Aimms licenses installed on your computer.

You may have multiple licenses installed, for instance, for the following rea-

sons:

� you have requested a trial license for a new Aimms version which you

want to run next to your existing license,

� you have temporarily borrowed or hired an Aimms license with more

capabilities than your regular license,

� your system administrator has created multiple network license profiles,

each of which you may want to use to run Aimms.

In this section we will describe how you can instruct Aimms which license to

use.

2.6. Aimms licensing 31

Default licensesIn the License Configuration dialog box displayed in Figure 2.10, all Aimms

licenses installed on your machine will be displayed in the left pane of the

dialog box. The license details of each license are displayed in the right pane

of the dialog box. During startup Aimms will consider all licenses in the left

pane of the License Configuration dialog box which have the Default column

checked, and will use the first valid license it finds starting from top to bottom.

Using the Move Up and Move Down buttons you can change the order in which

Aimms will search the list.

Transferring

licenses

Both personal and machine nodelocks can be transferred to other computers.

Personal nodelocks can be transferred upto three times a day, allowing you

to take your license with you wherever you want. Machine nodelocks can be

transferred three times per year, to a computer replacing the computer on

which the nodelock is currently installed. To transfer a nodelocked license,

you must

� deactivate the nodelock on the currently active computer, and

� activate it on the computer to which you want to transfer the license.

You can deactivate an active nodelock using the Deactivate button in the Li-

cense Configuration dialog box. Deactivation will only succeed if there is no

conflict with the transfer limit for the given nodelock type. This makes sure

that there will never be a problem activating a deactivated license. After suc-

cessful deactivation the license will not be removed from the list but be marked

as inactive. If the license is not active on any computer, you can reactivate the

license through the Activate button.

Emergency

nodelocks

In case you want to activate a nodelock on a computer, but have forgotten to

deactivate the nodelock on a computer to which you currently have no access,

Aimms allows you, as a courtesy, to request an emergency nodelock 3 times

per 365 days. Emergency nodelocks have a lifetime of 7 days, and during this

time you can arrange for someone to deactivate the license on the computer

containing the active nodelock. During the activation sequence, Aimms will

automatically ask whether you would like to receive an emergency nodelock

when it discovers that the license is active on another computer.

2.6.4 Location of license files

Location of

license files

Aimms keeps its license and configuration files in the folder

AIMMS

of the common application area of your computer. On Windows 7, 8 and 10,

this folder is located under C:\ProgramData. The AIMMS folder contains five sub-

folders

� Config, containing the license and solver configuration files,

32 Chapter 2. Getting Started

� Licenses, containing all license files,

� Nodelocks, containing all nodelock files installed on your computer,

� ApplicationKeys, containing any private/public key pairs that you have

generated, and

� AnyUser, containing the license configuration files for all users on your

computer (see below).

The Aimms installation makes sure that these subfolders are writable for ev-

eryone, allowing you to install and uninstall licenses on your computer.

Do not move

nodelock files

To prevent tampering with nodelocked licenses, Aimms keeps track of the lo-

cation of the nodelock files associated with a license. You should, therefore,

not manually move or copy the Aimms nodelock files as this may invalidate

your nodelock.

User specific

configuration

You can specify whether the license and solver configuration that Aimms uses

is the same for any user of the machine, or different for each individual user.

To prevent problems when running Aimms as part of a computer service,

Aimms will by default use the same configuration for any user. To modify this

behavior, you should edit the file UserDistinction.cfg in the common Config

folder. In the file UserDistinction.cfg.default, straightforward directions are

given on how to edit it. If no UserDistinction.cfg file exists, Aimms will use

the UserDistinction.cfg.defaultfile instead. You can use this file as a base for

setting up your own configuration.

Any User In the scenario where all users of the same pc use the same license and solver

configuration, the configurations that are modified by a user are stored in the

AnyUser folder of the Common folder.

Current User In the scenario where each specific user of the pc has its own license and solver

configuration, the configurations that are modified by a user are stored in the

local application data folder. On Windows 7, 8 and 10 it is:

C:\Users\<UserName>\AppData\Roaming\AIMMS

If you have already used Aimms 3 on your machine, these folders don’t end in

AIMMS, but (still) in Paragon Decision Technology.

Accessing

configuration

files

When Aimms needs to read the current configuration, it will first look in the

(any)user folder as specified by the aforementioned UserDistinction.cfgfile; if

it cannot be found there, it will try to read the configuration from the common

application data folder. When saving a modified configuration, Aimms always

writes to the (any)user folder.

2.6. Aimms licensing 33

Version

dependent

configurations

Inside the Config folder of the (any)user folder, each major Aimms version

(3.6, 3.7, 3.8, . . ., 4.0 etc.) will create its own specific subfolder when it needs

to write a configuration file. During an attempt to read, Aimms will first look

for the specific file in the folder that matches its own major version number,

and otherwise it will subsequently search through the folders of previous ver-

sions. In other words, when you upgrade to a new Aimms version, initially

your configuration will be the same as the one you were using for the previous

Aimms version, but if you change something in the configuration, this will only

affect the configuration of the Aimms version you are working with.

Network License

Client Files

If you are using an Aimms Network License, then your local machine does not

need to have any license file installed. The only required file is the license

configuration file, that contains the info of where the License Server is located

on your LAN. When logging on to the License Server, the licensing info is sent

directly from the server to the running Aimms session, except for some sec-

ondary license related files:

� the .SLV file (containing the default solver configuration), and

� the .CPX file (the CPLEX license file).

These secondary license files are temporarily copied to the folder NetworkCache

which is located in the (any)user folder as described above.

Project

dependent

configuration

You can specify a project dependent solver configuration by placing a solver

configuration file with the name ’solvers.slv’ in the project directory. Aimms

will first look for this file and if it cannot find it will look for other solver

configuration files. See the Aimms Help for more information.

Chapter 3

Collaborative Project Development

This chapter This chapter discusses the options you have in Aimms to organize a project

in such a way that it becomes possible to effectively work on the project with

multiple developers. While it is very natural to start working on a project

with a single developer, at some time during the development of an Aimms

application, the operational requirements of the problem you are modeling

may become so demanding that it requires multiple developers to accomplish

the task.

From proto-

typing phase. . .

During the initial prototyping phase of a model, an Aimms project is usually

still quite small, allowing a single developer to take care of the complete de-

velopment of the prototype. The productivity tools of Aimms allow you to

quickly implement different formulations and analyze their results, while you

are avoiding the overhead of having to synchronize the efforts of multiple peo-

ple working on the prototype.

. . . to operat-

ional phase

During the development of an operational Aimms application this situation

may change drastically. When an Aimms application is intended to be used on

a daily basis, it usually involves one or more of the following tasks:

� retrieving the input data from one or more data sources,

� validation and transformation of input data,

� extending the core optimization application with various, computation-

ally possibly demanding, operational requirements,

� preparing and writing output data to one or more data sources,

� building a professionally looking end-user GUI, and/or

� integrating the application into the existing business environment.

Depending on the size of the application, implementing all of these tasks may

become too demanding for a single developer.

Dividing a

project into

sub-projects

One possible approach to allow multiple developers to work on a single Aimms

application is to divide the project into several logical sub-projects, either

based on the tasks listed in the previous paragraph, or more closely related

to the logic of your application. Aimms supports sub-projects in the form of

model libraries. Using libraries especially makes sense, if the functionality

3.1. Library projects and the library manager 35

developed in a library can be re-used by multiple Aimms applications. If a li-

brary is small enough, indivual developers may take on the development of

the library.

Managing

project source

using a VCS

In the software development world teams commonly use a Version Control

System, such as git, subversion, or TFS, to share and merge their coding work

to a common repository. As all development sources of an Aimms application

are stored as readable text files (a.o. .aimms, .ams and .xml), Aimms projects

can be easily managed using the version control system of your choice. Using

a version control system will make it straightforward to work together on a

single code base in parallel by merging the contributions of the various team

members, and to use branches to differentiate between development and pro-

duction code, or to work on multiple developments independently. Using ver-

sion control for your Aimms projects will usually result in higher productivity

and more control.

No VCS

integration

Although Aimms effectively supports the use of a version control system for

the development of your Aimms applications, the Aimms IDE does not offer in-

tegration with any specific version control system. All version control systems

come with commandline and/or graphical tools for regular version control

tasks such as committing, showing logs, diffing two versions, merging, creat-

ing branches and tags, and so on. You should use these tools, whenever you

want to commit your changes to an Aimms project under version control.

3.1 Library projects and the library manager

Aimms library

projects

Aimms library projects allow you to divide a large Aimms project into a number

of smaller sub-projects. Library projects are especially useful if you intend to

share parts of an application between multiple projects. Each library project

in Aimms provides

� a tree of model declarations,

� a page tree,

� a template tree, and

� a menu tree.

In addition, a library project may provide its own collection of user project

files, user colors and fonts.

Shared

templates

Besides enabling multiple developers to work in a single project, library pro-

jects can also be used to define a common collection of templates that define

the look-and-feel of multiple projects. In this manner, you change the look-

and-feel of multiple applications just by changing the templates in the shared

library project.

36 Chapter 3. Collaborative Project Development

Adding libraries

to a project

By adding a library project to the main Aimms project, the objects defined by

the library, such as identifiers, pages, templates, etc., become available for use

in the main project. In addition, if a library project is writable, the contents of

the library can also be edited through an Aimms project in which it is included.

The library

manager

You can add libraries to an Aimms project in the Aimms Library Manager

dialog box illustrated in Figure 3.1. You can open the library manager through

the File-Library Manager. . . menu.

Figure 3.1: The Aimms Library Manager

Using the library manager Aimms allows you to

� create new libraries,

� add existing libraries to your project,

� edit library properties, and

� remove libraries from your project.

Library storage Each library project in Aimms will be stored in a separate directory, containing

the following files and folders:

� the Project.xmlfile holding a reference to the project’s main model source

file (with an .ams extension), as well as all additional model source files

included in the main model source file, together containing all identifier

declarations, procedures and functions that are relevant to the project,

� PageManager.xml, TemplateManager.xml and MenuBuilder.xml files describ-

ing the page, template and menu tree defined in the project, with all

individual pages and templates being stored in the Pages and Templates

subfolders,

� Settings and Tools subfolders containing the saved settings for user col-

ors, fonts, and the various tools in the Aimms IDE, and

� the User Files folder for storing all user files that you store within the

project.

These files will be automatically created by Aimms when you create a new

library project. To add an existing library to an Aimms project, you just need

to select its library project file.

3.2. Guidelines for working with library projects 37

Library prefixTo avoid name clashes between objects in the library and the main project

or other libraries, all the object names in a library are stored in a separate

namespace. Outside of the library, a global prefix associated with the library

has to be used to access the library objects. When you create a new library

project, Aimms will come up with a default library prefix based on the library

name you entered. For an existing library project, you can view and edit its

associated library prefix in the library manager.

Using library

projects

After you have added one or more library projects to your main Aimms project,

Aimms will extend

� the model tree in the Model Explorer,

� the page tree in the Page Manager,

� the template tree in the Template Manager, and

� the menu tree in the Menu Builder

with additional root nodes for every library project added to your project.

In general, within any of these tools, you are free to move information from

the main project tree to any of the library trees and vice versa. In addition,

the Aimms dialog boxes for user project files, user colors and fonts allow you

to select and manage objects from the main project or any of the libraries.

The precise details for working with library projects in each of these tools are

discussed in full detail in the respective chapters discussing each of the tools.

3.2 Guidelines for working with library projects

Identifying

independent

tasks

Unless you started using library projects from scratch, you need to convert

the contents of your Aimms project as soon as you decide to divide the project

into multiple library projects. The first step in this process is to decide which

logical tasks in your application you can discern that meet the following crite-

ria:

� the task represents a logical unit within your application that is rather

self-contained and can possible be shared with other Aimms projects,

� the task can be comfortably and independently worked on by a separate

developer or developer team, and

� the task provides a limited interface to the main application and/or the

other tasks you have identified.

Good examples of generic tasks that meet these criteria are the tasks listed on

page 34. Once your team of developers agrees on the specific tasks that are

relevant for your application, you can set up a library project for each of them.

38 Chapter 3. Collaborative Project Development

Library

interface. . .

The idea behind library projects is to be able to minimize the interaction be-

tween the library, the main project and other library projects. At the language

level Aimms supports this by letting you define an interface to the library, i.e.

the set of public identifiers and procedures through which the outside world

is allowed to connect to the library. Library identifiers not in the interface are

strictly private and cannot be referenced outside of the library. The precise

semantics of the interface of a library module is discussed in Section 35.5 of

the Language Reference.

. . . used in

model and GUI

This notion of public and private identifiers of a library module does not only

apply to the model source itself, but also propagates to the end-user inter-

face. Pages defined in a library can access the library’s private identifiers,

while paged defined outside of the library only have access to identifiers in the

interface of the library.

Minimal

dependency

The concept of an interface allows you to work independently on a library. As

long as you do not change the declaration of the identifiers and procedures in

its interface, you have complete freedom to change their implementation with-

out disturbing any other project that uses identifiers from the library interface.

Similarly, as long as a page or a tree of pages defined in a library project is in-

ternally consistent, any other project can add a reference to such pages in its

own page tree. Pages outside of the library can only refer to identifiers in the

library interface, and hence are not influenced by changes you make to the

library’s internal implementation.

Conversion to

library projects

If your application already contains model source and pages associated with

the tasks you have identified in the previous step, the next step is to move

the relevant parts of your Aimms project to the appropriate libraries. You

can accomplish this by simply dragging the relevant nodes or subtrees from

any of the trees tree in the main project to associate tree in a library project.

What should remain in the global project are the those parts of the application

that define the overall behavior of your application and that glue together the

functionality provided by the separate library projects.

Part II

Creating and Managing a Model

Chapter 4

The Model Explorer

This chapterThis chapter introduces the interactive Model Explorer that is part of the

Aimms system. With the Model Explorer you have easy access to every com-

ponent of the source of your model. In this chapter, you are introduced to

the model tree, and you are shown which model information can be added to

the model tree. In addition, the basic principles of working with the Model

Explorer are explained.

4.1 What is the Model Explorer?

Support for

large models

Decision making commonly requires access to massive amounts of informa-

tion on which to base the decision making process. As a result, professional

decision support systems are usually very complex programs with hundreds

of (indexed) identifiers to store all the data that are relevant to the decision

making process. In such systems, finding your way through the source code is

therefore a cumbersome task. To support you in this process, Aimms makes all

model declarations and procedures available in a special tool called the Model

Explorer.

Structured

model

representation

The Aimms Model Explorer provides you with a simple graphical model rep-

resentation. All relevant information is stored in the form of a model tree, an

example of which is shown in Figure 4.1.

As you can see in this example, Aimms does not prescribe a fixed declaration

order, but leaves it up to you to structure all the information in the model in

any way that you find useful.

Different node

types

As illustrated in Figure 4.1, the model tree lets you store information of dif-

ferent types, such as identifier declarations, procedures, functions, and model

sections. Each piece of information is stored as a separate node in the model

tree, where each node has its own type-dependent icon. In this section, the

main node types in the model tree will be briefly introduced. In subsequent

chapters, the details of all model-related node types such as identifiers, proce-

dures and functions will be discussed in further detail.

42 Chapter 4. The Model Explorer

Figure 4.1: Example of a model tree

Structuring

nodes

There are three basic node types available for structuring the model tree. You

can branch further from these nodes to provide more depth to the model tree.

These basic types are:

� The main model node which forms the root of the model tree. The main

model is represented by a box icon which opens when the model tree

is expanded, and can contain book sections, declaration sections, proce-

dures and functions.

� Book section nodes are used to subdivide a model into logical parts with

clear and descriptive names. Book sections are represented by a book

icon which opens when the section is expanded. A book section can

contain other book sections, declaration sections, procedures and func-

tions.

� Declaration section nodes are used to group identifier declarations of

your model. Declaration sections are represented by a scroll icon , and

can only contain identifier declaration nodes.

Advantages The structuring nodes allow you to subdivide the information in your model

into a logical framework of sections with clear and descriptive names. This is

one of the major advantages of the Aimms model tree over a straightforward

text model representation, as imposing such a logical subdivision makes it

much easier to locate the relevant information when needed later on. This

helps to reduce the maintenance cost of Aimms applications drastically.

4.1. What is the Model Explorer? 43

Module and

library nodes

In addition to the basic structuring nodes discussed above, Aimms supports

two additional structuring node types, which are aimed at re-use of parts of a

model and working on a single Aimms project with multiple developers.

� The module node offers the same functionality as a book section, but

stores the identifiers it defines in a separate namespace. This allows

a module to be included in multiple models without the risk of name

clashes. Module nodes are represented by the icon .

� The library module node is the source module associated with a library

project (see Section 3.1). Library modules can only be added to or deleted

from a model through the Library Manager, and are always displayed as

a separate root in the model tree. Library module nodes are represented

by the icon .

Modules, library modules and the difference between them are discussed in

full detail in Chapter 35 of the Language Reference.

Aimms libraryFor your convenience, Aimms always includes a single, read-only library mod-

ule called Predeclared Identifiers (displayed in Figure 4.1), containing all the

identifiers that are predeclared by Aimms, categorized by function.

Non-structuring

nodes

All remaining nodes in the tree refer to actual declarations of identifiers, pro-

cedures and functions. These nodes form the actual contents of your modeling

application, as they represent the set, parameter and variable declarations that

are necessary to represent your application, together with the actions that you

want to perform on these identifiers.

Identifier nodesThe most frequent type of node in the model tree is the identifier declaration

node. All identifiers in your model are visible in the model explorer as leaf

nodes in the declaration sections. Identifier declarations are not allowed out-

side of declaration sections. Aimms supports several identifier types which

are all represented by a different icon. The most common identifier types (i.e.

sets, parameters, variables and constraints) can be added to the model tree

by pressing one of the buttons (the last button opens a selection

list of all available identifier types). Identifier declarations are explained in full

detail in Chapter 5.

Independent

order

Identifiers can be used independently of the order in which they have been

declared in the model tree. As a matter of fact, you may use an identifier in

an expression near the beginning of the tree, while its declaration is placed

further down the tree. This order independence makes it possible to store

identifiers where you think they should be stored logically, which adds to the

overall maintainability of your model. This is different from most other sys-

tems where the order of identifiers is dictated by the order in which they are

used inside the model description.

44 Chapter 4. The Model Explorer

Procedure and

function nodes

Another frequently occurring node type is the declaration of a procedure or a

function. Such a procedure or function node contains the data retrieval state-

ments, computations, and algorithms that make up the procedural execution

of your modeling application. Procedures and functions are represented by

folder icons, and , which open when the procedure or function node is

expanded. They can be inserted in the model tree in the root node or in any

book section. The fine details of procedure and function declarations are ex-

plained in Chapter 6.

Procedure and

function

subnodes

Procedures and functions may contain their own declaration sections for their

arguments and local identifiers. In addition, a procedure or function can be

subdivided into logical components which are inserted into the body of that

procedure or function, and are stored as execution subnodes. Such execution

subnodes allow you to follow a top-down approach in implementing an al-

gorithm without the need to introduce separate procedures to perform every

single step. The complete list of permitted subnodes is discussed in Chapter 6.

Attributes For every node in the model tree you can specify additional information in

the form of attributes. Aimms lets you view and change the values of these

attributes in an attribute form that can be opened for every node in the tree.

An example of an attribute form of an identifier node is shown in Figure 4.2.

Such an attribute form shows all the attributes that are possible for a particular

Figure 4.2: Example of an attribute form

node type. For instance, the attribute form of a parameter declaration will

show its domain of definition and value range, while the form for a procedure

will show the argument list and procedure body. In the attribute form you can

enter values that are relevant for your model.

4.2. Creating and managing models 45

WizardsFor most attributes in an attribute form Aimms provides wizards which help

you complete the attributes with which you are not familiar. Attribute wizards

can be invoked by pressing the small buttons in front of the attribute fields

as shown in Figure 4.2. The wizard dialog boxes may range from presenting

a fixed selection of properties, to presenting a relevant subselection of data

from your model which can be used to complete the attribute.

Reduce syntax

knowledge

By providing attribute forms and their associated wizards for the declaration

of all identifiers, the amount of syntax knowledge required to set up the model

source is drastically reduced. The attribute window of each identifier provides

you with a complete overview of all the available attributes for that particular

type of identifier. The wizards, in most cases, guide you through one or more

dialog boxes in which you can choose from a number of possible options.

After selecting the options relevant to your model, Aimms will subsequently

enter these in the attribute form using the correct syntax.

Local

compilation

Once your complete model has been compiled successfully, attribute changes

to a single identifier usually require only the recompilation of that identifier

before the model can be executed again. This local compilation feature of

Aimms allows you to quickly observe the effect of particular attribute changes.

. . . versus global

compilation

However, when you make changes to some attributes that have global implica-

tions for the rest of your model, local compilation will no longer be sufficient.

In such a case, Aimms will automatically recompile the entire model before you

can execute it again. Global recompilation is necessary, for instance, when you

change the dimension of a particular identifier. In this case global re- compi-

lation is required, since the identifier could be referenced elsewhere in your

model.

Attributes of

structuring

nodes

The attributes of structuring nodes allow you to specify documentation re-

garding the contents of that node. You can also provide directives to Aimms

to store a section node and all its offshoots in a separate file which is to be

included when the model is compiled. Storing parts of your model in separate

model files is discussed in more detail in Section 4.2.

4.2 Creating and managing models

Creating new

models

When you begin a new model, Aimms will automatically create a skeleton model

tree suitable for small applications and student assignments. Such a skeleton

contains the following nodes:

� a single declaration section where you can store the declarations used in

your model,

46 Chapter 4. The Model Explorer

� the predefined procedures MainInitialization and PostMainInitializa-

tion which are called directly after compiling your model and can be

used to initialize your model,

� the predefined procedure MainExecution where you can put all the state-

ments necessary to execute the algorithmic part of your application, and

� the predefined procedures PreMainTermination and MainTerminationwhich

are called just prior to closing the project.

The model tree also displays the predefined and read-only library module

Predeclared Identifiers (see also Section 4.1), which contains all the identi-

fiers predeclared by Aimms, categorized by function.

Changing the

skeleton

Whenever the number of declarations in your model becomes too large to be

easily managed within a single declaration section, or whenever you want to

divide the execution associated with your application into several procedures,

you are free (and advised) to change the skeleton model tree created by Aimms.

You can group particular declarations into separate declaration sections with

meaningful names, and introduce your own procedures and functions. You

may even decide to remove one or more of the skeleton nodes that are not of

use in your application.

Additional

structuring of

your model

When you feel that particular groups of declarations, procedures and func-

tions belong together in a logical manner, you are encouraged to create a new

structuring section with a descriptive name within the model tree, and store

the associated model components within it. When your application grows in

size, a clear hierarchical structure of all the information stored will help you

tremendously in finding your way within your application.

Storage on disk The contents of a model are stored in one or more files with the “.ams” (Aimms

model source) extension. By default the entire model is stored as a single

file, but for each book section node or module node in the tree you can

indicate that you want to store the subtree below it in a separate source file.

This is especially useful when particular parts of your application are shared

with other Aimms applications, or are developed by other persons. Library

modules associated with a library project that you have included in your

project, are always stored in a separate .ams file.

Separate

storage

To store a module or section of your model in a separate source file, open the

attribute form of that section node by double-clicking on it in the model ex-

plorer. The attribute form of a section is illustrated in Figure 4.3. By selecting

the Write... command of the SourceFile attribute wizard on this form, you

can select a file where you want all information under the section node to be

stored. Aimms will export the contents of the book section to the indicated

file, and enter that file name in the SourceFile attribute of the book section. As

4.2. Creating and managing models 47

Figure 4.3: Attribute form of a section node

a consequence, Aimms will automatically read the contents of the book section

from that file during every subsequent session.

Protecting

source files

Section 19.1 explains how you can further protect such a .ams file by encrypting

its contents, allowing you to ship it to your customers as an end-user only

module.

Exporting a

book section

Alternatively, when you are in the Model Explorer on the book section node

that you want to store in a separate file, you can use the Edit-Export menu, to

export the contents of the selected section to a separate .ams file. In the latter

case, Aimms will only export a copy of the contents of the selected section to

the specified .ams file, while the original contents is still stored in the main

.ams model file.

Adding a book

section

reference

Likewise, if you want a book section to hold the contents of a section stored in

a separate .ams file, you can use the Read... command of the SourceFile wizard

. This will let you select an .ams file which will be entered in the SourceFile

attribute. As a consequence, the contents of this file will be included into

the section during this and any subsequent sessions. Note that any previous

contents of a section at the time of entering the SourceFile attribute will be

lost completely. By specifying a SourceFile attribute, any changes that you

make to the contents of the section after adding a SourceFile attribute will be

automatically saved in the corresponding .ams, whenever you save your model.

Importing a

book section

Alternatively, you can import a copy of the contents of a separate .ams file

into your model, by executing the Edit-Import menu command on a selected

section node in the Model Explorer. This will completely replace the current

contents of the section with the contents of the .ams file. In this case, however,

any changes that you make to the section after importing the .ams file will not

be stored in that file, but only in your main model file.

48 Chapter 4. The Model Explorer

4.2.1 Working with modules and libraries

Name clashes When you import the contents of a book section node into your model, you

may find that particular identifier names in that book section already have

been declared in the remainder of your model. If such a name clash occurs,

Aimms will refuse to import the specified .ams file into your model, and present

a dialog box indicating which identifiers would cause a name clash when im-

ported.

Avoid name

clashes using

modules

You can avoid name clashes by using modules, which provide their own names-

pace. Modules allow you to share sections of model source between multiple

models, without the risk of running into name clashes. The precise semantics

of modules are discussed in full detail in Chapter 35 of the Language Refer-

ence.

Creating

modules

You can create a module anywhere in your model tree by inserting a Module

node into your tree, as discussed in Section 4.3. For each module you must

specify a module prefix through which you can access the identifiers stored in

the module. Figure 4.4 illustrates the attributes of a module. If this module

Figure 4.4: The attributes of a Module node

contains a parameter GlobalSettings, then outside of the module it can be

referenced as shared::GlobalSettings.

Aimms system

modules

Aimms uses modules to implement those parts of its functionality that can

be best expressed in the Aimms language itself. The available Aimms system

modules include

� a (customizable) implementation of the outer approximation algorithm,

� a scenario generation module for stochastic programming, and

� sets of constants used in the graphical 2D- and 3D-chart objects.

You can include these system modules into your model through the Settings-

Install System Module... menu.

4.2. Creating and managing models 49

Library projects

. . .

If your model becomes too large for a single developer to maintain and de-

velop, you may use library projects to create a division of your existing project

into sub-projects. The procedure for creating such library projects is discussed

in Section 3.1. For each library included in your project, Aimms creates a sepa-

rate library module node at the root the Model Explorer, as illustrated in Fig-

ure 4.5. When creating a new library the associated library module will initially

Figure 4.5: A library module containing the core model formulation

be empty. In the library module of Figure 4.5, one section from the original

model tree in Figure 4.1 has already been moved into the newly created library.

. . . for modular

development

Contrary to modules, whose principle aim is to let you share a common set of

identifier and procedure declarations among multiple models, library projects

allow you to truly divide an Aimms project into subprojects. With every library

project you cannot only associate a module in the model tree, but Aimms lets

you also develop pages and menus for the graphical user interface within a

library project. Within an Aimms project that includes such a library project,

you can use the model, pages and menus to compose the entire application in

a modular way.

Moving

identifiers to

modules and

libraries

When you move identifiers from the main model to a module or a library mod-

ule, references to such identifiers in the main model may become invalid be-

cause because they become part of a different namespace. In accordance with

the automatic name change support described in Section 5.2.1, Aimms will au-

tomatically change all references to the identifier in the model source, project

pages, and case files to include the module prefix, unless the reference is in-

cluded in the module or library itself. In occasional situations, however, the

automatic name change support of Aimms may fail to detect such references,

for instance, when an identifier name is included in a data initialization state-

ment of a subset of AllIdentifiers.

50 Chapter 4. The Model Explorer

Library

initialization

and termination

Each library may provide four procedures LibraryInitialization, PostLibraryIni-

tialization, PreLibraryTermination and LibraryTermination. If you specify these

procedures, they should contain all statements necessary to properly initialize

the data associated with a library prior to it first use, and provide the library

with a possibility to save its internal state prior to closing a project. The ex-

act initialization and termination sequence of Aimms models is discussed in

Section 25.1 of the Language Reference.

4.3 Working with trees

Working with

trees

The trees used in the various developer tools inside Aimms offer very similar

functionality to the directory tree in the WindowsTM Explorer. Therefore, if

you are used to working with the Windows Explorer, you should have little dif-

ficulty understanding the basic functionality offered by the trees in the Aimms

tools. For novice users, as well as for advanced users who want to understand

the differences to the Windows Explorer, this section explains the fine details

of working with trees in Aimms, using the context of the model tree.

Expanding and

collapsing

branches

Branches in a tree (i.e. intermediate nodes with subnodes) have a small expan-

sion box in front of them containing either a plus or a minus sign. Collapsed

branches have a plus sign , and can be expanded one level by a single click

on the plus sign (to show more information). Expanded branches have a minus

sign , and can be collapsed by a single click on the minus sign (to show less

information). Alternatively, a node can be expanded or collapsed by double

clicking on its icon. Leaf nodes have no associated expansion box.

Double-clicking

a node

When you double-click (or press Enter) on the name of any node in a tree,

Aimms will invoke the most commonly used menu command that is specific

for each tree.

� In the Model Explorer, the double-click is identical to the Edit-Attributes

menu, which opens the attribute window for the selected node.

� In the Identifier Selector, the double-click is identical to the Edit-Open

With menu, which opens a view window to simultaneously display the

contents of the selection.

� In the Page and Template Manager, the double-click is identical to the

Edit-Open menu, which opens the page or template.

� In the Menu Builder, the double-click is identical to the Edit-Properties

menu, which opens the appropriate Properties dialog box.

Alternatively, you can open the attribute form or Properties dialog box of any

node type using the Properties button on the toolbar.

4.3. Working with trees 51

Creating new

nodes

To create a new node in the model tree you must position the cursor at the

node in the tree after which you want to insert a new node. You can create a

new node here:

� by clicking on one of the node creation icons or

on the toolbar

� by selecting the item Insert... from the right-mouse menu, or

� by pressing the Ins key on the keyboard.

The toolbar contains creation icons for the most common node types. You can

select the New... icon to select further node types.

Selecting a node

type

Once you have clicked the New... icon on the toolbar, or selected the Insert...

menu from the right-mouse menu, or have pressed the Ins key, a dialog box

as shown in Figure 4.6 appears from which you have to select a node type.

Figure 4.6: Dialog box for selecting a node type

The dialog box shows only those node types that are allowed at the particular

position in the tree. You can select a node type by a single mouse click, or by

typing in the first letter of the node type that you want to insert. When there

are more node types that begin with the same letter (as in Figure 4.6), re-type

that letter to alternate over all possibilities.

Naming the

node

After you have selected a node type, it is inserted in the model tree, and you

have to enter a name for the new node. In the model tree, all node names must

consist only of alphanumeric characters and underscores, and must start with

a letter. In addition, the names of structuring nodes may contain spaces. For

most node types their node names have to be unique throughout the model.

The only, quite natural, exception are declaration sections which accept either

the predefined name Declaration or a name unique throughout the model.

52 Chapter 4. The Model Explorer

Expanding

branches

without

subnodes

When you want to add subnodes to a branch, you must first expand the branch.

If you do not do this, a new node will be inserted directly after the branch,

and not as a subnode. Expanding an empty branch will result in an empty

subtree being displayed. After expansion you can insert a new node in the

usual manner.

Renaming

existing nodes

You can rename a selected node by pressing the F2 button, or single clicking

on the node name. After changing the name, press the Enter key to action the

change, or the Esc key to cancel. When the node is an identifier declaration,

a procedure, or a function which is used elsewhere in the model (or displayed

on a page in the graphical user interface), Aimms will, if asked, automatically

update such references to reflect the name change.

Multiple

selections

Unlike the Windows Explorer, Aimms lets you make multiple selections within

a tree which you can delete, cut, copy and paste, or drag and drop. The nodes

in a selection do not even have to be within the same branch. By left-clicking

in combination with the Ctrl key you can add or delete single nodes from the

selection. By left-clicking in combination with the Shift key you can add all

nodes between the current node and the last selected node.

Deleting nodes

and branches

You can delete all nodes in a selection by selecting Delete from the right-mouse

menu, or by pressing the Del key. When the selection contains branch nodes,

Aimms will also delete all child nodes contained in that branch.

Cut, copy, paste

and duplicate

With the Cut, and Copy and Paste items from the Edit menu, or right-mouse

menu, you can cut or copy the current selection from the tree, and paste it else-

where. In addition to the usual way of pasting, which copies information from

one position to another, Aimms also supports the Paste as Duplicate operation

in the Identifier Selector, the Template Manager and the Menu Builder. This

form of pasting makes no copy of the node but only stores a reference to it. In

this way changes in one node are also reflected in the other.

Drag and drop

support

In addition to the cut, and copy and paste types of operation, you can drag a

node selection and drop it onto another position in the model tree, or in any

of the other tools offered by Aimms. Thus you can, for instance, easily move

a declaration section to another position in the model tree, or to an existing

selection in the selection manager.

Copying or

moving with

drag and drop

By pressing the Shift or Ctrl keys during a drag-and-drop action, you can alter

its default action. In combination with the Shift key, Aimms will move the

selection to the new position, while the Ctrl key will copy the selection to the

new position. With the Shift and Control key pressed simultaneously, you

activate the special find function explained in the next paragraph. Aimms will

show the type of action that is performed when you drop the selection by

4.3. Working with trees 53

modifying the mouse pointer, or by displaying a stop sign when a particular

operation is not permitted.

Searching for

identifiers

Aimms offers several tools for finding model-related information quickly and

easily.

� When the attribute of an identifier, or the body of a procedure or func-

tion, contains a reference to another identifier within your application,

you can pop up the attribute form of that identifier by simply clicking on

the reference and selecting the Attributes... item from the right-mouse

menu.

� With the Find... item from the Edit menu (or the Find button on

the toolbar) you can search for all occurrences of an identifier in your

entire model or in a particular branch. The Find function also offers the

possibility of restricting the search to only particular node attributes.

� The Identifier Selector offers an advanced tool for creating identifier se-

lections on the basis of one or more dynamic criteria. You can subse-

quently select a view from the View Manager to display and/or change

a subset of attributes of all identifiers in the selection simultaneously.

Selections and views are discussed in full detail in Chapter 7.

� By dragging a selection of identifiers onto any other tree while pressing

the Ctrl and Shift key simultaneously, Aimms will highlight those nodes

in the tree onto which the selection is dropped, in which the identifiers

in the selection play a role. This form of drag and drop support does

not only work with identifier selections, but can be used with selections

from any other tree as well. Thus, for instance, you can easily find the

pages in which a particular identifier is used, or find all pages that use a

particular end-user menu or toolbar.

Chapter 5

Identifier Declarations

This chapter This chapter shows you how to add new identifier declarations using the Model

Explorer and how to modify existing identifier declarations. The chapter also

explains how any changes you make to either the name or the domain of an

identifier are propagated throughout the remainder of your model.

5.1 Adding identifier declarations

Identifiers Identifiers form the heart of your model. All data are stored in identifiers,

and the bodies of all functions and procedures consist of statements which

compute the values of one identifier based on the data associated with other

identifiers.

Adding

identifiers

Adding an identifier declaration to your model is as simple as adding a node

of the desired type to a global declaration section (or to a declaration section

local to a particular procedure or function), as explained in Section 4.3. Aimms

will only allow you to add identifier declarations inside declaration sections.

Identifier types There are many different types of identifiers. Each identifier type corresponds

to a leaf node in the model tree and has its own icon, consisting of a white box

containing one or more letters representing the identifier type. When you add

an identifier to a declaration section of your model in the model tree, you must

first select its identifier type from the dialog box as presented in Figure 5.1.

Identifier name After you have selected the identifier type, Aimms adds a node of the spec-

ified type to the model tree. Initially, the node name is left empty, and you

have to enter a unique identifier name. If you enter a name that is an Aimms

keyword, an identifier predeclared by Aimms itself, or an existing identifier in

your model, Aimms will warn you of this fact. By pressing the Esc key while

you are entering the identifier name, the newly created node is removed from

the tree.

5.1. Adding identifier declarations 55

Figure 5.1: Choosing an identifier type

Meaningful

names are

preferable

There is no strict limit to the length of an identifier name. Therefore, you

are advised to use clear and meaningful names, and not to worry about either

word length or the intermingling of small and capital letters. Aimms offers

special features for name completion such as Ctrl-Spacebar (see Section 5.2),

which allow you to write subsequent statements without having to retype the

complete identifier names. Name completion in Aimms is also case consistent.

Index domainIn addition, when an identifier is multidimensional, you can immediately add

the index domain to the identifier name as a parenthesized list of indices that

have already been declared in the model tree. Alternatively, you can provide

the index domain as a separate attribute of the identifier in its attribute form.

Figure 5.2 illustrates the two ways in which you can enter the index domain

of an identifier. In both cases the resulting list of indices will appear in the

model tree as well as in the IndexDomain attribute of the attribute form of that

identifier. In the IndexDomain attribute it is possible, however, to provide a

further restriction to the domain of definition of the identifier by providing

one or more domain conditions (as explained in full detail in the Language

Reference). Such conditions will not appear in the model tree.

56 Chapter 5. Identifier Declarations

(a) in the attribute form

(b) in the model explorer

Figure 5.2: Specifying an index domain

Unrestricted

order of

declarations

The identifier declarations in the model tree can be used independently of the

order in which they have been declared. This allows you to use an identifier

anywhere in the tree. This order independence makes it possible to store iden-

tifiers where you think they should be stored logically. This is different to

most other systems where the order of identifier declarations is dictated by

the order in which they are used inside the model description.

Identifier scope In general, all identifiers in an Aimms model are known globally, unless they

have been declared inside a local declaration section of a procedure or func-

tion. Such identifiers are only known inside the procedure or function in which

they have been declared. When you declare a local identifier with the same

name as a global identifier, references to such identifiers in the procedure or

function will evaluate using the local rather than the global identifier.

Local

declarations

Local identifiers declared in procedures and functions are restricted to par-

ticular types of identifier. For example, Aimms does not allow you to declare

constraints as local identifiers in a procedure or function, as these identifier

types are always global. Therefore, when you try to add declarations to a dec-

laration section somewhere in the model tree, Aimms only lists those types of

nodes that can be inserted at that position in the model tree.

5.2. Identifier attributes 57

Declarations via

attributes

As an alternative to explicitly adding identifier nodes to the model tree, it is

sometimes possible that Aimms will implicitly define one or more identifiers

on the basis of attribute values of other identifiers. The most notable examples

are indices and (scalar) element parameters, which are most naturally declared

along with the declaration of an index set. These identifiers can, therefore, be

specified implicitly via the Index and Parameter attributes in the attribute form

of a set. Implicitly declared identifiers do not appear as separate nodes in the

model tree.

5.2 Identifier attributes

Identifier

attributes

The attributes of identifier declarations specify various aspects of the identi-

fier which are relevant during the further execution of the model. Examples are

the index domain over which the identifier is declared, its range, or a definition

which expresses how the identifier can be uniquely computed from other iden-

tifiers. For the precise interpretation of particular attributes of each identifier

type, you are referred to the Aimms Language Reference, which discusses all

identifier types in detail.

Attribute

window

The attributes of an identifier are presented in a standard form. This form

lists all the relevant attributes together with the current values of these at-

tributes. The attribute values are always presented in a textual representation,

consisting of either a single line or multiple lines depending on the attribute.

Figure 5.3 illustrates the attribute form of a variable ComponentFlow(f,c). The

Figure 5.3: Identifier attributes

attributes specify, for instance, that the variable is measured in Mmol/h, and

provide a definition in terms of other parameters and variables.

58 Chapter 5. Identifier Declarations

Default values You do not need to enter values for all the attributes in an attribute window. In

fact, most of the attributes are optional, or have a default value (which is not

shown). You only have to enter an attribute value when you want to alter the

behavior of the identifier, or when you want to provide a value that is different

to the default.

Entering

attribute text . . .

You can freely edit the text of almost every attribute field, using the mecha-

nisms common to any text editor. Of course, you will then need to know the

syntax for each attribute. The precise syntax required for each attribute is

described in the Aimms Language Reference book.

. . . or using

attribute

wizards

To help you when filling in attributes, Aimms offers specialized wizards for

most of them. These wizards consists of (a sequence of) dialog boxes, which

help you make specific choices, or pick identifier names relevant for specifying

the attribute. An example of an attribute wizard is shown is Figure 5.4. In this

Figure 5.4: Example of an attribute wizard

wizard, the numerical range of a particular parameter or variable is specified

as the user-defined interval [0,MaxFlowErrorBound]. After completing the dialog

box, the result of filling in the wizard is copied to the attribute window with

the correct syntax.

Mandatory use

of wizards

Some of the attribute fields are not editable by hand, but require you to always

use the associated wizard. Aimms requires the use of wizards, whenever this

is necessary to keep the model in a consistent state. Examples are (non-empty)

Index and Parameter attributes of sets, as well ass the BaseUnit attribute of

quantities.

5.2. Identifier attributes 59

Identifier

reference

support

Even when you decide to enter an attribute into a field manually, Aimms still

offers support to help you enter such a field quickly and easily. If your ap-

plication contains a large number of identifiers and/or if the names of these

identifiers are long, then it may be difficult to remember all the exact names.

There are two ways to let Aimms help you in filling in the appropriate names

in an attribute field:

� you can drag and drop the names from the model tree into the field, or

� with the name completion feature you can let Aimms fill in the remainder

of the name based on only the first few characters typed.

Dragging

identifiers

When filling in an attribute field, you can drag any identifier node in the model

tree to a particular location in the attribute field. As a result, Aimms will copy

the identifier name, with its index domain, at the location where you dropped

the identifier.

Name

completion . . .

When you use the Ctrl-Spacebar combination anywhere in an attribute field,

Aimms will complete any incomplete identifier name at the current cursor po-

sition wherever possible. With the Ctrl-Shift-Spacebar combination Aimms will

also complete keywords and predefined procedure and function names. When

there are more than one possibilities, a menu of choices is presented as in

Figure 5.5. In this menu the first possible extension will be selected and the

Figure 5.5: Name completion

selection will be updated as you type. When an identifier name is complete, ap-

plying name completion will cause Aimms to extend the identifier by its index

domain as specified in its declaration.

. . . applied to

the :: and .

characters

By pressing Ctrl-Spacebar in a string that contains the :: or . characters,

Aimms will restrict the list of possible choices as follows.

� If the name in front of the :: character is a module or library module

prefix, Aimms will show all the identifiers contained in the module, or all

identifiers contained in the interface of the library module, respectively.

� If the string to complete refers to a property in a PROPERTY statement, and

the name in front of the . character is an identifier, Aimms will show all

properties available for the identifier (based on its type).

60 Chapter 5. Identifier Declarations

� If the string to complete refers to an option in an OPTION statement, and

the string in front of the . character refers to an element of the set

AllSolvers, Aimms will show all options available for that solver.

� In all other cases, if the name in front of the . character is an identifier,

Aimms will show all the suffices available for the identifier (based on its

declaration).

5.2.1 Navigation features

Navigation

features

From within an attribute window, there are several menus and buttons avail-

able to quickly access related information, such as the position in the model

tree, identifier attributes and data, and context help on identifier types, at-

tributes and keywords.

Browsing the

model tree

From within an attribute window you can navigate further through the model

tree by using the navigation buttons displayed at the top of the window.

� The Parent , Previous and Next Attribute Window buttons will

close the current attribute window, and open the attribute window of the

parent, previous or next node in the model, respectively.

� The Location in Model Tree button will display the model tree and

highlight the position of the node associated with the current attribute

window.

Viewing

identifier details

When an identifier attribute contains a reference to a particular identifier in

your model, you may want to review (or maybe even modify) the attributes or

current data of that identifier. Aimms provides various ways to help you find

such identifier details:

� by clicking on a particular identifier reference in an identifier attribute,

you can open its attributes window through the Attributes item in the

right-mouse pop-up menu,

� you can locate the identifier declaration in the model tree through the

Location in Model Tree item in the right-mouse pop-up menu, and

� you can view (or modify) the identifier’s data through the Data item in

the right-mouse pop-up menu (see Section 5.4).

Context helpContext

sensitive help

Through either the Context Help button on the toolbar, or the Help on item

in the right-mouse pop-up menu, you can get online help for the identifier type,

its attributes and keywords used in the attribute fields. It will open the section

in one of the Aimms books or help files, which provides further explanation

about the topic for which you requested help.

5.3. Committing attribute changes 61

5.3 Committing attribute changes

Syntax checkingThe modifications that you make to the attributes of a declaration are initially

only stored locally within the form. Once you take further action, the changes

in your model will be checked syntactically and committed to the model. There

are three ways to do this.

� Check and commit . This command checks the current values of the

attributes for syntax errors, and if there are no errors the new values are

applied to the model.

� Check, commit and close . Same as check and commit, but if there

are no errors it also closes the current form. Since this is the most fre-

quently used action, you can also invoke it by pressing Ctrl-Enter.

� Commit and close . This command does not check the current values,

but simply applies them to the model and then closes the form. The

changes will be checked later, when the entire model is checked or when

you re-open and check the form yourself.

� Discard . If you do not want to keep any of the changes you made in

the attribute form, you can discard them using the Discard button.

Saving the

model

In addition to committing the changes in a single attribute form manually as

above, the changes that you have made in any attribute form are also commit-

ted when you save the model (through the File-Save menu), or recompile it in

its entirety (through the Run-Compile All menu).

Renaming

identifiers

It is quite common to rename an existing identifier in a modeling application

because you consider that a new name would better express its intention. In

such cases, you should be aware of the possible consequences for your appli-

cation. The following questions are relevant.

� Are there references to the (old) identifier name in other parts of the

model?

� Are there case files that contain data with respect to the (old) identifier

name?

� Are there pages in the end-user interface that display data with respect

to the (old) identifier name?

If the answer to any of these questions is yes, then changing the identifier

name could create problems.

Automatic

name changes

Aimms helps you in dealing with the possible consequences of name changes

by offering the following support:

� Aimms updates all references to the identifier throughout the model text,

and in addition,

62 Chapter 5. Identifier Declarations

� Aimms keeps a log of the name change (see also Section 2.5), so that

when Aimms encounters any reference to the old name in either a page

or in a case file, the new name will be substituted.

Beware of

structural

changes

Problems arise when you want to change the index domain of an identifier, or

remove an identifier, while it is still referenced somewhere in your application.

Such changes are called structural, and are likely to cause errors in pages and

cases. In general, these errors cannot be recovered automatically. To help

you locate possible problem areas, Aimms will mark all pages and cases that

contain references to changed or deleted identifiers. To check how a change

really affects these pages and cases, you should open them, make any required

adaptations to deal with the errors, and resave them.

Modifying

identifier type

You can modify the type of a particular identifier in the model tree via the

identifier type drop-down list in the attribute window of the

identifier. The drop-down list lets you select from all identifier types that are

compatible with the current identifier type. Alternatively, you can change the

identifier type via the Edit-Change Type menu.

Incompatible

attributes

Before a change of identifier type is actually committed, Aimms displays the

dialog box illustrated in Figure 5.6, which lists all the attributes of the identi-

fier that are not compatible with the newly selected type. If you do not want

Figure 5.6: The Change Identifier Type dialog box

such attributes to be deleted, you should cancel the operation at this point.

When you allow Aimms to actually perform the type change, the incompatible

attributes will be deleted.

5.4. Viewing and modifying identifier data 63

5.4 Viewing and modifying identifier data

Viewing

identifier data

When you are developing your model (or are reviewing certain aspects of it

later on), Aimms offers facilities to directly view (and modify) the data associ-

ated with a particular identifier. This feature is very convenient when you want

to enter data for an identifier during the development of your model, or when

you are debugging your model (see also Section 8.1) and want to look at the

results of executing a particular procedure or evaluating a particular identifier

definition.

The Data buttonVia the Data button available in the attribute window of every global identi-

fier (see, for instance, Figure 5.3), Aimms will pop up one of the data pages as

illustrated in Figure 5.7. Data pages provide a view of the current contents of

Figure 5.7: Data pages of a set and a 2-dimensional parameter

the selected identifier. Which type of data page is shown by Aimms depends

on the type of the identifier. The data page on the left is particular to one-

dimensional root sets, while the data page on the right is appropriate for a

two-dimensional parameter.

Data pages for

variables and

constraints

For variables (and similarly for constraints), Aimms will display a pivot table

containing all the indices from the index domain of the variable plus one ad-

ditional dimension containing all the suffices of the variable that contain rel-

evant information regarding the solution of the variable. Depending on the

properties set for the variable, this dimension may contain a varying number

of suffices containing sensitivity data related to the variable.

Viewing data in

the Model

Explorer

Data pages can also be opened directly for a selected identifier node in the

model tree using either the Edit-Data menu, or the Data command in the right-

mouse pop-up menu. Additionally, you can open a data page for any identifier

referenced in an attribute window by selecting the identifier in the text, and

applying the Data command from the right-mouse pop-up menu.

64 Chapter 5. Identifier Declarations

Multidimen-

sional identifiers

For multidimensional identifiers, Aimms displays data using a default view

which depends on the identifier dimension. Using the button on the data

page you can modify this default view. As a result, Aimms will display the

dialog box illustrated in Figure 5.8. In this dialog box, you can select whether

Figure 5.8: Selecting a data page type

you want to view the data in a sparse list object, a composite table object, a

pivot table object or in the form of a (rectangular) table. Additionally, you can

indicate that you want the view to be sliced (see also Section 10.4), by selecting

fixed elements for one or more dimensions. For every sliced dimension, Aimms

will automatically add a floating index to the data page, allowing you to view

the data for every element in the sliced dimension.

Saving your

choice

If you want to always use the same data page settings for a particular identifier,

you can save the choices you made in Figure 5.8. As a result, Aimms will

save the data page as an ordinary end-user page in the special All Data Pages

section of the Page Manager (see also Section 12.1). If you so desire, you can

further edit this page, and, for instance, add additional related identifiers to

it which will subsequently become visible when you view the identifier data in

the Model Explorer.

5.4. Viewing and modifying identifier data 65

End-user page

as data page

Whenever there is a page in the All Data Pages section of the page manager

with the fixed name format [Data Page] followed by the name of an identifier

of your model, Aimms will use this page as the data page for that identifier.

This enables you to copy a custom end-user page, that you want to use as a

data page for one or more identifiers, to the All Data Pages section of the page

manager, and rename it in the prescribed name format. When you remove a

page from the All Data Pages section, Aimms will again open a default data

page for that identifier. If you hold down the Shift key while opening a data

page, Aimms will always use the default data page.

Global and local

identifiers

Normally, Aimms will only allow you to open data pages of global identifiers of

your model. However, within the Aimms debugger (see also Section 8.1), Aimms

also supports data pages for local identifiers within a (debugged) procedure,

enabling you to examine the contents of local identifiers during a debug ses-

sion.

Chapter 6

Procedures and Functions

This chapter This chapter describes how you can add procedures and functions to a model.

It also shows how you can add arguments and local identifiers to procedures

and functions. In addition, it illustrates how the body of a procedure or func-

tion can be broken down into smaller pieces of execution code, allowing you

to implement procedures and functions in a top-down approach.

6.1 Creating procedures and functions

Procedures and

functions

Procedures and functions are the main means of executing the sequential tasks

in your model that cannot be expressed by simple functional relationships in

the form of identifier definitions. Such tasks include importing or exporting

your model’s data from or to an external data source, the execution of data

assignments, and giving Aimms instructions to optimize a system of simulta-

neous equations.

Creating

procedures and

functions

Procedures and functions are added as a special type of node to the model

tree, and must be placed in the main model, or in any book section. They

cannot be part of declaration sections, which are exclusively used for model

identifiers. Procedures and functions are represented by folder icons, which

open up when the node is expanded. Figure 6.1 illustrates an example of a

procedure node in the model tree.

Naming and

arguments

After you have inserted a procedure or function node into the tree, you have

to enter its name. If you want to add a procedure or function with arguments,

you can add the argument list here as well. Alternatively, you can specify

the argument list in the attribute window of the procedure or function. The

full details for adding arguments and their declaration as identifiers, local to

the procedure or function, are discussed in Section 6.2. Whether or not the

arguments are fully visible in the tree is configurable using the View menu.

6.2. Declaration of arguments and local identifiers 67

Figure 6.1: Example of a procedure node

Procedure and

function

attributes

The attribute window of a procedure or function lets you specify or view as-

pects such as its list of arguments, the index domain of its result, or the actual

body. The body may merely consists of a SOLVE statement to solve an optimiza-

tion model, but can also consist of a sequence of execution and flow control

statements. An example of the attribute window of a procedure node within

[0.49]bordercolorproc-attr-new

Figure 6.2: Example of procedure attributes

the model tree is illustrated in Figure 6.2. The contents of the Body attribute is

application-specific, and is irrelevant to a further understanding of the mate-

rial in this section.

Specifying

function domain

and range

When the resulting value of a function is multidimensional, you can specify

the index domain and range of the result in the attribute form of the function

using the IndexDomain and Range attributes. Inside the function body you can

make assignments to the function name as if it were a local (indexed) param-

eter, with the same dimension as specified in the IndexDomain attribute. The

most recently assigned values are the values that are returned by the function.

6.2 Declaration of arguments and local identifiers

Specifying

arguments

All (formal) arguments of a procedure or function must be specified as a paren-

thesized, comma-separated, list of non-indexed identifier names. All formal ar-

guments must also be declared as local identifiers in a declaration section local

to the procedure or function. These local declarations then specify the further

domain and range information of the arguments. If an argument has not been

declared when you create (or modify) a procedure or function, Aimms will open

68 Chapter 6. Procedures and Functions

the dialog box illustrated in Figure 6.3 which helps you add the appropriate

declaration quickly and easily. After completing the dialog box, Aimms will

Figure 6.3: Argument Declaration dialog box

automatically add a declaration section to the procedure or function, and add

the arguments displayed in the dialog box to it, as illustrated in Figure 6.1.

Input-output

type

An important aspect of any argument is its input-output type, which can be

specified by selecting one of the Input, InOut, Output or Optional properties

in the Argument Declaration dialog box. The input- output type determines

whether any data changes you make to the formal arguments are passed back

to the actual arguments on leaving the procedure. The precise semantic mean-

ing of each of these properties is discussed in the Aimms Language Reference

book.

Argument

attributes

The choices made in the Argument Declaration dialog box are directly re-

flected in the attribute form of the local identifier added to the model tree by

Aimms. As an example, Figure 6.4 shows the attribute form of the single argu-

ment mf of the procedure CheckComputableFlow added in Figure 6.3. In the dia-

log box of Figure 6.3 it is not possible to modify the dimension of a procedure

or function argument directly. If your procedure or function has a multidi-

mensional argument, you can specify this with the IndexDomain attribute of the

argument after the argument has been added as a local identifier to the model

tree.

6.3. Specifying the body 69

Figure 6.4: Declaration form of a procedure argument

Prototype

checking

For every call to the procedure or function, Aimms will verify whether the types

of all the actual arguments match the prototypes supplied for the formal argu-

ments, including the supplied index domain and range. For full details about

argument declaration refer to the Aimms Language Reference book.

Local

declarations

In addition to arguments, you can also add other local identifiers to declara-

tion sections within procedures and functions. Such local identifiers are only

known inside the function or procedure. They are convenient for storing tem-

porary data that is only useful within the context of the procedure or function,

and have no global meaning or interpretation.

Not all types

supported

Not all identifier types can be declared as local identifiers of a procedure or

function, because of the global implications they may have for the Aimms ex-

ecution engine. When you try to add a local identifier to a procedure or func-

tion, Aimms will only offer those identifier types that are actually supported

within a procedure or function. An example of an identifier type that cannot

be declared locally is a constraint.

Not all

attributes

supported

In addition, for local identifiers, Aimms may only support a subset of the at-

tributes that are supported for global identifiers of the same type. For instance,

Aimms does not allow you to specify a Definition attribute for local sets and

parameters. In the attribute window of local identifiers such non-supported

attributes are automatically removed when you open the associated attribute

form.

6.3 Specifying the body

StatementsIn the Body attribute of a procedure or function you can specify the

� assignments,

� execution statements such as SOLVE or READ/WRITE,

� calls to other procedures or functions in your model, and

� flow control statements such as FOR, WHILE or IF-THEN-ELSE

70 Chapter 6. Procedures and Functions

which perform the actual task or computation for which the procedure or func-

tion is intended. The precise syntax of all execution statements is discussed in

detail in the Aimms Language Reference book.

Automatic

outlining

When you are constructing a procedure or function whose execution consists

of a large number of (nested) statements, it may not always be easy or nat-

ural to break up the procedure or function into a number of separate pro-

cedures. To help you maintain an overview of such large pieces of execution

code, Aimms will automatically add outlining support for common flow control

statement and multiline comments. The minus button that appears in front

of the statement allows you to collapse the statement to a single line block and

the and plus button allows you to expand the statement to its full extent

again.

Execution blocks In addition, you can break down the body of a procedure or function into

manageable pieces using one or more execution blocks. Any number of Aimms

statements enclosed between BLOCK and ENDBLOCK keywords can be graphically

collapsed into a single block. The text in the single line comment following

the BLOCK keyword is used as display text for the collapsed block. An example

of a procedure body containing two collapsed execution blocks is given in

Figure 6.5.

Figure 6.5: Example of a procedure body with execution blocks

6.3. Specifying the body 71

Identifier

references

When you are entering statements into a body of a procedure or function,

Aimms can help you to add identifier references to the body quickly and easily:

� you can drag and drop the names from the model tree into text

� with the name completion feature you can let Aimms complete the re-

mainder of the name based on only the first characters typed.

The precise details of drag-and-drop support and name completion of identi-

fiers are discussed in Sections 4.3 and 5.2.

Viewing

identifier details

When you are entering the body of a procedure or function, you may want to

review the attributes or current data of a particular identifier referenced in the

body. Aimms offers various ways to help you find such identifier details:

� through a text based search in the model tree, you can locate the specific

identifier node and open its attribute form (see Section 4.3),

� by clicking on a particular identifier reference in the body, you can open

its attributes form through the Attributes item in the right-mouse pop-

up menu,

� you can locate the identifier declaration in the model tree through the

Location in Model Tree item in the right-mouse pop-up menu, and

� you can view (or modify) the identifier’s data through the Data item in

the right-mouse pop-up menu (see Section 5.4).

Viewing

procedure

details

Similarly, while you are referencing a procedure or function inside the body

of another procedure or function, Aimms will provide prototype information

of such a procedure or function as soon as you enter the opening bracket (or

when you hover with the mouse pointer over the procedure or function name).

This will pop up a window as illustrated in Figure 6.6. This tooltip window

Figure 6.6: Prototype info of a procedure

displays all arguments of the selected procedure or function, their respective

data types, as well as their Input-Output status. The latter enables you to

assess the (global) effect on the actual arguments of a call to the procedure.

72 Chapter 6. Procedures and Functions

6.4 Syntax checking, compilation and execution

Performing a

syntax check

Using either Check and commit or Check, commit and close as discussed in

Section 5.3 Aimms will compile the procedure or function in hand, and point

out any syntax error in its body. If you do not want to compile a procedure

or function, but still want to commit the changes, you should use the Commit

and close button. All edits are ignored when you close the window using the

Discard button.

Partial

recompilation

Before executing any procedure in your model, Aimms will automatically verify

whether your model needs to be recompiled, either partially or fully. In most

cases, there is no need for Aimms to recompile the entire model after a modifi-

cation or addition of a new identifier, a procedure or a function. For instance,

when you have only changed the body of a procedure, Aimms needs only to

recompile that particular procedure.

Complete

recompilation

However, if you change the index domain of an identifier or the number of ar-

guments of a procedure or function, each reference to such an identifier, pro-

cedure or function needs to be verified for correctness and possibly changed.

In such cases, Aimms will (automatically) recompile the entire model before

any further execution can take place. Depending on the size of your model,

complete recompilation may take some time. Note that either partial or com-

plete recompilation will only retain the data of all identifiers present prior to

compilation, to the extent possible (data cannot be retained when, for instance,

the dimension of an identifier has changed).

Running a

procedure

Aimms supports several methods to initiate procedural model execution. More

specifically, you can run procedures

� from within another procedure of your model,

� from within the graphical user interface by pressing a button, or when

changing a particular identifier value, or

� by selecting the Run procedure item from the right-mouse menu for any

procedure selected in the Model Explorer.

The first two methods of running a procedure are applicable to both devel-

opers and end-users. Running a procedure from within the Model Explorer a

useful method for testing the correct operation of a newly added or modified

procedure.

Chapter 7

Viewing Identifier Selections

Identifier

overviews

Although the Model Explorer is a very convenient tool to organize all the infor-

mation in your model, it does not allow you to obtain a simultaneous overview

of a group of identifiers that share certain aspects of your model. By mutual

comparison of important attributes (such as the definition), such overviews

may help you to further structure and edit the contents of your model, or to

discover oversights in a formulation.

This chapterTo assist you in creating overviews that can help you analyze the interrelation-

ships between identifiers in your model, Aimms offers the Identifier Selector

tool and View windows. This chapter helps you understand how to create

meaningful identifier selections with the Identifier Selector, and how to dis-

play such selections using different views.

7.1 Creating identifier selections

Select by

similarity

When you are developing or managing a large and complicated model, you

sometimes may need an overview of all identifiers that have some sort of sim-

ilarity. For example, it may be important to have a simultaneous view of

� all the constraints in a model,

� all variables with a definition,

� all parameters using a certain domain index, or

� all identifiers that cover a specific part of your model.

Identifier

selections

In Aimms, you can create a list of such identifiers using the configurable Iden-

tifier Selector tool. This tool helps you to create a selection of identifiers

according to a set of one or more criteria of varying natures. You can let

Aimms create a once only selection directly in the Model Explorer, or create a

compound selection in the Identifier Selector, which allows you to intersect or

unite multiple selections.

74 Chapter 7. Viewing Identifier Selections

Creating once

only selections

If you need a selection only once, then you can create it directly in the Model

Explorer by

� either manually selecting one or more nodes in the tree, or

� using the View-Selection menu to create a custom selection based on one

or more of the conditional selection criteria offered by Aimms (explained

below).

In both cases, the resulting list of selected identifiers will be highlighted in the

model tree. If you like, you can narrow down or extend the selection by apply-

ing one or more subsequent conditional selections to the existing selection.

The Identifier

Selector

If you need a specific selection more than once, then you can create it in the

Identifier Selector tool. The Identifier Selector consists of a tree in which each

node contains one of the three types of identifier selectors described below.

Figure 7.1 illustrates an example selector tree.

Figure 7.1: The selector tree

Selector types In the Identifier Selector tool, you can add nodes corresponding to several

types of identifier selectors:

� a node-based selector , where all the identifiers below one or more

user-selected nodes in the model tree are added to the selection,

� a conditional selector , where the list of identifiers is created dynam-

ically on identifier type and/or the contents of one of their respective

attributes,

� a set-dependent selector , where the list of identifiers is created dynam-

ically based on a specific set in either the domain or range of identifiers,

or

� a type-based selector , where the list of identifiers consists of all vari-

ables of a certain type (e.g. free, nonnegative, binary) or all constraints of

7.1. Creating identifier selections 75

a certain type (≤, = or ≥). This selector can only be used in combination

with the Math Program Inspector.

While the above four selectors allow you to define selections based on a sym-

bolic criteria, the four types of identifier selectors below allow you to specify

selections based on individual criteria. The main purpose of these selectors

is to define selections that can be used in the Math Program Inspector (see

Chapter 9).

� an element-dependent selector , where the list of individual identifiers

is created dynamically based of the occurrence of one or more specific

elements in the domain,

� a scale-based selector , where the list of identifiers is built up from all

variables and constraints for which the ratio between the largest abso-

lute value and the smallest absolute value in the corresponding row or

column of the matrix exceeds a given value,

� a status-based selector , where the list of identifiers is built up from all

variables and constraints for which the solution satisfies some property

(e.g. feasible, basic, at bound), or

� a value-based selector , where the list of identifiers is built up from all

variables and constraints for which the level, bound, marginal, or bound

violation value satisfy satisfy some property.

Through the View-Selection menu in the Model Explorer you can only create

a new, or refine an existing, selection using a conditional selector.

Selection dialog

box

To create a selector, Aimms offers special dialog boxes which let you specify

the criteria on which to select. As an example the dialog box for creating a

conditional selector is illustrated in Figure 7.2. In it, you can select (by double

Figure 7.2: The Conditional Selector dialog box

clicking) one or more identifier types that you want to be part of the selection

76 Chapter 7. Viewing Identifier Selections

and filter on specific attributes that should be either empty, nonempty, or

should contain a particular string.

Compound

selections

The tree structure in the Identifier Selector defines combinations of selectors

by applying one of the set operators union, difference or intersection with re-

spect to the identifier selection represented by the parent node. The root of

the tree always consists of the fixed selection of all model identifiers. For

each subsequent child node you have to indicate whether the node should add

identifiers to the parent selection, should remove identifiers from the parent

selection, or should consider the intersection of the identifiers associated with

the current and the parent selection. Thus, you can quickly compose identifier

selections that satisfy multiple selection criteria. The type of set operation

applied is indicated by the icon of each node in the identifier selector.

Refining model

tree selections

In the Model Explorer, the union, difference and intersection operations ap-

ply to the identifier selection that is currently highlighted in the model tree.

You can use them to add identifiers to the current selection, to remove identi-

fiers from the current selection, or filter the current selection by means of an

additional criterion.

Using selections The list of identifiers that results from a (compound) identifier selector can be

used in one of the following ways:

� you can display the identifiers in a View window of your choice (ex-

plained in the next section),

� you can restrict the set of variables and constraints initially displayed in

the Math Program Inspector (see Chapter 9), or

� by dragging and dropping a selector into the Model Explorer, the corre-

sponding identifiers will be highlighted in the model tree.

Advanced drag

and drop

The drag-and-drop features of Aimms make it very easy to fill a View window

with identifiers from either the model tree, the Identifier Selector or other

View windows. If you drag-and-drop a selection into any other Aimms window,

Aimms will interpret this as a special search action to highlight all occurrences

of the selected identifiers as follows:

� in the model tree all identifiers in the selection will be highlighted,

� in the page or template tree all pages that contain reference to the iden-

tifiers in the selection will be highlighted,

� in an end-user page, in edit mode, all objects that contain references to

the identifiers will be selected, and

� in the menu builder tree, Aimms will highlight all menu items that refer-

ence one or more identifiers in the selection.

In addition, Aimms also supports the ’drag-and-drop-search’ action in a View

window by pressing both the Shift and Control key during the drop operation.

7.2. Viewing identifier selections 77

7.2 Viewing identifier selections

Overview of

attributes

After you have created an identifier selection, in either the Model Explorer or

in the Identifier Selector, you may want to compare or simultaneously edit

multiple attributes of the identifiers in the selection. In general, sequential

or simultaneous, opening of all the corresponding single attribute forms is

impractical or unacceptable for such a task. To assist, Aimms offers special

identifier View windows.

Identifier viewsA View window allows you to view one or more attributes simultaneously for a

number of identifiers. Such a View window is presented in the form of a table,

where each row represents a single identifier and each column corresponds to

a specific attribute. The first column is always reserved for the identifier name.

An example of an identifier View window is given in Figure 7.3.

Figure 7.3: Example of a View window

Editing in a

View window

In addition to simply viewing the identifier content in a View window, you can

also use it to edit individual entries. To edit a particular attribute of an identi-

fier you can just click on the relevant position in the View window and modify

the attribute value. This can be convenient, for instance, when you want to add

descriptive text to all identifiers for which no text has yet been provided, or

when you want to make consistent changes to units for a particular selection

of identifiers. As in a single attribute form, the changes that you make are

not committed in the model source until you use one of the special compile

buttons at the top right of the window (see also Section 5.3).

78 Chapter 7. Viewing Identifier Selections

Opening a View

window

Using the Edit-Open with menu, or the Open with item in the right- mouse

pop-up menu, you can open a particular View window for any identifier se-

lection in the model explorer or in the identifier selector. Selecting the Open

with menu will open the View Manager dialog box as displayed in Figure 7.4.

In the View Manager you must select one of the available view window defini-

Figure 7.4: The View Manager dialog box

tions, with which to view the given identifier selection. For every new project,

the View Manager will automatically contain a number of basic view window

definitions that can be used to display the most common combinations of

identifier attributes.

Creating a view

window

definition

Using the Add, Delete and Properties buttons in the View Manager, you can

add or delete view window definitions to the list of available definitions, or

modify the contents of existing definitions. For every view window definition

that you add to the list or want to modify, Aimms will open the View Definition

Properties dialog box as illustrated in Figure 7.5. With this dialog box you can

Figure 7.5: View Definition Properties dialog box

7.2. Viewing identifier selections 79

add or remove attributes from the list of attributes that will be shown in the

View window, or change the order in which the particular attributes are shown.

Changing the

View window

contents

After opening a View window, with the contents of a particular identifier selec-

tion, you can add new identifiers to it by dragging and dropping other identi-

fier selections from either the Model Explorer or the Identifier Selector. Using

the Edit-Delete menu or the Del key, on the other hand, you can delete any

subselection of identifiers from the View window. At any time you can save

the modified identifier selection as a new node in the identifier selector tree

through the View-Selection-Save menu.

Selecting

identifier groups

Besides selecting individual identifiers from the model tree, you can also select

whole groups of identifiers by selecting their parent node. For example, if

you drag-and-drop an entire declaration section into a View window, all the

identifiers contained in that section will be added to the view.

Specifying a

default view

As can be seen at the bottom of the View Manager dialog box in Figure 7.4,

it is possible to associate a default view definition with every selector in the

Identifier Selector. As a consequence, whenever you double-click on such an

identifier selector node, Aimms will immediately open a default View window

with the current contents of that selection.

Chapter 8

Debugging and Profiling an Aimms Model

This chapter After you have developed an (optimization) model in Aimms, it will most prob-

ably contain some unnoticed logical and/or programming errors. These errors

can cause infeasible solutions or results that are not entirely what you ex-

pected. Also, you may find that the execution times of some procedures in

your model are unacceptably high for their intended purpose, quite often as

the result of only a few inefficiently formulated statements. To help you iso-

late and resolve such problems, Aimms offers a number of diagnostic tools,

such as a debugger and a profiler, which will be discussed in this chapter.

8.1 The Aimms debugger

Tracking

modeling errors

When your model contains logical errors or programming errors, finding the

exact location of the offending identifier declarations and/or statements may

not be easy. In general, incorrect results might be caused by:

� incorrectly specified attributes for one or more identifiers declared in

your model (most notably in the IndexDomain and Definition attributes),

� logical oversights or programming errors in the formulation of one or

more (assignment) statements in the procedures of your model,

� logical oversights or programming errors in the declaration of the vari-

ables and constraints comprising a mathematical program, and

� data errors in the parametric data used in the formulation of a mathe-

matical program.

Errors in

mathematical

programs

If the error is in the formulation or input data of a mathematical program, the

main route for tracking down such problems is the use of the Math Program

Inspector discussed in Chapter 9. Using the Math Program Inspector you can

inspect the properties of custom selections of individual constraints and/or

variables of a mathematical program.

The Aimms

debugger

To help you track down errors that are the result of misformulations in assign-

ment statements or in the definitions of defined parameters in your model,

Aimms provides a source debugger. You can activate the Aimms debugger

through the Tools-Diagnostic Tools-Debugger menu. This will add a Debug-

8.1. The Aimms debugger 81

ger menu to the system menu bar, and, in addition, add the Debugger toolbar

illustrated in Figure 8.1 to the toolbar area. You can stop the Aimms debugger

Figure 8.1: The Debugger toolbar

through the Debugger-Exit Debugger menu.

Debugger

functionality

Using the Aimms debugger, you can

� set conditional and unconditional breakpoints on a statement within the

body of any procedure or function of your model, as well as on the eval-

uation of set and parameter definitions,

� step through the execution of procedures, functions and definitions, and

� observe the effect of single statements and definitions on the data within

your model, either through tooltips within the observed definitions and

procedure bodies, or through separate data pages (see also Section 5.4)

Setting

breakpoints in

the body

Within the Aimms debugger you can set breakpoints on any statement in a

procedure or function body (or on the definition of a defined set, parameter

or variable) by selecting the corresponding source line in the body of the pro-

cedure or function, and choosing the Debugger-Breakpoints-Insert/Remove

menu (or the Insert/Remove Breakpoint button on the Debugger toolbar).

After you have set a breakpoint, this is made visible by means of red dot in the

left margin of selected source line, as illustrated in Figure 8.2.

Figure 8.2: Setting a breakpoint in a procedure body

82 Chapter 8. Debugging and Profiling an Aimms Model

Setting

breakpoints in

the model tree

Alternatively, you can set a breakpoint on a procedure, function or on a defined

set, parameter or variable by selecting the corresponding node in the Model

Explorer, and choosing the Debugger-Breakpoints-Insert/Remove menu. As a

result, Aimms will add a breakpoint to the first statement contained in the body

of the selected procedure or function. The name of a node of any procedure,

function or defined set, parameter or variable with a breakpoint is displayed

in red in the model tree, as illustrated in Figure 8.3.

Figure 8.3: Viewing procedures with breakpoints in the Model Explorer

Entering the

debugger

Once you have set a breakpoint in your model, Aimms will automatically stop

at this breakpoint whenever a line of execution arrives at the corresponding

statement. This can be the result of

� explicitly running a procedure within the Model Explorer,

� pushing a button on an end-user page which results in the execution of

one or more procedures, or

� opening an end-user (or data) page, which requires the evaluation of a

defined set or parameter.

Whenever the execution stops at a breakpoint, Aimms will open the corre-

sponding procedure body (or the declaration form of the defined set, parame-

8.1. The Aimms debugger 83

ter or variable), and show the current line of execution through the breakpoint

pointer , as illustrated in Figure 8.4.

Figure 8.4: Arriving at a breakpoint

Interrupting

execution

Even when you have not set breakpoints, you can still enter the debugger by

explicitly interrupting the current line of execution through the Run-Stop menu

(or through the Ctrl-Shift-S shortcut key). It will pop up the Stop Run dialog

box illustrated in Figure 8.5 When you have activated the Aimms debugger prior

Figure 8.5: The Stop Run dialog box

to execution, the Debug button on it will be enabled, and Aimms will enter the

debugger when you push it. By pushing the OK or Cancel button, Aimms will

completely stop or just continue executing, respectively.

Interrupting

slow statements

The above method of interrupting Aimms will not work when Aimms is exe-

cuting a statement or definition that takes a very long time. In that case you

can interrupt Aimms via the AimmsInterrupt tool. This tool is available from

the Windows start All Programs menu. Upon startup, it will place itself in the

system tray. By right-clicking the Aimms system tray icon, you’ll obtain a menu

84 Chapter 8. Debugging and Profiling an Aimms Model

of running Aimms instances that can be interrupted. In developer mode, the

interrupted Aimms will also popup a debugger showing where it has been in-

terrupted. With that debugger, you can’t continue execution, however; as the

consistency of the values of the identifier(s) being computed during the inter-

rupt can’t be guaranteed. On the other hand, you can start new procedures. In

end-user mode, the interrupted Aimms will just issue an error message, indi-

cating the interrupted statement, definition or constraint.

Stepping

through

statements

Once Aimms has interrupted a line of execution and entered the debugger,

you can step through individual statements by using the various step buttons

on the Debugger toolbar and follow the further flow of execution, or observe

the effect on the data of your model. Aimms offers several methods to step

through your code:

� the Step Over method runs a single statement, and, when this state-

ment is a procedure call, executes this in its entirety,

� the Step Into method runs a single statement, but, when this state-

ment is a procedure call, sets the breakpoint pointer to the first state-

ment in this procedure,

� the Step Out method runs to the end of the current procedure and sets

the breakpoint pointer to the statement directly following the procedure

call in the calling context, and

� the Run To Cursor method runs in a single step from the current

position of the breakpoint pointer to the current location of the cursor,

which should be within the current procedure.

In addition, Aimms offers some methods to continue or halt the execution:

� the Continue Execution method continues execution, but will stop at

any breakpoint it will encounter during this execution,

� the Finish Execution method finishes the current line of execution,

ignoring any breakpoints encountered,

� the Halt method immediately halts the current line of execution.

Examining

identifier data

Whenever you are in the debugger, Aimms allows you to interactively examine

the data associated with the identifiers in your model, and observe the effect

of statements in your source code. The most straightforward method is by

simply moving the mouse pointer over a reference to an identifier (or identifier

slice) within the source code of your model. As a result, Aimms will provide an

overview of the data contained in that identifier (slice) in the form of a tooltip,

as illustrated in Figure 8.6. The tooltip will provide global information about

the identifier slice at hand, such as

� its name and indices,

� the number of elements or non-default data values (in brackets), and

� the first few elements or non-default data value in the form of a list

consisting of tuples and their corresponding values.

8.1. The Aimms debugger 85

Figure 8.6: Observing the current data of an identifier through a tooltip

Detailed

identifier data

If you need to examine the effect of a statement on the data of a particular

identifier in more detail, you can simply open a Data Page, as described in

Section 5.4, or observe the effect on ordinary end-user pages. Within a debug-

ger session, Aimms supports data pages for both global and local identifiers,

thereby allowing you to examine the contents of local identifiers as well. After

each step in the debugger Aimms will automatically update the data on any

open end-user or data page.

Breakpoint on

data change

If you are not sure which statement in your model is responsible for chang-

ing the data of a (non-defined) set or parameter, you can set a breakpoint on

such a set or parameter. Whenever a statement in your model changes the set

or parameter data at hand, Aimms will break on that statement. Notice, how-

ever, that breakpoint on data change will not pick up data changes that are

due to set or parameter data becoming inactive because of changes to sets or

parameters included in the domain or domain condition.

Viewing the call

stack

Whenever you are in the debugger, the Call Stack button on the Debugger

toolbar will display the Call Stack dialog box illustrated in Figure 8.7. With it

you get a detailed overview of the stack of procedure calls associated with the

current line of execution. It enables you to observe the flow of execution at

the level of procedures associated with the current position of the breakpoint

pointer. After selecting a procedure or definition in the Call Stack dialog box,

the Show Position button will open its attribute window at the indicated line.

86 Chapter 8. Debugging and Profiling an Aimms Model

Figure 8.7: The Call Stack dialog box

Viewing and

modifying

breakpoints

After you have inserted a number of breakpoints into your model, you can

get an overview of all breakpoints through the Show All Breakpoints button

. This button will invoke the List of Breakpoints dialog box illustrated in

Figure 8.8. For each breakpoint, Aimms will indicate whether it is enabled or

Figure 8.8: The List of Breakpoints dialog box

disabled (i.e. to be ignored by the Aimms debugger). Through the buttons on

the right hand side of the dialog box you can

� disable breakpoints,

� enable previously disabled breakpoints,

� delete breakpoints, and

� create new breakpoints.

8.2. The Aimms profiler 87

Alternatively, you can disable or remove all breakpoints simultaneously us-

ing the Disable All Breakpoints button and the Remove All Breakpoints

button .

Conditional

breakpoints

In addition, by pushing the Condition button on the List of Breakpoints di-

alog box, you can add a condition to an existing breakpoint. It will open the

Breakpoint Condition dialog box illustrated in Figure 8.9. The condition must

Figure 8.9: The Breakpoint Condition dialog box

consist of a simple numerical, element or string comparison. This simple com-

parison can only involve scalar identifiers, identifier slices or constants. Free

indices in an identifier slice are only allowed when they are fixed within the

breakpoint context (e.g. through a for loop). Aimms will only stop at a condi-

tional breakpoint, when the condition that you have specified is met during a

particular call. Conditional breakpoints are very convenient when, for instance,

a procedure is called very frequently, but only appears to contain an error in

one particular situation which can be detected through a simple comparison.

8.2 The Aimms profiler

Meeting time

requirements

with solvers

Once your model is functionally complete, you may find that the overall com-

putational time requirement set for the application is not met. If your applica-

tion contains optimization, and most of the time is spent by the solver, finding

a remedy for the observed long solution times may not be easy. In general, it

involves finding a reformulation of the mathematical program which is more

suitable to the selected solver. Finding such a reformulation may require a

considerable amount of expertise in the area of optimization.

Meeting time

requirements

with data

execution

It could also be, however, that optimization (if any) only consumes a small part

of the total execution time. In that case, the time required for executing the

application is caused by data manipulation statements. If total execution time

is unacceptably high, it could be caused by inefficiently formulated statements.

Such statements force Aimms to fall back to dense instead of sparse execution.

Chapters 12 and 13 of the Language Reference discuss the principles of the

sparse execution engine used by Aimms, and describe several common pitfalls

together with reformulations to remedy them.

88 Chapter 8. Debugging and Profiling an Aimms Model

The Aimms

profiler

Aimms offers a profiler to help you resolve computational time related issues.

The Aimms profiler enables you to locate the most time-consuming evaluations

of

� procedures and functions,

� individual statements within procedures and functions,

� defined sets and parameters, and

� constraints and defined variables during matrix generation.

Activating the

profiler

You can activate the Aimms profiler by selecting the Tools-Diagnostic Tools-

Profiler menu, which will add a Profiler menu to the default system menu bar.

If the debugger is still active at this time, it will be automatically deactivated,

as both tools cannot be used simultaneously.

Gathering

timing

information

As soon as you have activated the profiler, Aimms will start gathering timing

information during every subsequent procedure run or definition evaluation,

regardless whether these are initiated by pushing a button on an end-user

page, by executing a procedure from within the Model Explorer, or even by

means of a call to the Aimms API from within an external DLL.

Viewing profiler

results

After you have gathered timing information about your modeling application

by executing the relevant parts of your application at least once, you can get an

overview of the timing results through the Profiler-Results Overview menu.

This will open the Profiler Results Overview dialog box illustrated in Fig-

ure 8.10. In it, you will find a list of all procedures that have been executed

and identifier definitions that have been evaluated since the profiler was acti-

vated.

Detailed timing

information

For each procedure, function, or defined identifier listed in the Profiler Results

Overview dialog box, Aimms will provide the following information:

� the number of hits (i.e. the number of times a procedure has been exe-

cuted or a definition has been evaluated),

� the total gross time (explained below) spent during all hits,

� the total net time (explained below) spent during all hits,

� the average gross time spent during each separate hit, and

� the average net time spent during each separate hit.

Gross versus net

time

The term gross time refers to the total time spent in a procedure including

the time spent in procedure calls or definition evaluations within the profiled

procedure. The term net time refers to the total time spent excluding the time

spent in procedure calls or definition evaluations within the profiled proce-

dure.

8.2. The Aimms profiler 89

Figure 8.10: The Profiler Results Overview dialog box

Locating

time-consuming

procedures

With this timing information you can try to locate the procedures and identifier

definitions which are most likely to benefit from a reformulation to improve

efficiency. To help you locate these procedures and definitions, the list of pro-

cedures and definitions in the Profiler Results Overview dialog box can be

sorted with respect to all its columns. The most likely criterion for this is

to sort by decreasing net time or average net time, which will identify those

procedures and identifier definitions which take up the most time by them-

selves, either in total or for each individual call. You can open the attribute

form of any identifier in the Profiler Results Overview dialog box by simply

double-clicking on the corresponding line.

Locating

offending

statements

When you have located a time-consuming procedure, you can can open its at-

tribute form and try to locate the offending statement(s). Whenever the profiler

has been activated, Aimms will add additional profiling columns to the body

of a procedure, as illustrated in Figure 8.11. Similarly, Aimms will add these

profiling columns to the definition attributes of defined identifiers.

Profiling column

information

For each statement in the body of a procedure, Aimms can display various

types of profiling data in the profiling columns of an attribute form. As you

can see next, this information is even more extensive than for procedures as a

whole. The following information is available:

� the number of hits (i.e. the number of times a particular statement has

90 Chapter 8. Debugging and Profiling an Aimms Model

Figure 8.11: Profiling information in an attribute form

been executed),

� the total gross time spent during all hits,

� the total net time spent during all hits,

� the average gross time spent during each separate hit, and

� the average net time spent during each separate hit.

Gross versus

net time for

particular

statements

In the context of a procedure body, the difference between gross and net time

need not always refer only to the time spent in other procedures (as in the

Profiler Results Overview dialog box). For selected statements both numbers

may have a somewhat different, yet meaningful, interpretation. Some excep-

tions:

� in flow control statements such as the IF, WHILE and FOR statement (see

also Section 8.3 of the Language Reference), the net time refers to the

time required to evaluate the statement itself (for instance, its condition)

whereas the gross time refers to the time required to execute the entire

statement,

� in the SOLVE statement (see also Section 15.3 of the Language Reference),

the net time refers to the time spent in the solver, while the gross time

refers to the time spent in the solver plus the time required to generate

the model.

� in a procedure call itself the net time refers to the time spent in argument

passing.

8.2. The Aimms profiler 91

Profiler tooltipsIn addition to observing the profiling times in the Profiler Results Overview

and through the profiling columns in attribute windows, Aimms also provides

profiling tooltips in both the Model Explorer and in the attribute windows of

procedures and defined identifiers, as long as the profiler is active. An example

of a profiling tooltip is given in Figure 8.12. Profiling tooltips can provide a con-

Figure 8.12: Observing profiling information through a tooltip

venient method to quickly observe the profiling information without requiring

any further interaction with Aimms. If you do not want Aimms to display pro-

filing tooltips while moving your mouse through either the Model Explorer or

procedure bodies, you can disable them through the Profiler Setup dialog box

described below, by unchecking the Show Profiler Values check mark (see also

Figure 8.13).

Profiler listingIf you are interested in a profiling overview comprising your entire modeling

application, you can get this through the Profiler-Create Listing File menu.

This will create a common source listing file of your model text extended with

profiling information wherever this is available. Through the Profiler Setup

dialog box described below you can determine which profiler information will

be added to the profiler listing.

Setting up

profiling

columns

For every new project, Aimms uses a set of default settings to determine which

profiling information is displayed in the various available methods to display

profiling information. You can modify these settings through the Profiler-

Setup menu, which will open the Profiler Setup dialog box illustrated in Fig-

ure 8.13. In this dialog box you can, on a project-wide basis, determine

� which of the profiling display methods described are enabled (through

the Show Profiler Values check mark), and

� per such display method, which profiling information is to be displayed,

their order, and their corresponding display format.

92 Chapter 8. Debugging and Profiling an Aimms Model

Figure 8.13: The Profiler Setup dialog box

The settings selected in the Profiler Setup dialog box are saved along within

the project file, and will be restored when you reopen the project in another

Aimms session.

Pausing and

continuing the

profiler

Through the Profiler-Pause menu, you can temporarily halt the gathering of

profiling information by Aimms, while the existing profiling information will

be retained. You can use this menu, for example, when you only want to

profile the core computational procedures of your modeling application and

do not want the profiling information to be cluttered with profiling information

that is the result of procedure calls and definition evaluations in the end-user

interface. You can resume the gathering of profiling information through the

Profiler- Continue menu.

Resetting the

profiler

With the Profiler-Reset menu, you can completely reset all profiling counters

to zero. You can use this menu, if the profiling information of your application

has become cluttered. For instance, some procedures may have been executed

multiple times and, thus, disturb the typical profiling times required by your

entire application. After resetting the profiling counters, you can continue to

gather new profiling information which will then be displayed in the various

profiling displays.

Exiting the

profiler

You can completely disable the Aimms profiler through the Profiler-Exit Pro-

filer menu. As a result, the gathering of profiling information will be com-

pletely discontinued, and all profiling counters will be reset to zero. Thus,

when you restart the profiler, all profiling information of a previous session

will be lost.

8.3. Observing identifier cardinalities 93

8.3 Observing identifier cardinalities

Observing

identifier

cardinalities

Another possible cause of performance problems is when one or more multi-

dimensional identifiers in your model have missing or incorrectly specified

domain conditions. As a result, Aimms could store far too much data for such

identifiers. In addition, computations with these identifiers may consume a

disproportional amount of time.

Locating

cardinality

problems

To help you locate identifiers with missing or incorrectly specified domain

conditions, Aimms offers the Identifier Cardinalities dialog box illustrated in

Figure 8.14. You can invoke it through the Tools-Diagnostic Tools-Identifier

Cardinalities menu.

Figure 8.14: The Identifier Cardinalities dialog box

Available

information

The Identifier Cardinalities dialog box displays the following information for

each identifier in your model:

� the cardinality of the identifier, i.e. the total number of non-default val-

ues currently stored,

� the maximal cardinality, i.e. the cardinality if all values would assume a

non-default value,

� the density, i.e. the cardinality as a percentage of the maximal cardinality,

� the number of active values, i.e. of elements that lie within the domain

of the identifier,

94 Chapter 8. Debugging and Profiling an Aimms Model

� the number of inactive values, i.e. of elements that lie outside of the

domain of the identifier, and

� the memory usage of the identifier, i.e. the amount of memory needed to

store the identifier data.

The list of identifier cardinalities can be sorted with respect to any of these

values.

Locating dense

data storage

You can locate potential dense data storage problems by sorting all identifiers

by their cardinality. Identifiers with a very high cardinality and a high density

can indicate a missing or incorrectly specified domain condition. In most real-

world applications, the higher-dimensional identifiers usually have relatively

few tuples, as only a very small number of combinations have a meaningful

interpretation.

Resolving dense

storage

If your model contains one or more identifiers that appear to demonstrate

dense data storage, it is often possible to symbolicly describe the appropriate

domain of allowed tuple combinations. Adding such a condition can be helpful

to increase the performance of your model by reducing both the memory usage

and execution times.

Locating

inactive data

Another type of problem that you can locate with the Identifier Cardinalities

dialog box, is the occurrence of inactive data in your model. Inactive data can

be caused by

� the removal of elements in one or more domain sets, or

� data modifications in the identifier(s) involved in the domain restriction

of the identifier.

Problems with

inactive data

In principle, inactive data does not directly influence the behavior of your

model, as the Aimms execution engine itself will never consider inactive data.

Inactive data, however, can cause unexpected problems in some specific situa-

tions.

� One of the areas where you have to be aware about inactive data is in the

Aimms API (see also Chapter 34 of the Language Reference), where you

have to decide whether or not you want the Aimms API to pass inactive

data to an external application or DLL.

� Also, when inactive data becomes active again, the previous values are

retained, which may or may not be what you intended.

As a result, the occurrence of inactive data in the Identifier Cardinalities di-

alog box may make you rethink its consequences, and may cause you to add

statements to your model to remove the inactive data explicitly (see also Sec-

tion 25.3 of the Language Reference).

Chapter 9

The Math Program Inspector

This chapterIn this chapter you will find the description of an extensive facility to analyze

both the input and output of a generated optimization model. This mathemat-

ical program inspector allows you to make custom selections of constraints

and variables. For each such selection, you can inspect statistics of the cor-

responding matrix and the corresponding solution. The main purpose of the

math program inspector, however, is to assist you in finding causes of infeasi-

bility, unboundedness and unrealistic solutions.

Acknowledge-

ment

The design and contents of the math program inspector is strongly influenced

by the papers and contributions of Bruce A. McCarl on misbehaving mathe-

matical programs. The example in the last section of this chapter is a direct

reference to his work.

9.1 Introduction and motivation

Unforeseen

surprises . . .

Even though you have taken the utmost care in constructing your linear op-

timization model, there are often unforeseen surprises that force you to take

a further look at the particular generated model at hand. Why is the model

infeasible or unbounded? Why is the objective function value so much differ-

ent from what you were expecting? Are the individual constraints generated

as intended? Why is the number of individual constraints so large? Why are

the observed shadow prices so unrealistically high (or low)? These and sev-

eral other related questions about the matrix and the solution need further

investigation.

. . . are not

easily explained

The answer to many model validation questions is not easily discovered, espe-

cially when the underlying optimization model has a large number of individ-

ual constraints and variables. The amount of information to be examined is

often daunting, and an answer to a question usually requires extensive analy-

sis involving several steps. The functionality of the math program inspector is

designed to facilitate such analysis.

96 Chapter 9. The Math Program Inspector

Some of the

causes

There are many causes of unforeseen surprises that have been observed in

practice. Several are related to the values in the matrix. Matrix input coeffi-

cients may be incorrect due to a wrong sign, a typing error, an incorrect unit

of measurement, or a calculation flaw. Bounds on variables may have been

omitted unintentionally. Other causes are related to structural information.

The direction of a constraint may be accidentally misspecified. The subsets of

constraints and variables may contain incorrect elements causing either miss-

ing blocks of constraints and variables, or unwanted blocks. Even if the blocks

are the correct ones, their index domain restrictions may be missing or incor-

rect. As a result, the model may contain unwanted and/or missing constraints

and/or variables.

Purpose The purpose of the mathematical program inspector included in Aimms is to

provide you with

� insight into the (structure of the) generated model and its solution (if

present), and

� a collection of tools to help you discover errors in your model ,

9.2 Functional overview

This section In this section you will find a description of the functionality available in the

mathematical program inspector. Successively, you will learn

� the basics of the trees and windows available in the mathematical pro-

gram inspector,

� how you can manipulate the contents of the variable and constraint trees

through variable and constraint properties, but also using the Identifier

Selector tool,

� how to inspect the contents and properties of the matrix and solution

corresponding to your mathematical program, and

� which analysis you can perform using the mathematical program inspec-

tor when your mathematical program is infeasible.

9.2.1 Tree view basics

Viewing

generated

variables and

constraints

The math program inspector window displays the set of all generated variables

and all generated constraints, each in a separate tree (see the left portion of

Figure 9.1). In these trees, the symbolic identifiers are the first-level nodes and

on every subsequent level in the tree, one or more indices are fixed. As a result,

the individual variables and constraints in your model appear as leaf nodes in

the two tree view windows.

9.2. Functional overview 97

Figure 9.1: The math program inspector window

Tree view

selections

The math program inspector contains several tabs (see the right portion of Fig-

ure 9.1) that retrieve information regarding the selection that has been made

in the tree views. Common Windows controls are available to select a subset of

variables and constraints (mouse click possibly in combination with the Shift

or Control key). Whenever you select a slice (i.e. an intermediate node in the

tree) all variables or constraints in that subtree are selected implicitly. You

can use the Next Leaf Node and Previous Leaf Node buttons in the toolbar

for navigational purposes. In Figure 9.1 a single variable has been selected

in the variable tree. In addition, the text on most tabs can by copied to the

Windows clipboard using the familiar Ctrl-C shortcut key.

BookmarksBookmarks allow you to temporarily tag one or more variables or constraints.

While navigating through the tree you will always change the current selection,

while the bookmarked nodes will not be affected. Whenever you bookmark a

98 Chapter 9. The Math Program Inspector

node, all its child nodes plus parent nodes are also bookmarked. Using the

Bookmarks menu you can easily select all bookmarked nodes or bookmark

all selected nodes. Bookmarks appear in blue text. Figure 9.1 contains a con-

straint tree with three bookmarked constraints plus their three parent nodes.

You can use the Next Bookmark and Previous Bookmark buttons in the tool-

bar for navigational purposes. In case your Figure 9.1 is not displayed in color,

the light-gray print indicates the bookmarked selection.

Domain index

display order

By default only one index is fixed at every level of the tree views, and the

indices are fixed from the left to the right. However, you can override the

default index order as well as the subtree depth by using the Variable Property

or Constraint Property dialog on the first-level nodes in the tree. The subtree

depth is determined by the number of distinct index groups that you have

specified in the dialog.

Finding

associated

variables/

constraints

The linkage between variables and constraints in your model is determined

through the individual matrix coefficients. To find all variables that play a

role in a particular constraint selection, you can use the Associated Variables

command to bookmark the corresponding variables. Similarly, the Associated

Constraints command can be used to find all constraints that play a role in a

particular variable selection. In Figure 9.1, the associated constraint selection

for the selected variable has been bookmarked in the constraint tree.

9.2.2 Advanced tree manipulation

Variable and

constraint

properties

Using the right-mouse popup menu you can access the Variable Properties

and Constraint Properties. On the dialog box you can specify

� the domain index display order (already discussed above), and

� the role of the selected symbolic variable or constraint during infeasibil-

ity and unboundedness analysis.

Variable and

constraint

statistics

The math program inspector tool has two tabs to retrieve statistics on the

current variable and constraint selection. In case the selection consists of a

single variable or constraint, all coefficients in the corresponding column or

row are also listed. You can easily access the variable and constraint statistics

tabs by double-clicking in the variable or constraint tree. Figure 9.1 shows the

variable statistics for the selected variable.

Popup menu

commands

In addition to Variable Properties and Constraint Properties, you can use the

right-mouse popup menu to

� open the attribute form containing the declaration of an identifier,

� open a data page displaying the data of the selected slice,

9.2. Functional overview 99

� make a variable or constraint at the first level of the tree inactive (i.e.

to exclude the variable or constraint from the generated matrix during a

re-solve), and

� bookmark or remove the bookmark of nodes in the selected slice.

Interaction with

identifier

selector

Using the identifier selector you can make sophisticated selections in the vari-

able and/or constraint tree. Several new selector types have been introduced

to help you investigate your mathematical program. These new selector types

are as follows.

� element-dependency selector: The element-dependency selector allows

you to select all individual variables or constraints for which one of the

indices has been fixed to a certain element.

� scale selector: The scale selector allows you to find individual rows or

columns in the generated matrix that may be badly scaled. The selection

coefficient for a row or column introduced for this purpose has been

defined as
largest absolute (nonzero) coefficient

smallest absolute (nonzero) coefficient
.

The Properties dialog associated with the scale selector offers you sev-

eral possibilities to control the determination of the above selection co-

efficient.

� status selector: Using the status selector you can quickly select all vari-

ables or constraints that are either basic, feasible or at bound.

� value selector: The value selector allows you to select all variables or

constraints for which the value (or marginal value) satisfies some simple

numerical condition.

� type selector: With the type selector you can easily filter on variable type

(e.g. continuous, binary, nonnegative) or constraint type (e.g. less-than-

or-equal, equal, greater-than-or-equal). In addition, you can use the type

selector to filter on nonlinear constraints.

9.2.3 Inspecting matrix information

Variable

Statistics tab

Most of the statistics that are displayed on the Variable Statistics tab are self-

explanatory. Only two cases need additional explanation. In case a single

symbolic (first-level node) has been selected, the Index domain density statistic

will display the number of actually generated variables or constraints as a

percentage of the full domain (i.e. the domain without any domain condition

applied). In case a single variable (a leaf node) has been selected, the statistics

will be extended with some specific information about the variable such as

bound values and solution values.

100 Chapter 9. The Math Program Inspector

Column

coefficients

In case a single variable xj has been selected, the lower part of the information

retrieved through the Variable Statistics tab will contain a list with all coeffi-

cients aij of the corresponding rows i, together with the appropriate shadow

prices yi (see Figure 9.1). The last column of this table will contain the dual

contributions aijyj that in case of a linear model together with the objective

function coefficient cj make up the reduced cost c̄j according to the following

formula.

c̄j = cj −
∑

i

aijyi

Nonlinear

coefficients

Coefficients of variables that appear in nonlinear terms in your model are de-

noted between square brackets. These numbers represent the linearized coef-

ficients for the current solution values.

Constraint

Statistics tab

The Constraints Statistics tab and the Variable Statistics tab retrieve similar

statistics. Figure 9.2 shows the constraint statistic for the selection consisting

of a single constraint. Note that in this particular case the symbolic form of

the constraint definition will also be displayed. In case the selected constraint

is nonlinear, the individual nonlinear constraint as generated by Aimms and

communicated to the solver is also displayed.

Figure 9.2: The math program inspector window

Row coefficients In case a single row i has been selected, the lower part of the Constraint Statis-

tics tab will contain all coefficients aij in the corresponding columns j, to-

gether with their level values xj . The last column of this table lists the primal

contributions aijxj that together in case of a linear model with the right-hand-

side make up either the slack or surplus that is associated with the constraint

according to the following formula.

slacki − surplusi = rhsi −
∑

j

aijxj

Nonlinear

constraints

As is the case on the Variable Statistics Tab, all coefficients corresponding to

nonlinear terms are denoted between square brackets. For these coefficients,

the last column displays all terms that contribute to the linearized coefficient

value.

9.2. Functional overview 101

Matrix Statistics

tab

The Matrix Statistics tabs retrieves information that reflects both the selection

in the variable tree and the selection in the constraint tree. Among these statis-

tics are several statistical moments that might help you to locate data outliers

(in terms of size) in a particular part of the matrix.

Matrix View tabThe Matrix View tab contains a graphical representation of the generated ma-

trix. This view is available in two modes that are accessible through the right-

mouse popup menu. The symbolic block view displays at most one block for

every combination of symbolic variables and symbolic constraints. The indi-

vidual block view allows you to zoom in on the symbolic view and displays a

block for every nonzero coefficient in the matrix. It is interesting to note that

the order in which the symbolic and individual variables and constraints are

displayed in the block view follows the order in which they appear in the trees.

Figure 9.3: The matrix view (individual mode)

Block coloringThe colors of the displayed blocks correspond to the value of the coefficient.

The colors will vary between green and red indicating small and large val-

ues. Any number with absolute value equal to one will be colored green. Any

number for which the absolute value of the logarithm of the absolute value

exceeds the logarithm of some threshold value will be colored red. By default,

the threshold is set to 1000, meaning that all nonzeros x ∈ (−∞,−1000] ∪

102 Chapter 9. The Math Program Inspector

[− 1
1000

, 1
1000

] ∪ [1000,∞) will be colored red. All numbers in between will be

colored with a gradient color in the spectrum between green and red.

Block patterns Any block that contains at least one nonlinear term will show a hatch pattern

showing diagonal lines that run from the upper left to the lower right of the

block.

Aimms option The value of the threshold mentioned in the previous paragraph is available

as an Aimms option with name bad scaling threshold and can be found in the

Project - Math program inspector category in the Aimms Options dialog box.

Block tooltips While holding the mouse inside a block, a tooltip will appear displaying the

corresponding variables and constraints. In the symbolic view the tooltip will

also contain the number of nonzeros that appear in the selected block. In the

individual view the actual value of the corresponding coefficient is displayed.

Block view

features

Having selected a block in the block view you can use the right-mouse popup

menu to synchronize the trees with the selected block. As a result, the current

bookmarks will be erased and the corresponding selection in the trees will be

bookmarked. Double-clicking on a block in symbolic mode will zoom in and

display the selected block in individual mode. Double-clicking on a block in

individual mode will center the display around the mouse.

Block coefficient

editing

When viewing the matrix in individual mode, linear coefficient values can be

changed by pressing the F2 key, or single clicking on the block containing the

coefficient to be changed.

9.2.4 Inspecting solution information

Solution tabs The tabs discussed so far are available as long as the math program has been

generated. As soon as a solution is available, the next three tabs reveal more

details about this solution.

Variable

Solution tab

The Variable Solution tab shows the following seven columns

� Variable Name,

� Lower Bound,

� Value (i.e. solution/level value),

� Upper Bound,

� Marginal (i.e. reduced cost),

� Basis (i.e. Basic, Nonbasic or Superbasic), and

� Bound (i.e. At bound or In between bounds).

By clicking in the header of a column you can sort the table according to that

specific column.

9.2. Functional overview 103

Figure 9.4: The variable solution

Constraint

Solution tab

A similar view is available for the constraints in your mathematical program.

The Constraint Solution tab contains the following five columns

� Constraint Name,

� Value (i.e. solution),

� Marginal (i.e. shadow price),

� Basis (i.e. Basic, Nonbasic or Superbasic), and

� Bound (i.e. Binding or Nonbinding).

Solution related

Aimms options

By default Aimms will only store marginal solution values if explicitly speci-

fied in the Property attribute (through the ReducedCost or ShadowPrice prop-

erty). An more convenient way to ensure that all marginal solution infor-

mation is available to the math program inspector is by setting the option

Store complete solver solution tree to yes. When the nonlinear presolver has

been activated (by setting the Nonlinear presolve option (in the Solvers General

category) to on), the option Store nonlinear presolve info has to be set yes to

make sure that the math program inspector is able to display information

about the reductions that have been achieved by the nonlinear presolver.

Math Program

Solution tab

The Math Program Solution tab retrieves solution information about the math-

ematical program that has been solved. This information is similar to that in

the Aimms Progress window.

104 Chapter 9. The Math Program Inspector

Logging

messages

The lower part of the information retrieved by this tab is used to display log-

ging messages resulting from the Bound Analysis and Unreferenced Identi-

fiers commands in the Actions menu.

Solving MIP

models

Whenever your linear model is a mixed-integer model, the solver will most

probably use a tree search algorithm to solve your problem. During the tree

search the algorithm will encounter one or more solutions if the model is in-

teger feasible. Once the search is completed, the optimal solution has been

found.

MIP Search Tree

tab

With the MIP Search Tree tab you can retrieve branching information about

the search tree. Only Cplex and Gurobi provide this information. In addition

the option Show branch and bound tree has to be set to on (before the solve) to

instruct Aimms to store search tree information during the solve.

Figure 9.5: The MIP search tree

9.2. Functional overview 105

Improving the

search process

The size and shape of the search tree might give you some indication that you

could improve the performance of the solver by tuning one or more solver

options. Consider the case in which the search tree algorithm spends a con-

siderable amount of time in parts of the tree that do not seem interesting in

retrospect. You might consider to use priorities or another branching rule, in

an attempt to direct the search algorithm to a different part of the tree in an

earlier stage of the algorithm.

Controlling

search tree

memory usage

Because all structural and statistical information is kept in memory, displaying

the MIP search tree for large MIPs might not be a good idea. Therefore, you

are able to control to the and size of the stored search tree through the option

Maximum number of nodes in tree.

Search tree

display

For every node several solution statistics are available. They are the sequence

number, the branch type, the branching variable, the value of the LP relaxation,

and the value of the incumbent solution when the node was evaluated. To help

you locate the integer solutions in the tree, integer nodes and their parent

nodes are displayed in blue.

Incumbent

progress

The lower part of the MIP Search Tree tab retrieves all incumbent solutions

that have been found during the search algorithm. From this view you are able

to conclude for example how much time the algorithm spend before finding

the optimal solution, and how much time it took to proof optimality.

9.2.5 Performing analysis to find causes of problems

Unreferenced

identifiers

One of the causes of a faulty model may be that you forgot to include one or

more variables or constraints in the specification of your mathematical model.

The math program inspector helps you in identifying some typical omissions.

By choosing the Unreferenced Identifiers command (from the Actions menu)

Aimms helps you to identify

� constraints that are not included in the constraint set of your math pro-

gram while they contain a reference to one of the variables in the variable

set,

� variables that are not included in the variable set of your math program

while a reference to these variables does exist in some of the constraints,

and

� defined variables that are not included in the constraint set of your math

program.

The results of this action are visible through the Math program solution tab.

106 Chapter 9. The Math Program Inspector

A priori bound

analysis

In some situations it is possible to determine that a math program is infeasible

or that some of the constraints are redundant even before the math program

is solved. The bound analysis below supports such investigation.

Implied

constraint

bounds

For each linear constraint with a left-hand side of the form

∑

j

aijxj

the minimum level value bi and maximum level value bi can be computed by

using the bounds on the variables as follows.

bi =
∑

j|aij>0

aijxj +
∑

j|aij<0

aijxj

bi =
∑

j|aij>0

aijxj +
∑

j|aij<0

aijxj

Performing

bound analysis

By choosing the Bound Analysis command (from the Actions menu) the above

implied bounds are used not only to detect infeasibilities and redundancies,

but also to tighten actual right-hand-sides of the constraints. The results of

this analysis can be inspected through the Math Program Solution tab. This

same command is also used to perform the variable bound analysis described

below.

Implied variable

bounds . . .

Once one or more constraints can be tightened, it is worthwhile to check

whether the variable bounds can be improved. An efficient approach to com-

pute implied variable bounds has been proposed by Gondzio [Go94], and is

presented without derivation in the next two paragraphs.

. . . for ≤

constraints

For i in the set of constraints of the form
∑

j aijxj ≤ bi, the variable bounds

can be tightened as follows.

xk ≤ xk + min
i|aik>0

bi − bi

aik

xk ≥ xk + max
i|aik<0

bi − bi

aik

. . . and ≥

constraints

For i in the set of constraints of the form
∑

j aijxj ≥ bi, the variable bounds

can be tightened as follows.

xk ≤ xk + min
i|aik<0

bi − bi

aik

xk ≥ xk + max
i|aik>0

bi − bi
aik

9.2. Functional overview 107

Phase 1 analysisIn case infeasibility cannot be determined a priori (e.g. using the bound analy-

sis described above), the solver will conclude infeasibility during the solution

process and return a phase 1 solution. Inspecting the phase 1 solution might

indicate some causes of the infeasibility.

Currently

infeasible

constraints

The collection of currently infeasible constraints are determined by evaluating

all constraints in the model using the solution that has been returned by the

solver. The currently infeasible constraints will be bookmarked in the con-

straint tree after choosing the Infeasible Constraints command from the Ac-

tions menu.

Substructure

causing

infeasibility

To find that part of the model that is responsible for the infeasibility, the use

of slack variables is proposed. By default, the math program inspector will add

slacks to all variable and constraint bounds with the exception of

� variables that have a definition,

� zero variable bounds, and

� bounds on binary variables.

Adapting the

use of slack

variables

The last two exceptions in the above list usually refer to bounds that cannot be

relaxed with a meaningful interpretation. However these two exceptions can

be overruled at the symbolic level through the Analysis Configuration tab of

the Properties dialog. These properties can be specified for each node at the

first level in the tree. Of course, by not allowing slack variables on all variable

and constraint bounds in the model, it is still possible that the infeasibility will

not be resolved.

Slack on

variable bounds

Note that to add slacks to variable bounds, the original simple bounds are

removed and (ranged) constraints are added to the problem definition.

xj ≤ xj + s
+
j − s

−
j ≤ xj

Elastic modelAfter adding slack variables as described above, this adapted version of the

model is referred to as the elastic model.

Minimizing

feasibility

violations

When looking for the substructure that causes infeasibility, the sum of all slack

variables is minimized. All variables and constraints that have positive slack

in the optimal solution of this elastic model, form the substructure causing

the infeasibility. This substructure will be bookmarked in the variable and

constraint tree.

108 Chapter 9. The Math Program Inspector

Irreducible

Inconsistent

System (IIS)

Another possibility to investigate infeasibility is to focus on a so-called irre-

ducible inconsistent system (IIS). An IIS is a subset of all constraints and vari-

able bounds that contains an infeasibility. As soon as at least one of the con-

straints or variable bounds in the IIS is removed, that particular infeasibility is

resolved.

Finding an IIS Several algorithms exist to find an irreducible inconsistent system (IIS) in an

infeasible math program. The algorithm that is used by the Aimms math pro-

gram inspector, if the option Use IIS from solver is disabled, is discussed in

Chinneck ([Ch91]). Note that since this algorithm only applies to linear mod-

els, the menu action to find an IIS is not available for nonlinear models. While

executing the algorithm, the math program inspector

1. solves an elastic model,

2. initializes the IIS to all variables and constraints, and then

3. applies a combination of sensitivity and deletion filters.

Deletion

filtering

Deletion filtering loops over all constraints and checks for every constraint

whether removing this constraint also solves the infeasibility. If so, the con-

straint contributes to the infeasibility and is part of the IIS. Otherwise, the

constraint is not part of the IIS. The deletion filtering algorithm is quite ex-

pensive, because it requires a model to be solved for every constraint in the

model.

Sensitivity

filtering

The sensitivity filter provides a way to quickly eliminate several constraints

and variables from the IIS by a simple scan of the solution of the elastic model.

Any nonbasic constraint or variable with zero shadow price or reduced cost

can be eliminated since they do not contribute to the objective, i.e. the infeasi-

bility. However, the leftover set of variables and constraint is not guaranteed

to be an IIS and deletion filtering is still required.

Combined

filtering

The filter implemented in the math program inspector combines the deletion

and sensitivity filter in the following way. During the application of a deletion

filter, a sensitivity filter is applied in the case the model with one constraint

removed is infeasible. By using the sensitivity filter, the number of iterations

in the deletion filter is reduced.

Substructure

causing

unboundedness

When the underlying math program is not infeasible but unbounded instead,

the math program inspector follows a straightforward procedure. First, all in-

finite variable bounds are replaced by a big constant M . Then the resulting

model is solved, and all variables that are equal to this big M are bookmarked

as being the substructure causing unboundedness. In addition, all variables

that have an extremely large value (compared to the expected order of mag-

nitude) are also bookmarked. Any constraint that contains at least two of the

bookmarked variables will also be bookmarked.

9.2. Functional overview 109

OptionsWhen trying to determine the cause of an infeasibility or unboundedness, you

can tune the underlying algorithms through the following options.

� In case infeasibility is encountered in the presolve phase of the algo-

rithm, you are advised to turn off the presolver. When the presolver is

disabled, solution information for the phase 1 model is passed to the

math program inspector.

� During determination of the substructure causing unboundedness or in-

feasibility and during determination of an IIS, the original problem is

pertubated. After the substructure or IIS has been found, Aimms will

restore the original problem. By default, however, the solution that is

displayed is the solution of the (last) pertubated problem. Using the

option Restore original solution after analysis you can force a resolve

after the analysis has been carried out.

� Solvers like Cplex and Gurobi have their own algorithm to calculate an

IIS. If the option Use IIS from solver is switched on, its default setting,

then Aimms will retrieve an IIS calculated by the solver. If this option is

switched off then Aimms will use its own algorithm based on Chinneck

([Ch91]), as described above.

ScalingA coefficient matrix is considered badly scaled if its nonzero coefficients

are of different magnitudes. Scaling is an operation in which the vari-

ables and constraints in the model are multiplied by positive numbers

resulting in a matrix containing nonzero coefficients of similar magni-

tude. Scaling is used prior to solving a model for several reasons, the

most important being (1) to improve the numerical behavior of the solver

and (2) to reduce the number of iterations required to solve the model.

Scale modelSolvers like Cplex and Gurobi use their own algorithms to scale a model

but in some cases it might be beneficial to use a different scaling al-

gorithm that uses symbolic information. The scaling tool in the math

program inspector can be used to find scaling factors for all symbolic

variables and constraints in the model by selecting the Scale Model com-

mand from the Actions menu. The scaling factors will be displayed in

the Scaling Factors tab. Once the scaling tool is finished you can se-

lect the Resolve command from the Actions menu to resolve the model

which then automatically uses these scaling factors. However, to use the

scaling factors in your Aimms model you have to manually update the

Unit attribute of the corresponding variables and constraints.

110 Chapter 9. The Math Program Inspector

9.3 A worked example

This section The example in this section is adapted from McCarl ([Mc98]), and is meant

to demonstrate the tools that were discussed in the previous sections. The

example model is used to illustrate the detection of infeasibility and unbound-

edness. In addition, the example is used to find the cause of an unrealistic

solution.

9.3.1 Model formulation

A Farm

planning model

The model considers a collection of farms. For each of these farms several

decisions have to be made. These decisions are

� the amount of cattle to keep,

� the amount of land to grow a particular crop,

� the amount of additional land to rent, and

� the amount of inter-farm crop transport.

The objective of the farm model is to maximize a social welfare function, which

is modeled as the total profit over all farms.

Notation The following notation is used to describe the symbolic farm planning model.

Indices:

f , f̂ farms

c crops

Parameters:

C
g
fc unit cost of growing crop c on farm f

Ccf unit cost of keeping cattle on farm f

Cmc unit transport cost for moving crop c

Crf rental price for one unit of land on farm f

P sfc unit profit of selling crop c grown on farm f

P cf unit profit of selling cattle from farm f

Lf amount of land available on farm f

Q amount of land needed to keep one unit of cattle

Yfc crop yield per unit land for crop c on farm f

Dfc consumption of crop c by one unit of cattle on farm f

Mc
f minimum required amount of cattle on farm f

Mr
f maximum amount of land to be rented on farm f

Variables:

p total profit

cf amount of cattle on farm f

mf f̂ c amount of crop c moved from farm f to farm f̂

9.3. A worked example 111

gfc amount of land used to grow crop c on farm f

sfc amount of crop c sold by farm f

rf amount of extra land rented by farm f

Land

requirement

The land requirement constraint makes sure that the total amount of land

needed to keep cattle and to grow crops does not exceed the amount of avail-

able land (including rented land).

Qcf +
∑

c

gfc ≤ Lf + rf , ∀f

Upper bound on

rental

The total amount of rented land on a farm cannot exceed its maximum.

rf ≤ M
r
f , ∀f

Crop-on-handThe crop-on-hand constraint is a crop balance. The total amount of crop ex-

ported, crop sold, and crop that has been used to feed the cattle cannot exceed

the total amount of crop produced and crop imported.

∑

f̂

mf f̂ c + sfc +Dfccf ≤ Yfcgfc +
∑

f̂

mf̂ fc , ∀(f , c)

Cattle

requirement

The cattle requirement constraint ensures that every farm keeps at least a pre-

specified amount of cattle.

cf ≥ M
c
f , ∀f

Profit definitionThe total profit is defined as the net profit from selling crops, minus crop

transport cost, minus rental fees, plus the net profit of selling cattle.

p =
∑

f





∑

c

(

P sfcsfc − C
ggfc −

∑

f̂

Cmmf f̂ c

)

− Crf rf + (P
c
f − C

c
f)cf





The generated

problem

Once the above farm model is solved, the math program inspector will display

the variable and constraint tree plus the matrix block view as illustrated in

Figure 9.3. The solution of the particular farm model instance has already

been presented in Figure 9.4.

112 Chapter 9. The Math Program Inspector

9.3.2 Investigating infeasibility

Introducing an

infeasibility

In this section the math program inspector will be used to investigate an ar-

tificial infeasibility that is introduced into the example model instance. This

infeasibility is introduced by increasing the land requirement for cattle from

0.5 to 10.

Locating

infeasible

constraints

By selecting the Infeasible Constraints command from the Actions menu, all

violated constraints as well as all variables that do not satisfy their bound

conditions, are bookmarked. Note, that the solution values used to identify

the infeasible constraints and variables are the values returned by the solver

after infeasibility has been concluded. The exact results of this command may

depend on the particular solver and the particular choice of solution method

(e.g. primal simplex or dual simplex).

Figure 9.6: An identified substructure causing infeasibility

Substructure

causing

infeasibility

By selecting the Substructure Causing Infeasibility command from the Ac-

tions menu a single constraint is bookmarked. In this example, one artificial

violation variable could not be reduced to zero by the solver used, which re-

sulted in a single infeasibility. Figure 9.6 indicates that this infeasibility can

be resolved by changing the right-hand-side of the ‘MinCattle’ constraint for

‘Farm 1’. A closer investigation shows that when the minimum requirement on

cattle on ‘Farm 1’ is decreased from 50 to 30, the infeasibility is resolved. This

makes sense, because one way to resolve the increased land requirement for

cattle is to lower the requirements for cattle.

9.3. A worked example 113

Locating an IISBy selecting the Irreducible Inconsistent System command from the Actions

menu, an IIS is identified that consists of the three constraints ‘RentalLand’,

‘Land’ and ‘MinCattle’, all for ‘Farm 1’ (see Figure 9.7).

Figure 9.7: An identified IIS

Resolving the

infeasibility

The above IIS provides us with three possible model changes that together

should resolve the infeasibility. These changes are

1. increase the availability of land for ‘Farm 1’,

2. change the land requirement for cattle on ‘Farm 1’, and/or

3. decrease the minimum requirement on cattle on ‘Farm 1’.

It is up to the producer of the model instance, to judge which changes are

appropriate.

9.3.3 Investigating unboundedness

Introducing

unboundedness

The example model is turned into an unbounded model by dropping the con-

straints on maximum rented land, and at the same time, by multiplying the

price of cattle on ‘Farm 1’ by a factor 100 (representing a unit error). As a re-

sult, it will become infinitely profitable for ‘Farm 1’ to rent extra land to keep

cattle.

114 Chapter 9. The Math Program Inspector

Substructure

causing

unboundedness

By selecting the Substructure Causing Unboundedness command from the

Actions menu four individual variables are bookmarked, and all of them are

related to ‘Farm 1’. Together with all constraints that contain two or more

bookmarked variables these bookmarked variables form the problem structure

that is subject to closer investigation. From the optimal solution of the auxil-

iary model it becomes clear that the ‘FeedCattle’ variable, the two ‘GrowCrops’

variables and the ‘LandRent’ variables tend to get very large, as illustrated in

Figure 9.8.

Figure 9.8: An identified substructure causing unboundedness

Resolving the

unboundedness

Resolving the unboundedness requires you to determine whether any of the

variables in the problem structure should be given a finite bounds. In this case,

specifying an upper bound on the ‘RentalLand’ variable for ‘Farm 1’ seems

a natural choice. This choice turns out to be sufficient. In addition, when

inspecting the bookmarked variables and constraints on the Matrix View tab,

the red color of the objective function coefficient for the ‘FeedCattle’ variable

for ‘Farm 1’ indicates a badly scaled value.

9.3. A worked example 115

9.3.4 Analyzing an unrealistic solution

Introducing an

unrealistic

solution

The example model is artificially turned into a model with an unrealistic so-

lution by increasing the crop yield for corn on ‘Farm 2’ from 128 to 7168 (a

mistake), and setting the minimum cattle requirement to zero. As a result, it

will be unrealistically profitable to grow corn on ‘Farm 2’.

Inspecting the

unrealistic

solution

Once the changes from the previous paragraph have been applied, the solution

of the model is shown in Figure 9.9. From the Variable Solution tab it can in-

deed be seen that the profit is unrealistically large, because a large amount of

corn is grown on ‘Farm 2’, moved to ‘Farm 1’ and sold on ‘Farm 1’. Other strik-

ing numbers are the large reduced cost values associated with the ‘FeedCattle’

variable on ‘Farm 2’ and the ‘GrowCrops’ variable for hay on ‘Farm 2’.

Figure 9.9: An unrealistic solution

Badly scaled

matrix

coefficients

When investigating an unrealistic solution, an easy first step is to look on the

Matrix View tab to see whether there exist matrix coefficients with unrealis-

tic values. For this purpose, first open the Matrix View tab in symbolic view.

Blocks that are colored red indicate the existence of badly scaled values. By

double clicking on such a block, you will zoom in to inspect the matrix coef-

ficients at the individual level. In our example, the symbolic block associated

with the ‘GrowCrops’ variable and the ‘CropOnHand’ constraint is the red block

with the largest value. When you zoom in on this block, the data error can be

quickly identified (see Figure 9.10). You can also use the Scale Model com-

mand from the Actions menu to let Aimms calculate scaling factors that can

be used to reduce the amount of badly scaled values in the coefficient matrix.

116 Chapter 9. The Math Program Inspector

Figure 9.10: The Matrix View tab for an unrealistic solution

Primal and dual

contributions . . .

A second possible approach to look into the cause of an unrealistic solution is

to focus on the individual terms of both the primal and dual constraints. In

a primal constraint each term is the multiplication of a matrix coefficient by

the value of the corresponding variable. In the Math Program Inspector such

a term is referred to as the primal contribution. Similarly, in a dual constraint

each term is the multiplication of a matrix coefficient by the value of the corre-

sponding shadow price (i.e. the dual variable). In the Math Program Inspector

such a term is referred to as the dual contribution.

. . . can be

unrealistic

Whenever primal and/or dual contributions are large, they may indicate that

either the corresponding coefficient or the corresponding variable value is un-

realistic. You can discover such values by following an iterative process that

switches between the Variable Solution tab and the Constraint Solution tab by

using either the Variable Statistics or the Constraint Statistics command from

the right-mouse popup menu.

Procedure to

resolve

unrealistic

solutions

The following iterative procedure can be followed to resolve an unrealistic

solution.

� Sort the variable values retrieved through the Variable Solution tab.

� Select any unrealistic value or reduced cost, and use the right-mouse

popup menu to switch to the Variable Statistics tab.

� Find a constraint with an unrealistic dual contribution.

9.3. A worked example 117

� If no unrealistic dual contribution is present, select one of the constraints

that is likely to reveal some information about the construction of the

current variable (i.e. most probably a binding constraint).

� Use the right-mouse popup menu to open the Constraint Statistics tab

for the selected constraint.

� Again, focus on unrealistic primal contributions and if these are not

present, continue the investigation with one of the variables that plays

an important role in determining the level value of the constraint.

� Repeat this iterative process until an unrealistic matrix coefficient has

been found.

You may then correct the error and re-solve the model.

Inspecting

primal

contributions

Figure 9.11: Inspecting primal contributions

In the example, the ‘Profit’ definition constraint indicates that the profit is ex-

tremely high, mainly due to the amount of corn that is sold on ‘Farm 1’. Only

two constraints are using this variable, of which one is the ‘Profit’ definition it-

self. When inspecting the other constraint, the ‘CropOnHand’ balance, it shows

that the corn that is sold on ‘Farm 1’ is transported from ‘Farm 2’ to ‘Farm 1’.

118 Chapter 9. The Math Program Inspector

This provides us with a reason to look into the ‘CropOnHand’ balance for corn

on ‘Farm 2’. When inspecting the primal contributions for this constraint the

data error becomes immediately clear (see Figure 9.11).

Inspecting dual

contributions

The same mistake can be found by starting from an unrealistic reduced cost.

Based on the large reduced cost for the ‘FeedCattle’ variable on ‘Farm 2’, the

dual contributions indicate that the unrealistic value is mainly caused by an

unrealistic value of the shadow price associated with the ‘Land’ constraint on

‘Farm 2’. While investigating this constraint you will notice that the shadow

price is rather high, because the ‘GrowCrops’ variable for corn on ‘Farm 2’ is

larger than expected. The dual contribution table for this variable shows a

very large coefficient for the ‘CropOnHand’ constraint for corn on ‘Farm 2’,

indicating the data error (see Figure 9.12).

Figure 9.12: Inspecting dual contributions

Bibliography 119

Combining

primal and dual

investigation

The above two paragraphs illustrate the use of just primal contributions or

just dual contributions. In practice you may very well want to switch focus

during the investigation of the cause of an unrealistic solution. In general,

the Math Program Inspector has been designed to give you the utmost flexi-

bility throughout the analysis of both the input and output of a mathematical

program.

Bibliography

[]Ch91 J.W. Chinneck, Locating minimal infeasible constraint sets in linear pro-

grams, ORSA Journal on Computing, vol. 3, (1991), no. 1, 157–168.

[]Go94 J. Gondzio, Presolve analysis of linear programs prior to applying an

interior point method, Logilab, HEC Geneva, Section of Management

Studies, University of Geneva, Technical Report 1994.3 (1994)

[]Mc98 B.A. McCarl, A note on fixing misbehaving mathematical programs:

Post-optimality procedures and GAMS-related software, Journal of Agri-

cultural & Applied Economics, vol. 30, (1998), no. 2, 403–414.

120 Bibliography

Part III

Creating an End-User Interface

Chapter 10

Pages and Page Objects

Creating an

end-user

interface

After you have created a model in Aimms to represent and solve a particular

problem, you may want to move on to the next step: creating a graphical end-

user interface around the model. In this way, you and your end-users are

freed from having to enter (or alter) the model data in text or database tables.

Instead, they can make the necessary modifications in a graphical environment

that best suits the purposes of your model. Similarly, using the advanced

graphical objects available in Aimms (such as the Gantt chart and network flow

object), you can present your model results in an intuitive manner, which will

help your end-users interpret a solution quickly and easily.

This chapterThis chapter gives you an overview of the possibilities that Aimms offers you

for creating a complete model-based end-user application. It describes pages,

which are the basic medium in Aimms for displaying model input and output

in a graphical manner. In addition, the chapter illustrates how page objects

(which provide a graphical display of one or more identifiers in your model)

can be created and linked together.

10.1 Introduction

What is a page?A page is a window in which the data of an Aimms model is presented in a

graphical manner. Pages are the main component of an end-user interface for a

model-based decision support application. An example of an end-user page is

given in Figure 10.1. The page shown here provides a comprehensive graphical

overview of the results of an optimization model by means of a network flow

object in which flows which require attention are colored red. By clicking on a

particular flow in the network object, additional information about that flow is

shown in the tables on the left of the page.

Page designPages are fully designed by application developers for use by the end-users

of an application. Thus, you, as a developer, can decide at what position in

the interface particular model data should be presented to the end-user, and

in which format. In addition, by automatically executing procedures when

opening or closing a page or when modifying data, you can make sure that

124 Chapter 10. Pages and Page Objects

Figure 10.1: Example of a end-user page

all the necessary computations are performed before certain model results are

displayed.

10.2 Creating pages

Creating pages Creating an end-user page is as easy as adding a new node to the page tree

in the Page Manager (see Chapter 12). Figure 10.2 illustrates the page tree

associated with the example application used throughout this guide. As all the

trees in the Aimms modeling tools work alike, you can use any of the methods

described in Section 4.3 to add a new page node to the page tree.

Copying pages In addition to inserting a new empty page into the page tree, you can also copy

an existing page or an entire subtree of pages, by either a simple cut, copy and

paste or a drag-and-drop action in the tree (see Section 4.3). All copied pages

will have the same content as their originals.

Page name The node name of every page (as displayed in the page tree) is the unique

name or description by which the page is identified in the system. When you

add new pages to the tree, Aimms will name these Page 1, Page 2, etc. You

can change this name using the standard methods for changing names of tree

nodes as described in Section 4.3.

10.3. Adding page objects 125

Figure 10.2: Example of a page tree

Page titleBy default, the node name is the title that will be displayed in the frame of the

page window when the page is opened. In the page Properties dialog box (see

Section 11.2) you can, however, specify a different page title to be displayed,

which can either be a constant string or a reference to a string parameter in

the model. The latter is useful, for instance, if you intend to set up an end-user

interface in multiple languages.

Position in page

tree

Its position in the page tree determines the navigational properties of the page.

It will determine how any button with references to the next or previous page,

or any navigation object or menu linked to the page, will behave. These nav-

igational aspects of the Page Manager tool are discussed in more detail in

Chapter 12.

Using templatesEvery page that you add to the page tree, is also automatically added to the

template tree in the Template Manager. By moving the page to a different

position in the template tree, the page automatically inherits all the properties

such as page size or background, and all objects specified on the template

pages hierarchically above it. The Template Manager and the use of templates

is explained in full detail in Chapter 12.

10.3 Adding page objects

Page objectsAll visible components on a page are instances of the collection of page ob-

jects as offered by Aimms. Such page objects are mostly used to visualize the

126 Chapter 10. Pages and Page Objects

input and output data of your model in various ways. They also include sim-

ple drawing objects, such as lines and circles, and buttons for navigation and

execution.

Edit mode Before you can add page objects to a page, the page must be in edit mode.

When you open a page using the Page Manager, it is opened in user mode by

default. When you want to open a page in edit mode from the Page Manager,

you can do so using the right mouse pop-up menu. If a page is already opened

in user mode, you can reopen it in edit mode using the button on the page

toolbar. When you open the page from the Template Manager, it is opened in

edit mode by default.

Common data

objects

Aimms provides the most common graphical data objects such as

� row-oriented composite tables,

� 2-dimensional tables,

� pivot tables,

� graphs, and

� charts.

These objects can be used both for displaying and for modifying the data in

your model. The data displayed in such objects are always directly linked to

one or more identifiers in your model.

Adding an

object

Placing a data object onto a page can be done without any programming. The

following straightforward actions are required:

� select the type of the graphical object to be displayed,

� drag a rectangle onto the page of the intended size of the object, and

� choose the identifier in the model holding the data that you want to

display.

Selecting the

object type

You can select the object type that you want to add to the page from the Object

menu. Alternatively, you can select any of the most common object types using

the Page Edit toolbar, as depicted in Figure 10.3. If you move the cursor to one

Figure 10.3: The Page Edit toolbar

of the buttons of the toolbar, a tooltip will appear. After you have selected an

object type, the page cursor will change to a cross allowing you to drag the

rectangle in which the object will be contained. Figure 10.4 illustrates such a

rectangle just prior to linking it to one or more Aimms identifiers.

10.3. Adding page objects 127

Figure 10.4: Drawing an object region

Object grid and

alignment

In order to let you drag object regions in an aligned manner, Aimms allows you

to associate a grid with a page, and align object regions to that grid automati-

cally via the View menu. Alternatively, you may align objects later on, or make

them the same size via the Edit-Alignment menu (see Section 11.1).

Selecting an

identifier . . .

After you have indicated the object region, you must select an identifier to be

associated with that object. To support you in this task Aimms provides an

Identifier Selection dialog box as illustrated in Figure 10.5. You can select any

single identifier from the list on the right.

. . . from a

subselection

Additional help is offered for models with many identifiers. By selecting a

subtree of the model tree on the left-hand side of the dialog box, you can

narrow down the selection of identifiers on the right-hand side to those which

are declared within the selected subtree. With the Filter... button you can

narrow the selection down even more, by only displaying those identifier types

that you are interested in.

Selecting from a

library

When your project contains one or more library projects, Aimms only allows

you to select identifiers that are part of the interface of a library on any page

not included in such a library (see also Section 3.2). If the page is part of

the page tree of a library, Aimms allows you to select from all the identifiers

declared in the library.

Ensuring your

freedom

By restricting access from within pages outside of the library to the identifiers

in the library interface only, Aimms allows you to freely modify the internal

implementation of your library. No other part of the application will be in-

flicted if you make changes to identifier declarations that are not included in

the library interface.

128 Chapter 10. Pages and Page Objects

Figure 10.5: The Identifier Selection dialog box

Slices and

linking

In its simplest form, you can use the Identifier Selection dialog box to select an

entire identifier of the appropriate dimension to fill a selected object. However,

the Identifier Selection dialog box will also let you consider selecting slices

of identifiers, or provide automatic links between objects. These advanced

subjects will be discussed in detail in Section 10.4 below.

Object

properties

After you have selected the identifier(s) necessary to fill the page object with

the appropriate model data, Aimms will draw the object using default settings

for properties such as fonts, colors and borders. Later on, you can change

these properties (or even modify the defaults) via the Properties dialog box of

the object (see also Section 11.2).

Example If the object region displayed in Figure 10.4 is used to draw a table object, and

the identifier selection dialog box in Figure 10.5 is used to select the identifier

NodeCoordinate(n,crd), the table in Figure 10.6 results.

10.3.1 Displaying expressions in page objects

Displaying

expressions

In addition to indexed identifiers, Aimms also allows you to display expressions

in a page object. This is convenient, for instance, when you want to display

10.3. Adding page objects 129

Figure 10.6: Example of a newly created table object

some data which is not directly available in your model in the form of an

(indexed) identifier, but which can be easily computed through an expression

referring to one or more identifiers in your model. In such a case, you do not

have to create an additional defined parameter containing the expression that

you want to display, but rather you can directly enter the expression in the

Identifier Selection dialog box, as illustrated in Figure 10.7.

Figure 10.7: Selecting an expression in a page object

130 Chapter 10. Pages and Page Objects

Entering an

expression

When you have indicated that the page object should display an expression

rather than an indexed identifier, Aimms will display the Expression Definition

dialog box illustrated in Figure 10.8. In this dialog box you must specify the

exact definition of the expression you want to be displayed in the page object.

Figure 10.8: Entering an expression for a page object

Specifying the

expression type

In the Expression Type field of the Expression Definition dialog box, you

must select the type of the expression you entered. Aimms only allows the

display of

� numeric,

� element-valued, and

� string-valued.

expressions. Aimms does not allow the display of set expressions. If the ex-

pression type is element-valued, you must also indicate the element range of

the expression, i.e. the set in which the expression will hold its values.

Specifying the

index domain

Finally, in the Index Domain field of the Expression Definition dialog box you

must specify the index domain over which the expression is defined. Contrary

to the IndexDomain attribute in a parameter declaration form, Aimms only ac-

cepts a list of indices in this field, i.e. you cannot add a domain condition (see

also Section 4.1 of the Language Reference). If you want to restrict the domain

10.3. Adding page objects 131

of the expression, you specify the domain condition as a $ condition within the

expression definition (see also Section 6.1.9 of the Language Reference). This is

illustrated in Figure 10.8, where MeasuredFlow(f) serves as a domain condition

on the domain f.

10.3.2 Creating advanced page objects

Advanced data

objects . . .

In addition to common graphical data objects such as tables, bar charts and

curves, Aimms also supports a number of advanced graphical objects. These

objects are designed for specialized, but widely-used, application areas. The

most notable advanced objects available in Aimms are:

� an interactive Gantt chart for time-phased scheduling and planning ap-

plications, and

� a network flow object for applications in which two-dimensional maps or

flows play a central role.

. . . are based on

multiple

identifiers

Advanced data objects have the characteristic that multiple model identifiers

are required to represent the visual result. For instance, in the network flow

object you need a set identifier to denote the set of nodes to be displayed

and their coordinates in the network, as well as a parameter to indicate the

flow values between these nodes. Figure 10.9 illustrates the selection dialog

box of a network flow object. To enter the appropriate identifiers for each

Figure 10.9: Identifier selection for the network flow object

required component, you can open the common Identifier Selection dialog

box described above by pressing the wizard button at the right of each

individual component.

132 Chapter 10. Pages and Page Objects

Object help In this User’s Guide you will only find the basic mechanisms for adding or

modifying pages and page objects. Full details of all object types, and their

properties and settings, are described in the on-line help facility which is al-

ways available when you are running Aimms.

Non-data

objects

In addition to data-related objects, Aimms also supports various other types of

objects such as:

� drawing objects (such as line, circle, rectangle, picture and text objects),

and

� buttons to initiate model execution and page navigation.

Drawing objects and buttons are positioned on a page in exactly the same

manner as the data objects described above, except that a link to one or more

Aimms identifiers is not required.

10.4 Selecting identifier slices and linking objects

Advanced

identifier

selection

After you have selected an indexed identifier (or expression) in the Identi-

fier Selection dialog box, a second dialog box appears, as illustrated in Fig-

ure 10.10. In this dialog box, you have several options to refine your choice,

Figure 10.10: Advanced Identifier Selection options

each of which will be described in this section.

10.4. Selecting identifier slices and linking objects 133

Slicing and

subset

restriction

By default, Aimms assumes that you want to associate the full identifier with

the object in hand. However, with the dialog box of Figure 10.10 Aimms allows

you to modify several domain-related issues before displaying the identifier.

More specifically, for every individual dimension in the index domain of the

identifier, you can:

� restrict that dimension to those elements that are included in a particular

subset associated with the domain set by using a subset index,

� select a slice of the identifier by fixing that dimension to the value of a

particular scalar element-valued parameter that assumes its values into

the corresponding domain set, or

� select a slice of the identifier by fixing that dimension to a specific ele-

ment in the corresponding domain set.

In the dialog box of Figure 10.10 Aimms lets you select specific elements, ele-

ment parameters or subset indices on the right-hand side of the dialog box to

restrict the dimension that is selected on the left-hand side.

Dimension

reduction

By fixing a particular dimension to an element parameter or a set element, the

total number of dimensions of the displayed data is reduced by one. Thus, by

fixing one dimension of a two-dimensional parameter, only a one-dimensional

table will be displayed. The number of dimensions is not reduced when the

display is restricted to elements in a subset. In this case, however, the object

will display less data.

Index order and

table split

For a table object, the Identifier Selection dialog box also lets you determine

the order of the dimensions and a split of the dimensions. This allows you

to specify which dimensions are shown rowwise and which columnwise, and

in which order. If you do not insert a split manually, Aimms will determine a

default split strategy.

Index linkingFinally, the identifier selection options offer you the possibility of establishing

a link between a particular dimension of the selected identifier and a (scalar)

element parameter that assumes its values into the corresponding domain set.

As an example, consider the dialog box of Figure 10.10. In it, the dimension

nfrom of the identifier FlowMap(f,nfrom,nto) is linked to the element parameter

SourceNode, and the dimension nto to the element parameter DestinationNode.

Link notationIn the Properties dialog boxes of a linked object, Aimms displays the link using

a “->” arrow. Thus, the parameter FlowMap from the example above, will be

displayed as

FlowMap(f, nfrom -> SourceNode, nto -> DestinationNode)

This special link notation is only valid in the graphical interface, and cannot

be used anywhere else in the formulation of your model.

134 Chapter 10. Pages and Page Objects

Effect of index

linking

When the identifier FlowMap(f,nfrom,nto) is displayed in, for instance, a table

object, Aimms will, as a result of the specified index links, automatically assign

the values of nfrom and nto associated with the currently selected table entry

to the element parameters SourceNode and DestinationNode, respectively.

Use of index

linking

Index linking is a very powerful Aimms feature that allows you to effectively

implement several attractive features in an end-user interface without any pro-

gramming effort on your part. Some representative uses of index linking are

discussed below.

� You can use index links involving one or more element parameters in

a particular page object as a way of triggering Aimms to automatically

update one or more other page objects that contain identifier slices fixed

to these element parameters. These updates will occur as soon as a user

clicks somewhere in the particular page object in which the indices were

linked. An illustrative example of such automatic linkage of page objects

is shown below.

� You can use index linking to keep track of the current user selection in an

object when executing a procedure within your model. This allows you

to do some additional data processing, or perform some necessary error

checks for just that tuple in a multidimensional identifier, whose value

has most recently been modified by the end-user of your application.

Example Consider the page shown in Figure 10.11. The tables and lists underneath the

Figure 10.11: Example of index linking

10.4. Selecting identifier slices and linking objects 135

flow data text in the center part of the page display detailed information re-

garding the currently selected flow in the network flow object shown in the

right part of the page. This was accomplished as follows. The index f repre-

senting the flows in the network flow object on the right was linked to a single

element parameter FlowEl in the set Flows. The tables and lists on the left of the

screen contain identifier slices fixed to the element parameter FlowEl. Take, for

instance, the values in the column named Measured in the table object on the

lower left part of the screen. This column corresponds to the one-dimensional

identifier slice MappedMeasuredComposition(c,FlowEl). As a result of the link,

the column Measured automatically displays detailed information for the flow

selected by the end- user in the flow chart on the right.

Chapter 11

Page and Page Object Properties

This chapter After you have created a page with one or more data objects on it, Aimms

allows you to modify the display properties of these objects. This chapter

illustrates the available tools for placing and ordering page objects, and how

to modify properties of both pages and page objects. It also provides a brief

description of the available properties.

11.1 Selecting and rearranging page objects

Selecting an

object

Before you can modify the properties of a page object, you must select the

object. This can be accomplished as follows:

� make sure that the page is opened in edit mode (see Section 10.3),

� press the Select Object button on the page toolbar, if it is not already

pressed, and

� click on the page object.

The selected object(s) on a page are marked with a small dark square on each

of its corners. This is illustrated in Figure 11.1.

Figure 11.1: A selected page object

11.1. Selecting and rearranging page objects 137

No template

objects

When a page depends on one or more templates (see also Section 12.2), Aimms

will only let you select those objects that were placed on the page itself, and

not those which are contained in any of its templates. Template objects can

only be edited in the template page on which they are defined.

Selecting

overlapping

objects

When two or more objects are overlapping, clicking on the overlapping region

will result in any one of the overlapping objects being selected. By holding the

Shift key down during clicking, Aimms will cycle through all the overlapping

objects, allowing you to select the object of your choice. Alternatively, you can

press the Tab key repeatedly to browse through all selectable objects on the

page.

Selecting

multiple objects

In addition to selecting a single page object, Aimms also allows you to select

multiple objects. You can do this by dragging a select region on the page,

after which Aimms will mark all objects contained in that region as selected.

Alternatively, you can add or remove objects to form a selection by clicking on

the objects while holding down the Shift key.

Object

alignment

With the Edit-Alignment menu of a page in edit mode, you can correct the

placement and sizes of all page objects that are currently selected. The Align-

ment menu lets you perform actions such as:

� give all selected objects the same height or width, i.e. the height or width

of the largest object,

� align all selected objects with the top, bottom, left or rightmost selected

object,

� center the selected objects horizontally or vertically, and

� spread all selected objects equally between the top and bottommost ob-

jects or between the left and rightmost objects.

An alternative method of alignment is to define a grid on the page (see Sec-

tion 10.3), and align the borders of all objects with the grid.

Drawing orderWith the Drawing Order item of the Edit menu, you can alter the order in

which overlapping objects are drawn. When applied to a selected object, you

can specify that the object at hand must be drawn as either the top or bot-

tommost object. Modifying the drawing order only makes sense for drawing

objects such as the text, rectangle, line, circle and picture objects.

Specifying the

tab order

When there is a natural order in which an end-user has to enter data on a

particular page, you can use the Tab Order item from the Edit menu, to spec-

ify this order. The Tab Order menu opens a dialog box as illustrated in Fig-

ure 11.2. In this dialog box all page objects are displayed in a list which deter-

mines the (cyclic) order in which Aimms will select the next object for editing

when the user leaves another object on the page through the Tab or Enter

keys.

138 Chapter 11. Page and Page Object Properties

Figure 11.2: The Tab Order dialog box

Tabular objects In tabular objects, the Tab and Enter keys can also be used to move to the

next table entry to the right or below, respectively. In such cases, Aimms will

only go to the next object in the tab order, if further movement to the right or

below within the object is no longer possible.

Disabling tab

order

In addition to modifying the tab order, you can also use dialog box of Fig-

ure 11.2 to select the page objects that should not be included in the tab or-

der. Alternatively, you can remove a page object from the tab order in the

Properties dialog box of that object as explained in the next section. Objects

excluded from the tab order are not accessible on the page by pressing the Tab

or Enter keys, but can still be selected using the mouse.

11.2 Modifying page and object properties

Object

properties

In addition to modifying the display properties of groups of objects on a page,

Aimms also allows you to modify the visual appearance of a page itself and

of all of its individual page objects. When the page is in edit mode, you can

open the Properties dialog box of either a page or a page object by simply

double clicking on it, or by selecting Properties from the right-mouse pop-up

menu. This will display a dialog box as illustrated in Figure 11.3. The dialog

box contains tabs for all visual aspects that are relevant to that object, and

initially displays the current settings of these visual aspects.

Properties of

multiple objects

You can also modify properties of multiple objects at the same time by first

selecting a group of objects and then selecting the Edit-Properties menu, or

selecting Properties from the right-mouse pop-up menu. This will invoke a

11.2. Modifying page and object properties 139

Figure 11.3: The Properties dialog box

Properties dialog box containing only those tabs that are common to all the

selected objects. Aimms will not display an initial value for the corresponding

properties, as each property may hold different initial values for the various

objects. Only the properties that you change are applied to the selected ob-

jects.

Property typesThrough the tabs in the Properties dialog box, Aimms lets you modify the var-

ious properties of pages and page objects. The following paragraphs provide

a brief overview of the modifiable properties. A full explanation of the various

properties of all the available objects can be found in the help file accompany-

ing the Aimms system.

The Contents

tab

With the Contents tab you can add or remove identifiers from the list of iden-

tifiers that are displayed in the object. With this tab you can specify, for in-

stance, that a table is to display the values of two or more identifiers. To

modify the contents, Aimms will open the common Identifier Selection dialog

box as explained in Section 10.3.

Applying

changes

Before you can make changes to the Contents tab, Aimms requires that you

apply any changes you have made to the other object properties before enter-

ing the Contents tab. You can apply these changes using the Apply button.

Similarly, after you have made changes to the Contents tab, Aimms requires

that you apply these changes before you can go on to modify other object

properties.

140 Chapter 11. Page and Page Object Properties

The Procedure

tab

With the Procedure tab you can specify the particular procedures that must

be executed upon user inputs such as a data change or selecting a particular

value in a data object. The use of procedures linked to data objects is mostly to

perform error checks or update other identifiers based on a single data change.

The Action tabs With the Action tab, the counterpart of the Procedure tab for pages, buttons

and navigational controls, you can specify the particular actions that must be

executed upon opening a page, pressing a button, or making a selection in

a navigational control. Such actions typically can be a sequence of running

a procedure within the model, executing predefined Aimms menu actions, or

checking assertions.

The Menu tab The Menu tab lets you specify which menu bar, toolbar, and right-mouse pop-

up menu should be active on top of either a page or an object on a page. The

menus themselves, as well as the actions linked to the menus, can be created

in the Menu Builder tool. The Menu Builder tool is explained in full detail in

Chapter 12.

Double-click

actions

An action type that is used quite frequently, is the double-click action. You

can specify a double-click action either in the Action tab, or through the Menu

tab. The following rules apply.

� If a Double-Click procedure is specified on the Action tab, Aimms will

execute that procedure.

� If no Double-Click procedure has been specified, but a pop-up menu

associated with the page object has a default item, Aimms will execute

the default menu item.

� If neither of the above apply, and the object is a table displaying a set, the

double-click action will toggle set membership of the set element which

currently has the focus.

� In all other cases, double-clicking will be ignored.

The Assert tab Through the Assert tab you can indicate which assertions already declared

in your model are to be checked upon end-user data changes to a particular

identifier in a data object. Aimms can perform the assertion immediately upon

every data change, or delay the verification until the end-user presses a button

on the page. Once an immediate assertion fails, the assertion text will be

displayed to the user and the original value will be restored.

The Colors tab With the Colors tab you can not only specify the colors that are to be used for

the foreground and background of a page or page object, but also the color

for the user-selected values in a page object. In addition, you can specify a

model-defined (indexed) color parameter to define the foreground color that

will be used for each identifier in a data object. With such a parameter you

can, for instance, color individual values of an object depending on a certain

11.2. Modifying page and object properties 141

threshold. The necessary computations for this individual coloring need to be

made inside the model underlying the end-user interface. You will find more

details about assigning color parameters in Section 11.4.

The Font tabThe Font tab lets you define the font that is to be used for a particular object.

You can choose the font from a list of user-defined font descriptions as illus-

trated in Figure 11.4. To add a new font name to the list, you should press the

Figure 11.4: The Font tab of a Properties dialog box

Add button. This will open the standard Windows font selection dialog box,

allowing you to define a new Aimms font based on the list of available Win-

dows fonts, font styles and sizes. Once you have made a selection, you will be

requested to provide a description for the newly selected font.

Choose

functional font

names

It is strongly recommended that you choose functional names for Aimms fonts

(i.e. describing their intended use) instead of merely describing the choices you

made. For instance, naming a new font “Button font” instead of “Arial Regular,

8 pt” will help tremendously in preventing mistakes when selecting a font for

a button.

Fonts in library

projects

Aimms also allows you to store fonts within a library project. The list of fonts

shown in Figure 11.4 displays a single font Small Table Font associated with

the library CoreModel. You can manage the list of fonts associated with a

library by pressing the buttons on the right-hand side of the dialog box, while

the selection in the listbox on the left-hand side is in the area associated with

the library.

142 Chapter 11. Page and Page Object Properties

Use only in

library pages

If you have defined fonts within a library project, you should ideally only use

these fonts in pages that are also part of the library project. If you use the

fonts in pages outside of the library, such pages may fail to display properly

after you have removed the library project from the Aimms project.

Font names

must be unique

Aimms requires that all font names be unique across the main project and

all library projects that are included in the main project. If you include an

existing library project, which contains a font name that is already present

in the Aimms project, Aimms assumes that both fonts are the same and will

ignore the second font definition.

The Border tab With the Border tab you can stipulate the border settings for any particular

data object on a page. A border can consist of merely a surrounding line, or

provide an in- or out-of shadow effect.

The Text tab With the Text tab you can specify for each identifier a single line of text that

is displayed in a page object. With this line of text you can, for instance,

provide descriptions for the data in a table containing one or more identifiers.

In addition, the Text tab will let you define the element description for the

(optional) status line associated with the object. The status line will display

the currently selected value along with its element description. If the element

description contains references to the indices over which the identifier at hand

is defined, these references will be expanded to the currently selected element

names.

The Element

Text tab

By default, any set element in a data object will be displayed by its name in the

model. If you want to display an alternative text for a set element, you can use

the Element Text tab to specify a string parameter holding these alternative

element descriptions. You can use this feature, for instance, to display set

elements with their long description in the end-user interface, whereas the

model itself, and perhaps paper reports, work with short element names.

The Format tab The Format tab defines the numerical format in which the data of a particular

identifier is displayed. This format can be specified on the spot, or can use

a named format already predefined by you as the application developer. The

display format specifies not only such properties as the width of a number

field and its number of decimal places, but also their relative alignment, the

use of a 1000-separator for large numbers, and the display of default values.

The Units tab The Aimms modeling language offers advanced support for defining units of

measurement for each identifier in the model. In particular, Aimms supports

unit conventions which let you define a coherent set of units (e.g. Imperial or

metric units) in a single declaration. In the end-user interface you can indicate

in the Units tab whether you want units to be displayed for every identifier or

11.2. Modifying page and object properties 143

for every individual value contained in a particular data object. The displayed

units are the units defined for the identifier at hand, unless the end-user has

selected a current unit convention with alternative units. Figure 11.5 illus-

trates an end-user page in which identifier values are displayed along with

their associated units of measurement.

Figure 11.5: Use of units in a data object

The Input tabWith the Input tab you can specify the read-only properties of every identifier

in a page object separately. The decision as to whether numbers are read-only

can depend on (indexed) identifiers in your model. Thus, you can arrange it so

that particular numbers in, for example, a table can be edited by the end-user,

while other numbers associated with that same identifier are considered as

read-only. In addition to the properties specified on this tab, the overall read-

only behavior of identifiers is also influenced by the contents of the predefined

identifier CurrentInputs (see Section 17.1).

The Visible tabYou can use the Visible tab to hide a particular page object in its entirety

from a page. Whether or not a page object is visible may depend on a scalar

identifier (slice) in your model. The ability to hide page objects comes in handy

when, for instance,

� you want to hide a page object because a particular end-user has no right

to modify its data, or

144 Chapter 11. Page and Page Object Properties

� a page contains two exactly overlapping page objects—e.g. one holding

relative numbers, the other holding absolute numbers—and you want to

display just the one based on the user’s choice.

The Misc. tab With the Misc. tab you can specify various miscellaneous settings such as

� whether a page object must be included in the page tab order to specify

a natural navigation order on the page (see also Section 11.1),

� whether an object is actually printed or skipped during printing (only

relevant for print pages, see also Chapter 14),

� which end-user help topic should be displayed for the page or page ob-

ject at hand, or

� a tag name, which is used when you want to refer to the object from

within the model (see Section 17.3.1).

Help file Before adding end-user help to a particular page, page object, end-user menu

or toolbar, you must add a help file to your project directory, and specify

its name through the Options dialog box (see Section 20.1). All the available

end-user help associated with your project must be contained in the specified

project help file.

Help file

formats

Aimms supports several help file formats, allowing you to create a help file for

your project using the tools you are most familiar with. They are:

� standard Windows help files (with the .hlp extension),

� compiled HTML help files (with the .chm extension), and

� PDF files (with the .pdf extension), which require that Acrobat Reader

version 4.0 or higher is installed on your machine.

An executable Acrobat Reader installation can be downloaded from the Adobe

website www.adobe.com.

Creating help

files

To create a help file in any of the supported formats you will need an appro-

priate tool such as RoboHelp, Help & Manual or DocToHelp to create either a

Windows or compiled HTML help file, or Adobe Acrobat to create a PDF file. To

jump to a marked position inside the help file when providing help for a page,

a page object, a menu or a button on a toolbar you should add:

� (so called) K-keywords to an ordinary Windows help file,

� keywords to a compiled HTML help file, or

� named destinations added to a PDF file.

All of the destinations that you added to the help in this way can serve as the

Help Topic inside the Misc. tab of a page or page object.

11.3. Using pages as dialog boxes 145

Object-

dependent

properties

In addition to the tabs described above, which are common to most objects,

the Properties dialog box also has a number of tabs where you can change

properties that are very specific for a particular type of object. Through such

object-dependent options you can specify, for instance, whether a table should

display default values, what should be displayed along the axes in a graph or

chart, or how the arcs and nodes in a network flow object should be drawn.

The contents of these object-specific tabs are explained in full detail in the

online Aimms help file.

11.3 Using pages as dialog boxes

Use of dialog

boxes

By default all end-user pages behave as normal windows, i.e. whenever you

have multiple windows open, you can freely switch from window to window

simply by clicking in the window that should become active. Sometimes, how-

ever, your application may contain sequential actions which require the user

to make a certain choice or data change before moving on to the next action. In

this case the page should behave as a dialog box instead of a normal window.

While a dialog box is displayed on the screen, it is impossible to access other

windows in the application without closing the dialog box first for example

with an OK or Cancel button. By using dialog boxes you can force an end-user

to follow a strict sequence of operations.

Dialog pagesIn Aimms you can define that a page should behave like a dialog box by using

the page Properties dialog box as illustrated in Figure 11.6. If such a dialog

Figure 11.6: Creating a dialog page

146 Chapter 11. Page and Page Object Properties

page is opened using either a button, a menu, a navigation object or from

within the model through a call to the PageOpen procedure, it will behave like

a dialog box. If, on the other hand, the dialog page is opened from within

either the Page Manager or the Template Manager, the page will behave as

an ordinary window. This offers you the possibility of editing the contents and

layout of the page.

Blocking

execution

When a dialog page is called from within a procedure using PageOpen, the ex-

ecution of the calling procedure will only continue after the dialog page has

been closed by the end-user. In this way, any data supplied by the end-user in

the dialog page will always be available during the remaining execution of the

calling procedure.

Dialog box

result

Note that dialog pages do not offer built-in support to determine whether an

end-user has finished the dialog box for example by pressing the OK or Cancel

button. However, such control can easily be modeled in the Aimms language

itself. Perhaps the most straightforward manner to accomplish this is by in-

troducing

� a set DialogActions containing two elements ’OK’ and ’Cancel’,

� an associated global element parameter CurrentDialogAction, and

� procedures such as ButtonOK and ButtonCancel which set CurrentDialog-

Action equal to ’OK’ or ’Cancel’, respectively.

Linking to

dialog box

buttons

To obtain the result of a dialog page, you can simply add the execution of

the procedures ButtonOK or ButtonCancel to the list of actions associated with

the OK and Cancel buttons, respectively. In addition, you should link the

functionality of the close icon for the dialog page to that of the Cancel button

as illustrated in Figure 11.7.

Obtaining the

result

To obtain the end-user choice in the dialog page after the return of the PageOpen

procedure, you can simply check for the value of the element parameter Cur-

rentDialogAction, as illustrated in the following code excerpt.

! Open the dialog page and stop processing when the user

! has pressed the ’Cancel’ button.

OpenPage("Supply input data");

return 0 when CurrentDialogAction = ’Cancel’;

! Otherwise perform further data processing based on the supplied input data.

Create a dialog

page template

You may want to create a customized dialog page template (see also Sec-

tion 12.2) to capture the end-user choices as described above. Based on such

a dialog page template, you can quickly create as many dialog pages as nec-

essary, all behaving in a similar fashion when opened in a procedure of your

model.

11.4. Defining user colors 147

Figure 11.7: Linking dialog close to Cancel

11.4 Defining user colors

User colorsAs already explained in the previous section, Aimms allows you to define the

color of particular objects in a graphical end-user interface from within the

execution of your model. In this section you will see how you can define user

colors which can be used within the model, and how you can use them to

provide model-computed coloring of page objects.

Defining

persistent user

colors

To define user colors that persist across multiple sessions of a project, you

should open the User Colors dialog box as illustrated in Figure 11.8 from the

Tools menu. By pressing the Add or Change Color button, Aimms will display

the standard Windows color selection dialog box, which you can use to create

a new user color or modify an existing user color. After you have selected a

color, Aimms will request a name for the newly defined color for further usage

within the model.

Functional color

names

As with font names, you may prefer to choose functional color names rather

than names describing user colors. For instance, colors named “Full tank

color”, “Partially filled color” and “Empty tank color” may be a much better

choice, from a maintenance point-of-view, than such simple names as “Red”,

“Blue” and “Green”. In addition, choosing descriptive names may make the in-

tention of any assignment to, or definition of, color parameters in your model

much clearer.

148 Chapter 11. Page and Page Object Properties

Figure 11.8: The User Colors dialog box

User colors in

library projects

Similar as with fonts, a library project can also contain its own set of user

colors. The list of colors shown in Figure 11.8 displays the user colors defined

within the main project. For each library included in the project the listbox

contains a separate area displaying the user colors that are associated with

that library. You can manage the list of user colors associated with a library

by pressing the buttons on the right-hand side of the dialog box, while the

selection in the listbox on the left-hand side is in the area associated with the

library.

Use only in

library pages

If you have defined user colors within a library project, you should ideally

only use these user colors in pages that are also part of the library project. If

you use the user colors in pages outside of the library, such pages may fail to

display properly after you have removed the library project from the Aimms

project.

Color names

must be unique

Aimms requires that all user color names be unique across the main project

and all library projects that are included in the main project. If you include

an existing library project, which contains a user color name that is already

present in the Aimms project, Aimms assumes that both user colors are the

same and will ignore the second color definition.

11.4. Defining user colors 149

Runtime user

colors

Persistent user colors cannot be modified or deleted programmatically. How-

ever, you can add runtime colors (which only exist for the duration of a project

session) programmatically from within your model using the function User-

ColorAdd. In the User Colors dialog box, runtime colors are shown under the

header Runtime colors. You can modify or delete such runtime colors using

the functions UserColorModify and UserColorDelete. These functions are dis-

cussed in full detail in Section 17.2.1.

The set

AllColors

All persistent and non-persistent user colors are available in your model as

elements of the predefined set AllColors. To work with colors in your model

you can simply define scalar and/or indexed element parameters into the set

AllColors. Through simple assignments or definitions to such parameters you

can influence the coloring of identifiers or individual identifier values on an

end-user page.

ExampleConsider a set of Flows in a network with index f. If a mathematical program

minimizes the errors in computed flows in respect to a set of measured flow

values, then the following simple assignment to a color parameter FlowColor(f)

marks all flows for which the error exceeds a certain threshold with an appro-

priate color.

FlowColor(f) := if (FlowError(f) >= ErrorThreshold) then

’Red’ else ’Black’ endif;

Use in interfaceWith the above assignment, any graphical display of Flows can be colored in-

dividually according to the above assignment by specifying that the color of

the individual numbers or flows in the Colors dialog box of the object be given

by the value of the color parameter FlowColor(f). Figure 11.5 (on page 143)

illustrates an example of an end-user page where the flows in the network flow

object, as well as the individual entries in the tables and lists, are colored indi-

vidually with respect to the parameter FlowColor(f) (the colors are only visible

in the electronic version of this book).

Chapter 12

Page Management Tools

This chapter When your decision support system grows larger, with possibly several people

developing it, its maintainability aspects become of the utmost importance. To

support you and your co-workers in this task, Aimms offers several advanced

tools. As discussed in Chapters 4 and 7, the Model Explorer combined with the

Identifier Selector and View Manager, provide you with various useful views

of the model’s source code. In this chapter, the specialized Aimms tools that

will help you set up an advanced end-user interface in an easily maintainable

manner will be introduced.

12.1 The Page Manager

Page navigation In large decision support systems with many pages, navigating your end-users

in a consistent manner through all the end-user screens is an important part of

setting up your application. One can think of several organizational structures

for all the available end-user screens in your application that would help your

end-users maintain a good overview of their position. To help you set up, and

modify, a clear navigational organization quickly and easily, Aimms provides a

tool called the Page Manager.

The Page

Manager

With the Page Manager you can organize all the existing pages of an Aimms

application in a tree-like fashion, as illustrated in Figure 12.1. The tree in the

Page Manager that holds all the pages of the main Aimms project is called the

main page tree. Relative to a particular page in this page tree, the positions of

the other pages define common page relationships such as parent page, child

page, next page or previous page.

Library page

trees

In addition to the main page tree, each library project included in the main

project can have its own tree of pages as illustrated in Figure 12.1. Sec-

tion 12.1.1 discusses the facilities available in Aimms that allow you to combine

the page structures in all trees to construct a single navigational structure for

the entire application.

12.1. The Page Manager 151

Figure 12.1: The Page Manager

Navigational

controls

The page relationships defined by the page tree can be used in several navi-

gational interface components that can be added to a page or end-user menu.

These components include

� navigation objects,

� navigation menus,

� button actions, and

� tabbed pages.

These allow you to add dynamic navigation to the parent, child, next or previ-

ous pages with respect to the position of either

� the current page, or

� a fixed page in the page tree.

Section 12.1.2 explains in detail how to set up such automatic navigation aids.

Aimed at ease

of maintenance

The strength of the Page Manager tool lies in the fact that it allows you to

quickly add pages to the page tree, delete pages from it, or modify the order

of navigation without the need to make modifications to hard-coded page links

on the pages themselves. Thus, when a model extension requires a new section

of pages, you only need to construct these pages, and store them at the appro-

priate position in the page tree. With the appropriate navigational interface

components added to the parent page, the new page section will be available

to the end-user immediately without any modification of existing pages.

152 Chapter 12. Page Management Tools

12.1.1 Pages in library projects

Pages in library

projects

Aimms allows you to develop a separate page tree for every library project in-

cluded in an Aimms application. This is an important feature of library projects

because

� it allows a developer to implement a fully functional end-user interface

associated with a specific sub-project of the overall application com-

pletely independently of the main project, and

� pages defined inside a library project can refer to all the identifiers de-

clared in that library, whereas pages defined in the main project (or in

any other library) can only refer to the public identifiers in the interface

of that library (see Section 3.2).

Duplicate

names may

occur

While Aimms requires that the names of pages within a single (library) project

be unique, page names need not be unique across library projects. To ensure

global uniqueness of page names in the overall application, Aimms internally

prefixes the names of all the pages contained within a library with its associ-

ated library prefix (see Section 3.1). When you want to open an end-user page

programmatically, for instance through the PageOpen function, you need to pro-

vide the full page name including its library prefix. Without a library prefix,

Aimms will only search for the page in the main page tree.

Separate page

trees

The page trees associated with the main project and with all of its library

projects are initially completely separate. That is, any navigational control

(see Section 12.1.2) that refers to parent, child, next or previous pages can

never navigate to a page that is not part of the tree in which the originating

page was included.

All pages are

accessible

Other than for the identifier declarations in a libray, Aimms puts no restriction

on which pages in the library can and cannot be shown from within the main

application, or from within other libraries. Stated differently, the page tree of

a library does not currently have a public interface.

Creating an

application GUI

If an Aimms project is composed of multiple libraries, then each of these li-

braries contains its own separate page tree, which may be combined to form

the total end-user interface of the overall application. The navigational con-

trols offered by Aimms, however, can only reach the pages in the same tree in

which an originating page is included.

12.1. The Page Manager 153

Jumping to

library pages

Without further measures, pages from different libraries would, therefore, only

be accessible through a unidirectional direct link, which is very undesirable

from an end-user perspective. After following such a link moving to a parent,

next or previous page may give completely unexpected results, and getting

back to the originating page may be virtually impossible. For both developers

and end-users a situation in which all relevant pages can be reached from

within a single navigational structure is much more convenient.

Page tree

references

To address this problem, Aimms offers a linkage mechanism called page tree

references. Through a page tree reference, you can virtually move a subtree of

pages from a library project to another location in either the main project or

any other library project included in the Aimms application. While physically

the pages remain at their original location, the navigational controls in Aimms

will act as if the tree of pages has been moved to the destination location of

the page tree reference. At the original location Aimms’ navigational controls

will completely disregard the linked page tree.

Creating a page

tree reference

You can create a page tree reference by inserting a page tree reference node at

the destination location through the Edit-New-Page Tree Reference menu. In

figure 12.1 the Reconciliation Wrapper node illustrates an example of a page

tree reference node. It is linked to the tree of pages starting at the Reconcilia-

tion page in the CoreModel library. Note that Aimms uses a special overlay of

the page icon to visualize that a page is linked to a page tree reference node,

and hence, at its original location, is not reachable anymore through Aimms’

navigational controls.

Linking a page

tree reference

To create a link between a page tree reference node and a subtree of pages

anywhere else in your application you have to select both the page tree ref-

erence node and the node that is at the root of the subtree that you want to

link to, and select the Edit-Page Tree Reference-Link menu. You can unlink

an existing link through the Edit-Page Tree Reference-Unlink menu.

12.1.2 Navigational interface components

Navigational

control

The page tree can be used to directly control the navigational structure within

an Aimms-based end-user application. This can be accomplished either by spe-

cial button actions or through the navigation object and menus. As an exam-

ple, Figure 12.2 illustrates the Process Topology page contained in the page tree

of Figure 12.1. In the lower left corner, the page contains three navigational

buttons that are linked, from left to right, to the previous, parent and next

page. Above this, the page contains a navigation object which, in this instance,

automatically displays a list of buttons that corresponds exactly to the set of

direct child nodes of the Process Topology page in the page tree.

154 Chapter 12. Page Management Tools

Figure 12.2: Page containing navigation buttons and a navigation object

Button actions To add a page tree-based navigational control to a button, you only need to

add a Goto Page action to the Actions tab in the button Properties dialog box,

as illustrated in Figure 12.3. You can request Aimms to open the previous,

Figure 12.3: Adding navigational control to a button

12.1. The Page Manager 155

next, parent or (first) child page relative to the position of the current page in

the page tree. If you want the current page to be closed after opening the new

page, you should additionally insert a Close Page action as in Figure 12.3.

CyclingWhen there is no longer a next or previous page to open in a particular branch

of a page tree, Aimms will cycle to the first or last page within that branch,

respectively. You can further modify the result of a previous or next page

action by placing special separator nodes into the page tree, given that Aimms

will never jump past a separator node. You will find the full details of separator

nodes in the online help on the Page Manager.

Navigation

object

The second way to include a navigational control in an end-user page is by

means of a custom navigation object. A navigation object can display a subtree

of the entire page tree in several formats, such as:

� a list of buttons containing the page titles (as in Figure 12.2),

� a list of buttons accompanied by the page titles,

� a list of clickable or non-clickable page titles without buttons, or

� a tree display similar to the page tree itself.

Object

properties

After adding a navigation object to a page, you must specify the subtree to

be displayed through the Properties dialog box as displayed in Figure 12.4.

What is displayed in the navigation object is completely determined by the

Figure 12.4: Navigation object Properties dialog box

reference page, together with the number of ancestor (parent) and child gen-

erations specified in this dialog box.

156 Chapter 12. Page Management Tools

Display only If you set a navigation object to read-only using the Input tab of the Properties

dialog box, then you can use the navigation object for display- only purposes.

Thus, you can use it to display the current page title as a page header, or the

title of one or more parent pages in the header or footer area of the page. The

“Process Topology” page header of the end-user page displayed in Figure 12.2

is an example of a display-only navigation object.

Navigation

menus

Finally, you can add special navigation (sub)menus to your application in which

the menu items and submenus represent a subtree structure of the page tree.

Figure 12.5 illustrates an example of a navigation menu linked to the page tree

displayed in Figure 12.1.

Figure 12.5: Example of a navigation menu

Adding

navigation

menus

You can add a navigation menu to any menu in the Menu Builder tool (see

Section 12.3). For each navigation menu you must specify a reference page and

the scope of the subtree to be displayed in a similar fashion to that illustrated

for the navigation object in Figure 12.4.

Hiding pages Pages can be statically or dynamically hidden using the page Properties dialog

box (see also Section 11.2), as illustrated in Figure 12.6. In the Hidden field, you

must enter a scalar value, identifier or identifier slice. Whenever the property

assumes a nonzero value the page is hidden, and automatically removed from

any navigational interface component in which it would otherwise be included.

Authorizing

access

For larger applications, end-users can usually be divided into groups of users

with different levels of authorization within the application. Disabling pages

based on the level of authorization of the user (explained in Chapter 19) then

provides a perfect means of preventing users from accessing those data to

which they should not have access. You can still open a hidden page via a

hard-coded page link.

12.2. The Template Manager 157

Figure 12.6: Hiding a page

12.2 The Template Manager

Consistent

look-and-feel

Complementary to the Page Manager is the Aimms Template Manager. Using

the Template Manager, you can ensure that all pages are the same size and

possess the same look-and-feel, simply by positioning all end-user pages in

the template tree associated with a project. An example of a template tree

containing both templates and end-user pages is displayed in Figure 12.7.

Hierarchical

template

structure

In addition to all the end-user pages, the template tree can contain a hierar-

chical structure of template pages. Within the template tree, template pages

behave as ordinary pages, but they are not available to end-users. Through

templates you can define common page objects that are shared by all the tem-

plate and end-user pages positioned below a particular template in the tem-

plate tree.

Duplicating

page templates

When you want to use the same template page at two or more distinct po-

sitions in the template tree, Aimms lets you duplicate, rather than copy, the

template node containing that component. Changes made to the duplicated

page template at any position in the template tree, are automatically propa-

gated to all other occurrences. Duplicated templates can be recognized by the

duplication symbol which is added to the icon of every duplicate template

in the template tree.

158 Chapter 12. Page Management Tools

Figure 12.7: The Template Manager

End-user pages

automatically

added

Every new end-user page created in the Page Manager, is automatically added

to the root node in the template tree. By moving the page around in the tem-

plate tree, it will inherit the combined look-and-feel of all templates above it.

Common page

components

The hierarchical structure of the template tree lets you define layers of com-

mon objects on top of each other. Thus, a first template might globally de-

fine the page size and background color of all underlying pages, while a sec-

ond template could define common components such as a uniformly shaped

header and footer areas. As an example, Figure 12.8 illustrates a template for

an end-user page from the template tree of Figure 12.7, in which the compo-

nents defined in various templates are identified.

Modify

look-and-feel

You can quickly modify the entire look-and-feel of your application, by moving

a subtree of templates and end-user pages from one node in the template tree

to another. Thus, the entire look-and-feel of page size, header and footer areas,

background color and navigational area(s) of all pages in an Aimms application

can be changed by a single action.

Template

objects not

editable

When you open a template or end-user page in the template manager, it will

be opened in edit mode by default, and inherit all the properties of, and all

objects contained in, the templates above. On any template or end-user page

you can only modify those objects or properties that are defined on the page

itself. To modify objects defined on a template, you must go to that template

and modify the objects there.

12.2. The Template Manager 159

Inherited from

Page Frame

Inherited from

Page Sequence

Figure 12.8: Example of an end-user page using templates

Combine with

navigational

components

You can achieve an exceptionally powerful combination by adding navigational

components to a template page. If the reference page property of such a nav-

igational component is expressed in terms of the current page, or one of its

ancestor pages, then, in end-user mode, the current page will always refer to

the particular end-user page which uses that template. Thus, given a well-

structured page tree, you potentially only need a single template to add navi-

gational control components to all end-user pages. This is particularly true for

such common controls as Previous and Next buttons.

12.2.1 Templates in library projects

Templates in

libraries

Each library project in Aimms has a separate template tree, which is available

as a separate root node in the Template Manager, as illustrated in Figure 12.7.

Pages in a library must be positioned in the template tree of that library to

obtain their look-and-feel. This allows the developer of a library project to

define the look-and-feel of the pages in the library completely independent of

the main project and other library projects.

Sharing

templates with

the main project

If you want the pages of an entire application to share a common look-and-

feel across all library projects included in the application, Aimms also allows

you to duplicate template pages from the main project into a library project.

Thus, any changes made to the templates in the main project are automatically

inherited by the pages in the library that depend on the duplicates of these

templates.

160 Chapter 12. Page Management Tools

Sharing

templates

across multiple

projects

Conversely, you can also use library projects to enable the end-user GUIs of

multiple Aimms project to share a common look-and-feel. By defining tem-

plates, fonts, and colors in a single library project, and including this library

project into multiple Aimms projects, the pages in these projects can depend

on a single, shared, collection of page templates. Thus, changes in a single

template library will propagate to all Aimms projects that depend on it.

Moving pages to

a library

If you move or copy pages from the main project to a library project (or be-

tween library projects), Aimms will automatically duplicate the relevant tem-

plate structure from the source project to the destination project. This ensures

that the pages have the exact same look-and-feel at the destination location as

they had at their source location.

Example The automatic duplication behavior of Aimms is illustrated by the page tree

in Figure 12.1 and the template tree in Figure 12.7. These trees were created

by moving the Reconciliation page and its child pages from the main project

to the CoreModel library. Subsequently, Aimms automatically duplicated the

template structure in the CoreModel library to ensure the identical look-and-

feel for the moved pages.

12.3 The Menu Builder

The Menu

Builder

The last page-related design tool available in Aimms is the Menu Builder. With

the Menu Builder you can create customized menu bars, pop-up menus and

toolbars that can be linked to either template pages or end-user pages in your

application. The Menu Builder window is illustrated in Figure 12.9. In the

Menu Builder window you can define menus and toolbars in a tree-like struc-

ture in a similar fashion to the other page-related tools. The menu tree closely

resembles the natural hierarchical structure of menus, submenus and menu

items.

Default menu

bar and toolbar

As illustrated in Figure 12.9, the Menu Builder will always display four default

nodes. Two nodes representing the standard end-user menu bar and tool-

bar. These bars are linked to all end-user pages by default. And two nodes

representing the standard Data Manager menu bar and toolbar. Although non-

editable, you can use these nodes to copy (or duplicate) standard end-user

menus or submenus into your own customized menu bars and toolbars. The

data manager items will allow you to build your own menu and toolbar for the

data manager with the same functionality as the standard menu and toolbar

for the data manager.

12.3. The Menu Builder 161

Figure 12.9: The Menu Builder window

Inserting new

nodes

In the User Menu Tree, you can add nodes to represent menu bars, (sub)menus,

menu items or toolbars in exactly the same manner as in other trees such as

the model and page trees. Also, you can copy, duplicate or move existing

nodes within the tree in the usual manner (see Section 4.3). The names given

to menu and menu item nodes are the names that will be displayed in the end-

user menus, unless you have provided a model-specific menu description in

the menu Properties dialog box (e.g. to support multiple languages).

Menu item

properties

For every node in the menu tree you can modify its properties through the

Properties dialog box. In the Properties dialog box you can perform tasks

such as linking end-user actions or model procedures to a menu item, provide

shortcut keys, tooltips and help, or link a menu item to model identifiers that

specify whether the item should be disabled within an end-user menu, or even

be completely hidden from it. The Properties dialog box for a menu item is

shown in Figure 12.10.

Adding menu

actions

Through the Actions tab of the Properties dialog box, you can associate a

list of actions with a menu item. Such actions can consist of executing menu

items from system menus, navigational commands such as opening or closing

pages, and also running procedures from your model, verifying assertions or

updating identifiers.

162 Chapter 12. Page Management Tools

Figure 12.10: The menu item Properties dialog box

Hiding and

disabling items

With the Control tab it is possible to provide control over a menu item from

within your model. You can specify scalar 0-1 identifiers from within your

model to determine whether a menu item or submenu should be disabled

(grayed out) or completely hidden from the menu. Thus, you can prevent an

end-user from performing tasks for which he is not authorized. In addition,

you can couple a 0-1 identifier to a menu item in order to determine whether a

menu item is checked, and which conversely toggles its value when an end-user

checks or unchecks the item.

Tooltips and

help

In the Help tab of the Properties dialog box, you can provide a description

and help describing the functionality of a menu command. It lets you specify

such things as the tooltips to be displayed for buttons on the button bar, a

descriptive text for to be shown in the status bar, and a link to a help item in

the project related help file.

Navigation

menus

Navigation menus are a special type of menu that can be added to the menu

tree. Navigation menus expand to a number of items in the current menu, or to

one or more submenus, according to the structure of a particular subtree of the

page tree as specified by you. Through navigation menus you can quickly and

easily create menus that help an end-user navigate through your application.

For example, you could create a menu item which links to the first child page,

or to the parent page, of any page to which the menu is linked. The details of

how to specify which pages are displayed in a navigation menu can be found

in Section 12.1.2.

12.3. The Menu Builder 163

Linking to pages

and objects

You can link a single menu bar, toolbar and pop-up menu to any end-user or

template page in your project through the Menu tab of the page Properties

dialog box, as illustrated in Figure 12.11 For every field in the dialog box,

Figure 12.11: Linking menus to pages

Aimms lets you select an existing node in the menu tree. If you do not specify a

menu bar or toolbar, Aimms will automatically open the default end-user menu

bar and toolbar.

Inherited menusWhen you add a menu bar or toolbar to a page template, these bars are auto-

matically inherited by all pages that use that template. In this manner, you can

quickly add your own customized end-user menu to all, or groups of, pages in

your application. All new end-user pages will, by default, inherit their menu

bar and toolbar from their templates.

12.3.1 Menus in library projects

Menus in library

projects

In addition to the main User Menu Tree in the Menu Builder, each library

project in Aimms has a separate menu tree, as illustrated in Figure 12.9. In

this menu tree, you can create the menus and toolbars that are specific for the

pages defined in the library at hand.

164 Chapter 12. Page Management Tools

Accessing

private

identifiers

When you are specifying the actions associated with a menu item in the menu

tree of a library, you have access to all the identifiers and procedures declared

in the library module of that library. For menu items in all other menu trees,

you can only access the identifiers in the interface of the library.

Creating menus When creating menus and toolbars in a library, you can duplicate menus and

menu items from any other menu tree in the Menu Builder. Likewise, you can

duplicate menus and menu items from a library project into the menu tree

of the main project. This enables you to compose global menu- and toolbars

that can be used in the overall application, yet containing library-specific sub-

menus and menu items to dispatch specific tasks to the appropriate libraries.

Assigning

menus to pages

When you want to assign a menu to a page or template, Aimms allows you

to choose a user menu of either the main project or of any of its library

projects. You should note, however, that choosing a menu from a different

library project creates an implicit dependency on that project which is not im-

mediately apparent in the page or template tree. If you copy or move pages

with a user menu or toolbar from one project to another, Aimms will not dupli-

cate that menu or toolbar, but still refer to their original locations as expected.

Chapter 13

Page Resizability

ResizabilityDue to the diversity of objects and their position on a page, it is not imme-

diately clear how objects should adjust when the size of a page is changed.

Should buttons remain the same, when the size of particular data objects are

changed? Such decisions are up to you, the developer of the application.

This chapterIn this chapter, you will learn about the facilities in Aimms which you can use

to specify how page components should scale when a page size changes. Such

facilities allow you to create resizable pages which are ready for use with differ-

ent screen resolutions. In addition, resizable pages let an end-user temporarily

enlarge or reduce the size of a particular page to view more data on the same

page, or to simultaneously look at data on another end-user page.

13.1 Page resizability

Choosing a base

resolution

When you are developing an end-user interface around an Aimms-based appli-

cation for a large group of end-users, you must decide about the base screen

resolution on which the end-user interface is intended to be run primarily.

Such a decision is based on your expectations about the screen resolution that

most of your end-user will be using. Fortunately, there is a tendency towards

high-resolution screens amongst users.

Supporting

different

resolutions

Nevertheless, it is likely that one or more of your end-users will request to run

the application at a different resolution. One reason could be that they use a

notebook which does not support the base resolution you selected. Another

reason could be that some of your end-users are working with such large data

sets that a higher resolution would help them to have a better overview of their

data.

Resizable pagesTo help you support the demands of your end-users, Aimms provides a fairly

straightforward facility to create resizable pages and page templates. As you

will see later on, the position and type of so-called split lines, placed on a

resizable page, determines the manner in which objects on the page will scale

upon resizing the page.

166 Chapter 13. Page Resizability

Non-resizable

behavior

When a page has not been made resizable, all objects on that page will remain

in their original position. Whenever such a page is reduced, and a data object

included on the page falls outside the visible page area, Aimms will automati-

cally add horizontal or vertical scroll bars. If the page is increased in size, the

bottom and right parts of the page will remain empty.

Adding

resizability

To make a page resizable, the page should be put into Resize Edit mode, which

is available in the View-Resize Edit menu of any page that is already in Edit

mode. Resize Edit mode will replace all objects on the page by shaded rectan-

gles. Figure 13.1 illustrates the Resize Edit view of the end-user page shown

in Figure 12.8.

Figure 13.1: Page 12.8 in Resize Edit Mode

Split lines A page is resizable as soon as it contains one or more horizontal or vertical

split lines. The page in Figure 13.1 illustrates a number of such split lines. Each

split line divides the rectangle in which it has been placed into two subrectan-

gles. For each vertical split line you can decide either

� to keep the width of the left or right subrectangle constant (indicated by

and markers),

� to ensure that the widths of the left and right subrectangles have the

same ratio (indicated by marker), or

� to make the ratio between these two widths user-adjustable (indicated

by or markers).

13.1. Page resizability 167

Similarly, horizontal split lines are used to indicate the relative height of the

lower and upper subrectangles. On an end-user page, a user-adjustable split

line will be visible as a split bar, which can be dragged to (simultaneously)

resize the areas on both sides of the bar.

Stacking split

lines

By selecting a subrectangle created by a split line, you can recursively subdi-

vide that rectangle into further subrectangles using either horizontal or verti-

cal split lines. What results is a specification of how every part of the page will

behave relative to its surrounding rectangles if the size of the entire page is

changed.

Adding split

lines

One way of adding split lines to any subrectangle on a page in Page Resize

mode is to select that subrectangle on the page (by clicking on it), and add a

horizontal or vertical split line to it using one of the buttons from the

Page Resize toolbar. Alternatively, if you want to insert a split line within an

existing hierarchy of split lines, select the line just above where you want to

insert a split line, and use one of the buttons to insert a new split

line of the desired type.

Resize Try modeBy putting a page that is already in Resize Edit mode into Resize Try mode

(via the View-Resize Try menu) and resizing the page, Aimms will display the

shapes of all page objects according to the specified resize behavior. Fig-

ure 13.2 illustrates the effect of resizing the page displayed in Figure 13.1

Figure 13.2: Resizing a resizable page

to a smaller size. These resized shapes are determined by calculating the

new relative positions of all four corner points of an object within their re-

168 Chapter 13. Page Resizability

spective surrounding rectangles. This may result in nonrectangular shapes for

some page objects, which are marked red. In such a situation, you should re-

consider the placement of objects and split lines. Non- rectangularly shaped

objects may distort the spacing between objects in end-user mode, because

Aimms will enforce rectangular shapes in end-user mode by only considering

the top-left and bottom-right corners of every object.

Example Consider the configuration of split lines illustrated in Figure 13.1, and its as-

sociated end-user page displayed in Figure 13.3. As already indicated in Fig-

Figure 13.3: End-user page associated with Figure 13.1

ure 13.2, the particular combination of split lines results in the following be-

havior.

� The header area will have a fixed height at the top of the page whatever

the page height, but will grow (or shrink) along with the page width.

� Similarly, the entire footer area will remain a fixed distance from the

bottom of the page, and grow along with the page width.

� The information on the left-hand side of the data area has a fixed width,

and the table will only grow/shrink vertically along with the page height.

� The flow chart header on the right-hand side of the data area has a fixed

height, while the flow chart itself will grow/shrink along with both the

page height and width.

13.2. Resizable templates 169

Original size

only

When entering Edit mode, Aimms will always restore the editable page area

to its original size (as saved at page creation time). This ensures that objects

placed on the page always use the same coordinate system, preventing pixel

rounding problems during a page resize. If the page has been saved at a dif-

ferent end-user size, Aimms will open the page frame at the latest end- user

size, and make the parts outside the original (editable) page size unavailable

for editing, as illustrated in Figure 13.4. Any split line added to a page (or to

its templates), will be visible in a page in Edit mode as a thin line.

Figure 13.4: Editable area and split lines of a resizable page in Edit mode

13.2 Resizable templates

Creating

resizable

templates

When you are creating an Aimms-based application with many resizable pages,

all based on a number of page templates, you should also consider defining the

basic resize properties of these templates. As templates behave as ordinary

pages in the template tree, you can add split lines to templates as described in

the previous section.

Inherited

resizability

All templates and end-user pages based upon a resizable template inherit the

resize properties of that template, i.e. all split lines in the template are also

applicable to its child templates and pages. Generally, such inherited split lines

should take care of the resize properties of those objects that are contained in

the template itself.

170 Chapter 13. Page Resizability

Adding split

lines

On any page (either template or end-user page) you can always add additional

split lines to those inherited from its ancestor template(s). The added split

lines are used to specify the resize properties of the additional objects that

have been placed on the page. In this manner, the template tree can be used

to define the entire look-and-feel of your pages in a hierarchical manner, and

their resize properties.

Example

revisited

The example page in Figures 13.1 and 13.3 already illustrates the inherited

resizability from templates. In fact, Figure 13.1 displays the split line config-

uration of a template defining the common header and footer area of all its

child pages. The page in Figure 13.3, which uses this template, automatically

inherits its resize properties. Therefore, the table in the “data area” of this

page automatically grows or shrinks in relation to the page size as dictated by

the template.

13.3 Adapting to changing screen resolutions

Coping with

different

resolutions

Aimms allows you to create pages in such a manner that they will automatically

adapt to changing screen resolutions. Thus, given a sensible configuration of

split lines, you can create an application than can be run in resolutions other

than the base resolution for which you developed the pages.

Page properties To specify the behavior of pages and templates, open the Properties dialog

box for the page (template), as illustrated in Figure 13.5. In the Position & Size

Figure 13.5: The page Properties dialog box

13.3. Adapting to changing screen resolutions 171

area of this dialog box, you can select the default position and size of the page,

which Aimms will use when opening the page.

Opening modesFor every page in your application, you can select one of the four following

standard page opening modes:

� get the position and size from the template used by the page,

� open the page at maximum size, but with visible page borders,

� open the page at maximum size, but without visible page borders, and

� open the page using the last saved position and size.

Inherited modesIf you specify that a page should obtain its position and page size from its

template, the page will use the page open mode as specified for that template.

When, in turn, this template has been specified to open according to its last

saved position and size, an interesting interaction between the template and

all its dependent pages will take place. Changing the position and size of any

page using such a template will cause all the other pages using that template

to be opened using the new position and size.

Resizable root

template

As an application for the above, you could decide to make every page and

page template dependent on the position and size of the root template. In

this manner, changing the size of any page, will automatically result in the

adjustment of every other page.

Save over

sessions

When you have specified that a page or page template should save its last

position, this position is stored between sessions. That is, the next time you

open the same project, Aimms will open such pages in the same positions as

used in the previous sessions on the same computer.

Chapter 14

Creating Printed Reports

This chapter Besides an attractive graphical end-user interface, paper reports containing the

main model results are also an indispensable part of any successful modeling

application. This chapter details printed reports. Printed reports are created

and designed in a similar fashion to ordinary end-user pages, and can contain

the same graphical objects for displaying data. There is, however, additional

support for dividing large objects over multiple printed pages.

14.1 Print templates and pages

Printing versus

GUI

Aimms makes a distinction between end-user pages that are designed for inter-

active use by the end-user of your application and print pages that are specif-

ically designed for printing on paper. While this may seem puzzling at first, a

closer inspection reveals a number of serious drawbacks associated with print-

ing ordinary end-user pages. The most important are:

� usually the screen resolution does not match the size of a sheet of paper,

� in a printed report, you cannot rely on the use of scroll bars on either

the page itself or within objects if all the available information does not

fit,

� the use of background colors may look nice on the screen, but often

severely hinders the readability of printed reports, and

� you may want to add header and footer information or page numbers to

printed pages, which are not part of an end-user page.

Printing

ordinary

end-user pages

Through the File-Print menu, Aimms allows you to print a simple screen dump

of the contents of any end-user page that currently is on the screen in your

application. The File-Print menu will open the Print Page dialog box illustrated

in Figure 14.1. Using this dialog box you can choose the size, border width and

orientation of the screen dump to be produced. Any data that is not visible on

the end-user page will also not appear in the screen dump.

14.1. Print templates and pages 173

Figure 14.1: Print Page dialog box for end-user pages

Print templates

and pages

An Aimms print page, on the other hand, allows you to compose a customized

report with data objects that can automatically be resized to print all available

object data. Print pages are characterized by the fact that they depend on a

special print template in the template tree. You can add a print template via

the New-Print Template item in the Edit menu of the Template Manager. Print

templates can only be placed at the top level of the template tree, i.e. directly

below the root, as illustrated in Figure 14.2. All pages below the print template

behave as print pages.

Figure 14.2: Example of a print template

Specifying

paper type

Every print template has an associated paper type. The paper type lets you

define properties such as paper size, paper orientation, and the width of the

surrounding margins. By default, Aimms will create new print templates with

the predefined A4 paper type. You can modify the paper type by opening the

print template and selecting Paper Type in the View menu, which will then

open the dialog box displayed in Figure 14.3. With it, you can either select one

of the predefined paper types, or define a custom paper type by specifying the

174 Chapter 14. Creating Printed Reports

Figure 14.3: Paper Type dialog box

paper size, orientation and margins yourself.

Page border When you open a print page (or print template) in edit mode, Aimms displays a

rectangular box representing the margins corresponding to the current paper

type. An example of an empty print page in landscape format containing a

margin box is illustrated in Figure 14.4. The margin lines are not displayed

Figure 14.4: An empty print page in landscape format

when the page is previewed or printed. In edit mode, however, the margin

lines may help you to position data objects within the printable area.

Printing pages

with margins

In general, Aimms will print all objects on a print page, regardless of their

placement with respect to the page margins. However, when you have indi-

cated that a data object should be printed over multiple pages (as discussed

in the next section), Aimms will always restrict itself to printing within the

indicated page margins.

14.1. Print templates and pages 175

Adding objectsYou can add data objects and graphical objects to a print page in exactly the

same way as you can add such objects to an ordinary end-user page. In fact, ob-

jects contained on your end-user pages which you want to be part of a printed

report as well, can be copied directly to a print page by means of a simple copy

and paste action.

Non-printable

objects

You should note, however, that not all objects that are placed on a print page

(and are visible on the screen) will be printed on paper. Specifically, Aimms will

omit all controls such as buttons and drop-down lists which are intended for

interactive use only. Through such controls you can provide special facilities

for your end-users such as allowing them to make last-minute choices prior to

printing, activate the actual print job, or navigate to a previous or next print

page through navigational controls linked to the page tree (see Section 12.1.2).

To prevent interference with printable objects, non-printable controls are best

placed in the page margins. Naturally, you can also place such controls on a

separate dialog page.

Using additional

templates

You can add one or more normal templates below any print template in the

template tree, in exactly the same way as for ordinary end-user pages (see

also Section 12.2). In this way, you can specify common components such as

headers and footers, that are automatically inherited by all dependent print

pages.

Displaying the

page number

Page numbers can be added to a print page by displaying the predefined Aimms

identifier CurrentPageNumber either on the page itself or on any of its page tem-

plates. When printing a single page, Aimms resets CurrentPageNumber to 1, and

will number consecutively for any additional pages that are created because

of a large data object. When printing a report that consists of multiple print

pages (see below), Aimms resets CurrentPageNumber to 1 prior to printing the

report, and increments it for every printed page.

Printing print

pages

Aimms allows you to print a print page in several manners:

� when the page is opened on the screen, you can print it using the File-

Print menu,

� you can attach the above action to a page or toolbar button, by adding

the File-Print menu action to the button, or

� you can print the page from within the model using the PrintPage func-

tion.

Printing

complete

reports

In addition to printing single print pages, Aimms also allows you to print entire

reports consisting of multiple print pages. Printing such reports can be initi-

ated only from within your model, through calls to the predefined functions

PrintStartReport, PrintPage and PrintEndReport. A multipage report is started

by a call to PrintStartReport, and finished by a call to PrintEndReport. All the

176 Chapter 14. Creating Printed Reports

single print pages constituting the report must be printed through consecu-

tive calls to the PrintPage function in between. Such a composite report will

be sent to the printer as a single print job, and by default all pages within the

report will be numbered consecutively starting from 1. However, if you so de-

sire, Aimms allows you to modify the value of CurrentPageNumber between two

consecutive calls to the PrintPage function. The print functions in Aimms are

discussed in more detail in Section 17.3.2.

14.2 Printing large objects over multiple pages

Printing large

data objects

Print pages are explicitly designed to allow the printing of data objects that

hold large amounts of data and, therefore, do not fit onto a single page. On a

print page you can specify that such large objects should be split over as many

pages as are needed to display all the underlying data, respecting the specified

page margins. In addition, Aimms allows you, in a flexible manner, to further

restrict printing to those parts of the print page that are not already occupied

by fixed page components such as headers and footers.

Required steps In order to enable multipage printing, only two simple steps are required. More

specifically, you should

� modify the print properties of both the fixed page components and the

large data objects contained on the page to specify their desired printing

behavior, and

� create a simple subdivision of the print page by means of the resize

split lines (see also Chapter 13) to specify how objects should be fixed to

particular page positions, or resized as necessary.

The remainder of this section discusses both steps in more detail, and illus-

trates them on the basis of a realistic example.

Specify printing

occurrence

For every object on a print page or template you can define when and how the

object should be printed. Through the Misc tab of the object Properties dialog

box (as displayed in Figure 14.5) you can specify that an object must be

� printed on every printed page (such as headers or footers),

� printed on only the first page or the last page,

� printed on all pages except for the first or the last page (ideal for indi-

cating whether the report is continued or not),

� spread over as many pages as required to display all its associated data,

or

� omitted from the printed output.

14.2. Printing large objects over multiple pages 177

Figure 14.5: The Misc properties tab

UsageUsing these choices, you have the capability of having a single print page

printed over multiple pages where each page component behaves as desired.

For instance, headers and footers can be printed on every page or, perhaps, on

all pages but the first. A report title needs only be displayed on the first page.

Data objects which are expected to become large can be split over multiple

pages.

Multiple page

printing

By default, all objects will be printed the same size as they have been placed

onto the print page during its creation. Thus, without further action, a large

table is split over multiple pages based on the original table size. As you will

see below, objects can be stretched to fill the entire print page by using Aimms’

resizability features.

Resizing page

objects

Two types of split lines are useful when creating a resizable template for a

printed report. Fixed distance split lines can be used to specify those areas

of a page that contain components such as headers and footers which should

keep their original shape and position. Adjustable distance split lines can be

used to indicate that the objects contained in the relevant page area must be

adapted to fill the maximum space within that area.

Spreading over

multiple pages

Whenever a data object does not fit in an adjustable area, Aimms will first

extend the data object to the border of the adjustable area. This border may

178 Chapter 14. Creating Printed Reports

be either the page margin, or a fixed distance split line that has been placed

on the page. When Aimms runs into the border of an adjustable area, further

printing of the data will continue on a new page. On the final page, Aimms will

reserve just enough space to contain the remaining data.

Multiple splits By creating multiple adjustable areas just below or alongside each other, you

have the opportunity to place multiple data objects of varying size within a

single report, with each object in its own resizable area. Once Aimms has

finished printing the object contained in the first resizable area, it will start

printing the next object directly adjacent to the first, in either a left- to-right

or top-to-bottom fashion, depending on your selected layout.

Use of templates If you are creating multiple reports with more or less the same layout of head-

ers and footers, you should preferably use template pages to define such fixed

page components, together with their appropriate printing occurrence (e.g.

first page only) and resizability properties for multiple page printing. If you

use such templates wisely, creating a specific print page boils down to noth-

ing more than adding one or more data objects to the data area of the page

(i.e. the page area not occupied by a header and/or footer), and defining the

appropriate print and resizability properties.

Example The print page, and its corresponding configuration of split lines contained

in Figure 14.6 illustrate Aimms’ capabilities of printing large data objects over

multiple pages. In this page, the header and footer components are enclosed

Figure 14.6: Print page with in edit and resize edit mode

in areas which have a fixed size from the top and bottom margin, respectively,

14.2. Printing large objects over multiple pages 179

and are printed on every page of the report. The middle part of the page

contains a number of data objects, each enclosed in an adjustable area from

the top down. As a result, Aimms will split each object subsequently over as

many pages as are necessary.

Chapter 15

Deploying End-User Applications

Deployment

considerations

After a successful development phase of your Aimms application, you have to

start thinking about its deployment. For the application to become a successful

end-user application too, you, as the application developer, need to consider

issues like protecting your intellectual property, authenticating your end-users,

and distribution of your application. Aimms offers various tools to help you in

all of these areas.

Application

protection and

authentication

Aimms offers several levels of protection that can be applied to your applica-

tion. To protect the content of your model from being viewed by the unau-

thorized users, Aimms allows you to encrypt (parts of) your model. To protect

the application against unauthorized access you can encrypt your application

using the public keys of all authorized users. To further arrange the appropri-

ate level of access within an organization, you can associate a user database

with your Aimms application, which can then be used to authenticate individ-

ual users and provide their level of access to your application. Protecting your

Aimms application and authenticating its use are discussed in full detail in

Chapter 19.

Application

distribution

To be able to run an Aimms project, your users will need a copy of the project

itself. To support easy project distribution, an Aimms project can be com-

pacted and distributed as a single-file project. In addition, your users need to

have installed Aimms on their computer. In order to enter input data and/or

run the model, end-users need a commercial license of Aimms.

Aimms PRO A more convenient way to distribute your application to your end-users is to

use the Aimms Publishing and Remote Optimization platform. Aimms PRO

makes it possible to deploy Aimms applications to end-users quickly and ef-

ficiently through the Aimms PRO Portal. More importantly, the Aimms PRO

Portal assures end-users can access the latest version of these Aimms appli-

cations (and the corresponding versions of the Aimms software) at all times

through a web browser. More information on Aimms PRO can be found in the

Aimms PRO User’s Guide.

15.1. Running end-user applications 181

This chapterThis chapter gives some background on Aimms end-user mode, and discusses

.aimmspack project files, which you can use to distribute your Aimms project as

a single file.

15.1 Running end-user applications

Running

end-user

projects

An Aimms project can run in two different modes, developer mode and end-

user mode. While the developer mode allows you to use the full functionality

described in this User’s Guide, the end-user mode only allows you to access

the end-user pages of the Aimms project that were created in developer mode.

Disabled

functionality

The Aimms end-user mode lacks the essential tools for creating and modify-

ing model-based applications. More specifically, the following tools are not

available in end-user mode:

� the Model Explorer,

� the Identifier Selector,

� the Page Manager,

� the Template Manager, and

� the Menu Builder tool.

Thus, in end-user mode, there is no way in which an end-user can modify the

contents of your Aimms-based application.

Allowed usageAimms end-users can only perform tasks specified by you as an application

developer. Such tasks must be performed through data objects, buttons and

the standard, or custom, end-user menus associated with the end-user pages

in your project. They include:

� modifying the input data for your model in the end-user interface,

� executing procedures within your model to read data from an external

data source, or performing a computation or optimization step,

� viewing model results in the end-user interface,

� writing model results to external data sources or in the form of printed

reports, and

� performing case management tasks within the given framework of case

types.

Thus, an end-user of your application does not need to acquire any Aimms-

specific knowledge. The only requirement is that the interface that you have

created around your application is sufficiently intuitive and clear.

182 Chapter 15. Deploying End-User Applications

Requirements Before you can distribute your Aimms project as an end-user application, two

requirements have to be fulfilled:

� you must have exported your application as an end-user project (see Sec-

tion 19.1), and

� you need to associate a startup page with your application which will be

displayed when your application is started by an end-user.

Assigning a

startup page

For every end-user project, you must associate a single page within the project

so that it becomes the project’s startup page. Such an association can either

be made directly by selecting a page for the ’Startup Page’ option in the Aimms

Options dialog box (see Section 20.1), or implicitly as the first opened page in

the startup procedure of the project using a call to the PageOpen function.

Role of startup

page

After opening your project in end-user mode, Aimms will display the startup

page. As all communication between the end-user and your model is con-

ducted through end-user pages of your design, this first page and/or its menus

must provide access to all the other parts of your Aimms application that are

relevant for your end-users. If all pages are closed during a session, the end-

user can still re-open the startup page using the first page button on the

Project toolbar, or via the View-First Page menu.

Startup

procedure

In addition to a startup page you can also provide a startup procedure in the

project-related Aimms options. Inside the startup procedure you can perform

any initializations necessary for an end-user to start working with the project.

Such initializations can include setting up date or user related aspects of the

project, or reading the data for particular identifiers from a database.

Replacing the

splash screen

By default, Aimms will display a splash screen during startup. When you are

opening Aimms with a particular project, you can replace Aimms’ own splash

screen with a bitmap of your choice. If the project directory contains a bitmap

(.bmp) file with the same name as the project file, Aimms will display this bitmap

file on the splash screen. In such a bitmap you can display, for instance, ver-

sion information about your project.

15.2 Preparing an Aimms application for distribution

.aimmspack

project files . . .

A complete Aimms application consists of several files (see Section 2.5 for an

overview of these files), all of which should also be distributed to the user

of the application. To make the distribution of an Aimms application easier,

Aimms offers the possibility to distribute your project as a single-file project,

by packing all relevant files into a single file with the .aimmspack extension.

15.2. Preparing an Aimms application for distribution 183

Creating a

.aimmspack file

Turning your project into a single-file, end-user project is very straightforward.

Just select the File-Export End User Project menu command which will open

the Select destination .aimmspack File dialog box which allows you to specify

the name and location of the file to be exported.

EncryptionAfter having specified a destination file, the Encryption of Exported End-User

Project dialog box opens which allows you the security setting for your end-

user project. Encryption is described in more detail in Section 19.1.

The .aimmspack

file contents

By default Aimms will select all files in the project directory to be included

in the .aimmspack file while ignoring all files in the Backup and Log directories.

All files associated with referenced library projects will also be included. The

project (.aimms) and all source files (e.g. .ams and .xml files) for the main project

and all of the library projects involved are mandatory while the settings for all

other files can be changed through the Select Files for Export dialog box (see

Figure 15.1. Note that only include files (and folders) that are contained in

the main project folder and folders of library projects. If your project refers

to files in other locations you must make sure that these files exist on the

destination computer.

Figure 15.1: The Select Files for Export dialog box

Running an

.aimmspack

project file

The .aimmspack project files are dealt with as if they were ordinary Aimms

project files. Both the developer and end-user version of Aimms are capable of

running both .aimms and .aimmspack files.

184 Chapter 15. Deploying End-User Applications

Unpacking an

.aimmspack

project file . . .

When a developer opens an .aimmspack project file, he will always be prompted

for a location where to unpack to. On the other hand, when an end-user opens

an .aimmspack project file, only the first time, he will be prompted for a location

where to unpack to. Any subsequent time an end-user opens the .aimmspack

file, Aimms will look whether the location where the .aimmspack file was un-

packed previously contains the unpacked version of the same .aimmspack file. If

so, Aimms will open the unpacked version without user interaction. Otherwise,

Aimms will prompt the end-user for a (new) location, unpack the .aimmspack

project and run it with Aimms. So, when you send your end-user an updated

version of a packed project, Aimms will notice the version change and prompt

the end-user with a question whether or not to overwrite the existing project

with the new version.

. . . using the

command line

Alternatively, you can indicate where you want the .aimmspack file to be un-

packed via the commandline argument --unpack-folder.

Selecting an

Aimms version

If multiple Aimms versions have been installed on the computer, you can select

the particular Aimms version to use on an .aimms or .aimmspack file through the

right-mouse popup menu in Windows Explorer. If you double-click an .aimms

or .aimmspack the AimmsLauncher utility program will try to open the Aimms

version that most closely matches the Aimms version that was used to create

the project.

Part IV

Data Management

Chapter 16

Case Management

This chapterWorking with data is a central part of any modeling application. Data can come

from external sources or from Aimms’ proprietary case files. This chapter in-

troduces Aimms’ capabilities with respect to creating and managing a collec-

tion of case files. Furthermore, Aimms’ capabilities of working with data from

multiple case files, both from within the language and from within graphical

data objects on end-user pages, are illustrated.

Not in this

chapter

Aimms uses a proprietary binary format for case files to store data compactly,

quickly, and easily. This propietary format makes case files unsuitable to ex-

change data with other programs. Aimms’ capabilities to exchange data with

other programs is documented in the Language Reference:

� Chapter 27 ”Communicating With Databases”

� Chapter 29 ”Reading and Writing Spreadsheet Data”

� Chapter 30 ”Reading and Writing XML Data”

� Chapter 34 ”The Aimms Programming Interface”

Furthermore, the Aimms SDK offers access to Aimms data from Java, C#, and

C++, see http://download.aimms.com/aimms/AimmsSDK.

16.1 Working with cases

Case

management

tasks

A case file is a single file containing the data of some identifiers in an Aimms

model. The Data menu is the main tool through which you can accomplish

tasks such as saving, loading, merging, and comparing case files. This menu

item is part of the developer menu and is available by default on all end-user

pages.

The active caseIn Aimms, all the data that you are currently working with, is referred to as the

active case. If you have not yet loaded or saved a case file, the active case is

unnamed, otherwise the active case is named after the name of the last loaded

or saved case file on disk. If the active case is named, its name is displayed in

the status bar at the bottom of the Aimms window.

188 Chapter 16. Case Management

Saving a case

file

When you save a named active case, Aimms will save it to the associated case

file on disk by default, thereby overwriting its previous contents. If the active

case is unnamed, or when you try to save a case using the Data-Save Case As

menu, Aimms will open the Save Case dialog box illustrated in Figure 16.1. In

Figure 16.1: The Save Case File dialog box

the Save Case File dialog box you can enter the name of the case file, and,

optionally, select the folder in which the case file is to be stored. After suc-

cessfully saving a case file through the Save Case File dialog box, the active

case will become named.

Loading a case

file

Aimms supports three modes for loading the data of a case file, as summarized

in the following table:

changes name replaces merges

mode of active case data data

load as active ✓ ✓

load into active ✓

merge into active ✓

The modes are explained in more detail below.

Load as active The most frequently used mode for loading a case file is loading the case file

as active, through the Data-Load Case-As Active menu. Loading a case file

as active completely replaces the active data of all identifiers in the case file

being loaded. Data of identifiers that are not stored in the case file, remain

unchanged. In addition, the active case will be named after the loaded case

16.2. Managing multiple case selections 189

file. Before loading a case file as active, Aimms will ask you whether the current

active case data needs to be saved whenever this is necessary.

Load into activeLoading a case file into active, through the Data-Load Case-Into Active menu,

is completely identical to loading a case as active, with the exception that the

name of the active case will not be changed. Thus, by loading data into the

active case you can replace part, or all, of the contents of the active case with

data obtained from another case file.

Merge into

active

Merging a case file into active, through the Data-Load Case-Merge Into Active

menu, does not change the name of the active case either. Merging a case file

into the active case partially replaces the data in the active case with only the

nondefault values stored in the loaded case file. Data in the active case, for

which no associated nondefault values exist in the merged case file, remain

unchanged.

Starting a new

case

Using the Data-New Case menu item, you can instruct Aimms to start a new,

unnamed, active case. However, the data in the active case will remain un-

changed. Before starting a new case, Aimms will ask you whether the current

active case data needs to be saved.

16.2 Managing multiple case selections

Viewing

multiple case

files

Aimms allows you to simultaneously view the results of several case files within

the graphical user interface. In addition, it is possible to reference data from

multiple case files from within the modeling language, enabling you to perform

advanced forms of case comparison.

Multiple case

selections

Aimms offers a tool to construct a selection of cases to which you want simul-

taneous access, either from within the graphical user interface or from within

the model itself. You can add one or more selected cases from within the

Data menu to the multiple case file selection through the Data-Multiple Cases

menu. This will open the Select Multiple Case Files dialog box illustrated in

Figure 16.2. It shows the current contents of the multiple case file selection.

You can modify the order of the displayed cases, and add cases to or delete

cases from the collection.

190 Chapter 16. Case Management

Figure 16.2: The Select Multiple Case Files dialog box

16.2.1 Viewing multiple case data

Viewing

multiple case

data

The prime use of multiple case selection takes advantage of Aimms’ capability

of displaying data from multiple cases within its graphical objects. Figure 16.3

is an illustration of a table which displays the contents of a single identifier

for all the cases in the case selection shown in Figure 16.2.

Figure 16.3: Example of a multiple case object

16.2. Managing multiple case selections 191

Creating

multiple case

objects

A data object on a page in the graphical end-user interface can be turned into

a multiple case object by checking the multiple case property in the object-

specific options in the object Properties dialog box. Figure 16.4 illustrates the

object-specific Properties dialog box of a table object. As a result of enabling

Figure 16.4: Table-specific Properties dialog box

multiple case display, the object will be extended with one additional virtual

dimension, the case index, which will be displayed in a standard way.

RestrictionsAimms only supports the display of multiple case data in object types for which

the added dimension can be made visible in a well-defined manner. The most

important object types that support multiple case displays are tables, pivot

tables, curves, bar charts and scalar objects. Because of the extra dimension,

the bar chart object is only able to display multiple case data for scalar and

1-dimensional identifiers. During a single case display, a bar chart can also be

used to view 2-dimensional identifiers.

16.2.2 Case referencing from within the language

Using inactive

case data

In addition to viewing data from multiple case files as graphical objects in

the graphical user interface, Aimms also allows you to reference the data of

case files that are not currently active within the model. This allows you, for

instance, to perform advanced forms of case file differencing by comparing the

current values of particular identifiers in your model with the corresponding

values stored in an inactive case.

192 Chapter 16. Case Management

The set AllCases The collection of all case files referenced via the Aimms data menu, or via the

intrinsic functions such as CaseFileLoad, and CaseFileMerge is available in the

Aimms language through the predefined integer subset AllCases. Each case

file is represented by an integer element in this set, and, as explained in Sec-

tion 17.3.5, Aimms offers several built-in functions to obtain additional infor-

mation about a case through its case number.

The set Current-

CaseSelection

Aimms stores the case selection constructed in the Select Multiple Case Files

dialog box presented above in the predefined set CurrentCaseSelection, which

is a subset of the ever growing set AllCases. Through this set you get easy

access within your model to the cases selected by your end-users in the Select

Multiple Case Files window.

Referencing

case data

You can reference the values of specific identifiers within a particular case

by simply prefixing the identifier name with an index or element parameter

in the set AllCases or any of its subsets. Thus, if cs is an index in the set

CurrentCaseSelection, the following simple assignment will inspect every case

in the user-selected multiple case selection, and store the values of the variable

Transport(i,j) stored in that case in the parameter CaseTransport, which has

one additional dimension over the set of CurrentCaseSelection.

CaseTransport(cs,i,j) := cs.Transport(i,j);

Advanced case

comparison

The capability of referencing inactive case data, enables you to perform ad-

vanced forms of case comparison, which would be hard to accomplish without

the Aimms facilities for case referencing. As an example, consider the follow-

ing statement.

RelativeDiff(cs,i,j) := (cs.Transport(i,j) - Transport(i,j)) /$ Transport(i,j);

It computes the relative difference between the current values of the variable

Transport(i,j) and those values stored for each case referenced.

Inactive data Please note that cs.Transport(i,j) above, may contain inactive data, when in-

dex cs refers to the active case. In order to remedy this, you may want to use

the CleanUp statement, see Section 25.3, at the start of procedures containing

case referencing.

16.3 Working with selections of identifiers

Case content

type

Next to saving the contents all identifiers in a case file, it is also possible to save

the data of a selection of identifiers in a case file. Such a selection of identifiers

to be saved to a case file is called a case content type. A case content type is a

subset of AllIdentifiers.

16.3. Working with selections of identifiers 193

CollectionThe set AllCaseFileContentTypes contains all case content types. It is a subset

of the predeclared set AllSubsetsOfAllIdentifiers. The set AllCaseFileContent-

Types is initialized to contain only the case content type AllIdentifiers. By

adding additional subsets of AllIdentifiers, you are allowing your end user to

decide which selection of identifiers is to be saved. The predeclared element

parameter CurrentCaseFileContentType is used to indicate the case content type

selected by the end-user of your application.

ExampleYou may add the predeclared set CurrentInputs to the set AllCaseContentTypes,

which allows an end-user to decide whether to save the data of all identifiers

in your model, or just of the collection of current input parameters. This is

illustrated in Figure 16.5 where the Save Case File dialog box allows you to

select between the case content types AllIdentifiers and CurrentInputs.

Figure 16.5: The Save Case File dialog box offering content types

Use during case

load

When loading a case, all identifiers stored in the case file will be loaded; the

current contents of the case content type by which the file is saved will be

ignored.

Data not storedIdentifiers in an Aimms model can have the NoSave property. Identifiers with

this property will not be saved in any case file regardless of the current case

content type. This property can be set via the attribute forms of the identifiers

that can contain data.

194 Chapter 16. Case Management

Part V

Miscellaneous

Chapter 17

User Interface Language Components

This chapterMost of the functionality in the Aimms graphical user interface that is rele-

vant to end-users of your modeling application can be accessed directly from

within the Aimms modeling language. This chapter discusses the functions

and identifiers in Aimms that you can use within your model

� to influence the appearance and behavior of data shown in your end-user

interface, or

� to provide (or re-define) direct interaction with the end-user interface

through dialog boxes, menus and buttons.

Rather than providing a complete reference of all these functions, this chapter

provides you with a global overview of the functions available per functional

category. A complete function reference is made available as part of the Aimms

documentation in electronic form.

17.1 Updatability of identifiers

Dynamic

control required

In many applications you, as a modeler, might need to have dynamic control

over the updatability of identifiers in the graphical end-user interface of your

model. Aimms provides several ways to accomplish this.

Multiple phases

in your

application

A typical example of dynamically changing inputs and outputs is when your

model is naturally divided into multiple decision phases. Think of a planning

application where one phase is the preparation of input, the next phase is

making an initial plan, and the final phase is making adjustments to the initial

plan. In such a three-layered application, the computed output of the initial

plan becomes the updatable input of the adjustment phase.

Indicating input

and output

status

To change the updatability status of an identifier in the graphical interface you

have two options.

� You can indicate in the object Properties dialog box whether all or se-

lected values of a particular identifier in the object are updatable or read-

only.

� With the set CurrentInputs you can change the global updatability status

of an identifier. That is, Aimms will never allow updates to identifiers

198 Chapter 17. User Interface Language Components

that are not in the set CurrentInputs, regardless of your choice in the

properties form of a graphical object.

The set

CurrentInputs

The set CurrentInputs (which is a subset of the predefined set AllUpdatable-

Identifiers) ultimately determines whether a certain identifier can be treated

as an input identifier for objects in an end-user interface. You can change the

contents of the set CurrentInputs from within your model. By default, Aimms

initializes it to AllUpdatableIdentifiers.

The set

AllUpdatable-

Identifiers

The set AllUpdatableIdentifiers is computed by Aimms when your model is

compiled, and contains the following identifiers:

� all sets and parameters without definitions, and

� all variables and arcs.

Thus, sets and parameters which have a definition can never be made updat-

able from within the user interface.

17.2 Setting colors within the model

Color as

indicator

An important aspect of an end-user interface is the use of color. Color helps

to visualize certain properties of the data contained in the interface. As an

example, you might want to show in red all those numbers that are negative

or exceed a certain threshold.

Setting colors in

the model

Aimms provides a flexible way to specify colors for individual data elements.

The color of data in every graphical object in the graphical interface can be

defined through an (indexed) “color” parameter. Inside your model you can

make assignments to such color parameters based on any condition.

The set

AllColors

In Aimms, all named colors are contained in the predefined set AllColors. This

set contains all colors predefined by Aimms, as well as the set of logical color

names defined by you for the project. Whenever you add a new logical color

name to your project through the color dialog box, the contents of the set

AllColors will be updated automatically.

Color

parameters

Every (indexed) element parameter with the set AllColors as its range can be

used as a color parameter. You can simply associate the appropriate colors

with such a parameter through either its definition or through an assignment

statement.

17.3. Interfacing with the user interface 199

ExampleAssume that ColorOfTransport(i,j) is a color parameter defining the color of

the variable Transport(i,j) in an object in the end-user interface. The follow-

ing assignment to ColorOfTransport will cause all elements of Transport(i,j)

that exceed the threshold LargeTransportThreshold to appear in red.

ColorOfTransport((i,j) | Transport(i,j) >= LargeTransportThreshold) := ’Red’ ;

17.2.1 Creating non-persistent user colors

Non-persistent

user colors

During the start up of an Aimms project, the set AllColors is filled initially with

the collection of persistent user colors defined through the Tools-User Colors

dialog box (see also Section 11.4). Through the functions listed below, you can

extend the set AllColors programmatically with a collection of non-persistent

colors, whose lifespan is limited to a single session of a project.

� UserColorAdd(colorname,red,green,blue)

� UserColorDelete(colorname)

� UserColorModify(colorname,red,green,blue)

� UserColorGetRGB(colorname,red,green,blue)

The argument colorname must be a string or an element in the set AllColors.

The arguments red, green and blue must be scalars between 0 and 255.

Adding

non-persistent

colors

You can use the function UserColorAdd to add a non-persistent color colorname

to the set AllColors. The RGB-value associated with the newly added user color

must be specified through the arguments red, green and blue. The function will

fail if the color already exists, either as a persistent or non-persistent color.

Deleting and

modifying

colors

Through the functions UserColorDelete and UserColorModify you can delete or

modify the RGB-value of an existing non-persistent color. The function will fail

if the color does not exist, or if the specified color is a persistent color. Per-

sistent colors can only be modified or deleted through the Tools- User Colors

dialog box.

Retrieving

RGB-values

You can obtain the RGB-values associated with both persistent and non-persis-

tent user colors using the function UserColorGetRGB. The function will fail if the

specified color does not exist.

17.3 Interfacing with the user interface

Interface

functions

At particular times, for instance during the execution of user-activated proce-

dures, you may have to specify an interaction between the model and the user

through dialog boxes and pages. To accommodate such interaction, Aimms

offers a number of interface functions that perform various interactive tasks

such as

200 Chapter 17. User Interface Language Components

� opening and closing pages,

� printing pages,

� file selection and management,

� obtaining numeric, string-valued or element-valued data,

� selecting, loading and saving cases, and

� execution control.

Return values All interface functions have an integer return value. For most functions the

return value is 1 (success), or 0 (failure), which allows you to specify logical

conditions based on these values. If you are not interested in the return value,

the interface functions can still be used as procedures.

Limited use in

certain cases

There are some interface functions that also return one or more output ar-

guments. In order to avoid possible side effects, the return values of such

functions can only be used in scalar assignments, and then they must form

the entire right hand side.

Obtaining the

error message

Whenever an interface function fails, an error message will be placed in the

predefined Aimms string parameter CurrentErrorMessage. The contents of this

identifier always refer to the message associated with the last encountered

error, i.e. Aimms does not clear its contents. Within the execution of your

model, however, you are free to empty CurrentErrorMessage yourself.

Example The following statements illustrate valid examples of the use of the interface

functions FileExists, DialogAsk, and FileDelete.

if (FileExists("Project.lock")) then

Answer := DialogAsk("Project is locked. Remove lock and continue?",

Button1 : "Yes", Button2 : "No") ;

if (Answer = 1) then

FileDelete("Project.lock") ;

else

halt;

endif ;

endif ;

The interface function DialogAsk has a return value of 1 when the first button

is pressed, and 2 when the second button is pressed.

17.3.1 Page functions

Model page

control

The possibility of opening pages from within a model provides flexibility com-

pared to page tree-based navigation (see Section 12.1.2). Depending on a par-

ticular condition you can decide whether or not to open a particular page, or

you can open different pages depending on the current status of your model.

17.3. Interfacing with the user interface 201

Page functionsThe following functions for manipulating pages are available in Aimms.

� PageOpen(page) Opens page page.

� PageOpenSingle(page) Opens page page and closes all other.

� PageClose([page]) Closes page page, if page is not specified, closes active

page.

� PageGetActive(page) Returns the active page in page.

� PageGetFocus(page,tag) Returns the name of the page and object that have

focus in pagePar and tag

� PageSetFocus(page,tag) Sets the focus to object tag on page page.

� PageSetCursor(page,tag,scalar-reference) Position the cursor of object tag

on page page to scalar-reference.

� PageRefreshAll Ensure that the open pages are refreshed with the current

data.

� PageGetChild(page, childpage) Return the name of the page that is the

first child of page in childpage, if any.

� PageGetParent(page, parentpage) Return the name of the page that is the

parent of page in parentpage.

� PageGetPrevious(page, previouspage) Return the name of the page that is

the previous page of page in previouspage.

� PageGetNext(page, result-page) Return the name of the page that is the

next page of page in nextpage.

� PageGetNextInTreeWalk(page, nextpage) Return the name of the page that

is the next page of page in a depth first tree walk over the page tree.

� PageGetTitle(pageName, pageTitle) Return the title of a specific page.

� PageGetUsedIdentifiers(page, identifier set) Return the identifiers used in

identifier set.

17.3.2 Print functions

Printing

facilities

Aimms provides a printing capability in the form of print pages, see Chapter 14.

Print functionsThe following functions are available for printing print pages in Aimms.

� PrintPage(page[,filename][,from][,to]) Print page to file filename.

� PrintStartReport(title[,filename]) Start a print job with name title.

� PrintEndReport End the current print job.

� PrintPageCount(page) The number of sheets needed to print page.

17.3.3 File functions

File

manipulation

The interactive execution of your model may involve various forms of file ma-

nipulation. For instance, the user might indicate which names to use for par-

ticular input and output files, or in which directory they are (to be) stored.

202 Chapter 17. User Interface Language Components

File functions The following functions are available for file manipulation in Aimms.

� FileSelect(filename[,directory][,extension][,title]) Dialog to select an exist-

ing file.

� FileSelectNew(filename[,directory][,extension][,title]) Dialog to select a new

file.

� FileDelete(filename[,delete readonly files) Delete a file.

� FileCopy(oldname,newname[,confirm]) Copy a file.

� FileMove(oldname,newname[,confirm]) Rename or move a file.

� FileAppend(filename,appendname) Append to an existing file.

� FileExists(filename) Is filename an existing file?

� FileView(filename[,find]) Opens filename in read only mode.

� FileEdit(filename[,find]) Opens filename for text editing.

� FilePrint(filename) Print a text file to printer.

� FileTime(filename,filetime) Return the modification time.

� FileTouch(filename,newtime) Set the modification time to now.

Directory

functions

The following functions are available for directory manipulation.

� DirectorySelect(directoryname[,directory][,title]) Select an existing direc-

tory.

� DirectoryCreate(directoryname) Create a directory

� DirectoryExists(directoryname) Is directoryname an existing directory.

� DirectoryGetCurrent(directoryname) Return the directory.

� DirectoryDelete(directoryname[,delete readonly files) Delete a directory.

� DirectoryCopy(oldname,newname[,confirm]) Copy a directory

� DirectoryMove(oldname,newname[,confirm]) Move or rename a directory.

17.3.4 Dialog box functions

Two types of

dialog boxes

During the execution of your model, it is very likely that you must commu-

nicate particular information with your user at some point in time. Aimms

supports two types of dialog boxes for user communication:

� information dialog boxes, and

� data entry dialog boxes.

In addition to these standard dialog boxes available in Aimms, it is also possible

to create customized dialog boxes using dialog pages (see Section 11.3), and

open these using the PageOpen function discussed in Section 17.3.1.

Information

dialog boxes

The following functions are available in Aimms for displaying information to

the user.

� DialogMessage(message[,title]), and DialogError(message[,title]) Both show

message until OK button is pressed. They differ in icons displayed.

17.3. Interfacing with the user interface 203

� DialogAsk(message,button1,button2[,button3]) Show message and offer two

or three choices.

� DialogProgress(message[,percentage]) Show message and progress bar.

Execution is continued.

� StatusMessage(message) Show message at the bottom of the Aimms win-

dow.

Data entry

dialog boxes

The following functions are available in Aimms for scalar data entry dialog

boxes.

� DialogGetString(message,reference[,title]) Get a string.

� DialogGetElement(title,reference)

� DialogGetElementByText(title,reference,element-text)

� DialogGetElementByData(title,reference,element-data)

� DialogGetNumber(message,reference[,decimals][,title])

� DialogGetPassword(message,reference[,title])

� DialogGetDate(title,date-format,date[,nr-rows][,nr-columns])

17.3.5 Case management functions

There are several functions and identifiers available to support case manage-

ment tasks. The functions can be divided into three groups:

� Basic – These functions perform the core case management tasks; they

do not involve any dialogs.

� Dialog – These functions handle the dialogs around case management

functions; they do not do any basic case management tasks.

� Menu Replacement – These functions execute similarly as the default ac-

tions behind the data menu.

Each of these three groups of functions, and the predeclared identifiers, are

briefly presented below. For details about a particular function or identifier,

the reader is referred to the Function Reference.

Basic case

functions

The following functions are available in Aimms for performing basic case man-

agement tasks without invoking dialogs.

� CaseFileLoad(url[,keepUnreferencedRuntimeLibs]) Load a case file and use

its name as the active case.

� CaseFileMerge(url[,keepUnreferencedRuntimeLibs]) Merge a case file in.

� CaseFileSave(url,contents) Save the data to a file.

� CaseFileGetContentType(url,contentType) Get the current content type.

� CaseFileURLtoElement(url[,caseFileElement]) Find or create an element in

AllCases corresponding to url.

� CaseCompareIdentifier(case1,case2,identifier,suffix,mode) Check whether

the data of an identifier differs in two case files.

204 Chapter 17. User Interface Language Components

� CaseCreateDifferenceFile(case,filename,diff-types

,absolute-tolerance,relative-tolerance,output-precision)

Here the arguments are:

� case, case1 and case2 are element parameters in AllCases.

� url, case-path, and filename are strings.

� contents an element of AllCaseFileContentTypes

� contentType an element parameter in AllSubsetsOfAllIdentifiers

� keepUnreferencedRuntimeLibs, 0 or 1, default 1.

� identifier in AllIdentifiers

� suffix in AllSuffixNames

� mode in AllCaseComparisonModes

� diff-type in AllDifferencingModes

� absolute-tolerance, relative-tolerance and output-precision arguments are

numerical, scalar values.

Case dialog

functions

The following functions are available that handle the dialogs around case man-

agement, but do not perform the actual case management tasks:

� CaseDialogConfirmAndSave() Handles the standard ”Save your data before

continuing” dialog.

� CaseDialogSelectForLoad(url) Handles the dialog for selecting a case file.

� CaseDialogSelectForSave(url, contentType) Handles the dialog for saving

data and selecting a content type.

� CaseDialogSelectMultiple(caseSelection) Handles the selection of multi-

ple cases.

Here the arguments are:

� url a string parameter

� contentType an element parameter in AllCaseFileContentTypes

� caseSelection a subset of AllCases,

Data

manamement

functions

The function DataManagementExit() checks whether any data should be saved

according to the active data management style. If any of the data needs saving,

a dialog box is displayed, in which the user can select to save the data, not to

save the data, or to cancel the current operation.

Data menu

functions

These functions emulate the default menu items of the Data menu, they do

not have any arguments.

� CaseCommandLoadAsActive() The default action behind the Data - Load Case

- As Active menu item.

� CaseCommandLoadIntoActive() The default action behind the Data - Load

Case - Into Active menu item.

� CaseCommandMergeIntoActive() The default action behind the Data - Load

Case - Merging into Active menu item.

17.3. Interfacing with the user interface 205

� CaseCommandNew() The default action behind the Data - New Case menu

item.

� CaseCommandSave() The default action behind the Data - Save Case menu

item.

� CaseCommandSaveAs() The default action behind the Data - Save Case As

menu item.

Case file related

identifiers

There are a number of predeclared identifiers available for the management of

case files. They are:

� the set AllCases, a subset of AllDataFiles, contains the references to the

case files accessed during the current Aimms session,

� the parameter CurrentCase in AllCases is the reference to the current case,

� The parameter CurrentCaseFileContentTypespecifies the default case con-

tent type,

� the set AllCaseFileContentTypes contains those subsets of AllIdentifiers

that are used to save data, and

� the string parameter CaseFileURL contains, for each case file referenced,

the url as a string.

17.3.6 Execution control functions

Execution

control

During the execution of your Aimms application you may need to execute other

programs, delay the execution of your model, get the command line arguments

of the call to Aimms, or even close your Aimms application.

Control

functions

The following execution control functions are available in Aimms.

� Execute(executable[,commandline][,workdir][,wait][,minimized])

� ShowHelpTopic(topic[,filename])

� OpenDocument(document)

� Delay(delaytime)

� ScheduleAt(starttime,procedure)

� ProjectDeveloperMode

� SessionArgument(argno, argument)

� ExitAimms([interactive])

17.3.7 Debugging information functions

Debugging

information

To help you investigate the execution of your model Aimms offers several func-

tions to control the debugger and profiler from within your model. In addition,

a number of functions are available that help you investigate memory issues

during execution of your model.

206 Chapter 17. User Interface Language Components

Execution

information

functions

The following execution information functions are available in Aimms.

� IdentifierMemory(identifier[,include-permutations])

� MemoryStatistics(filename[,append-mode][,marker-text][,show-leaks-only]

[,show-totals][,show-since-last-dump][,show-mem-peak][,show-small-

block-usage])

� IdentifierMemoryStatistics(identifier-set,filename[,append-mode]

[,marker-text][,show-leaks-only][,show-totals][,show-since-last-dump]

[,show-mem-peak][,show-small-block-usage][,aggregate])

Profiler control The following profiler control functions are available in Aimms.

� ProfilerStart()

� ProfilerPause()

� ProfilerContinue()

� ProfilerRestart()

17.3.8 Obtaining license information

License

information

functions

The licensing functions discussed in this section allow you to retrieve licensing

information during the execution of your model. Based on this information

you may want to issue warnings to your end-user regarding various expiration

dates, or adapt the execution of your model according to the capabilities of

the license.

License

functions

The following licensing functions are available in Aimms.

� LicenseNumber(license)

� LicenseStartDate(date)

� LicenseExpirationDate(date)

� LicenseMaintenanceExpirationDate(date)

� LicenseType(type,size)

� AimmsRevisionString(revision)

Chapter 18

Calling Aimms

This chapterThis chapter discusses the command line options of the Aimms program, and

explains the details for running Aimms end-user applications. In addition, the

chapter explains how you can link Aimms to your own program as a DLL, and

presents a short overview of the functionality available through the Aimms-

specific Application Programming Interface (API) provided by this DLL.

18.1 Aimms command line options

Calling AimmsOn the Aimms command line, you can specify a number of options and argu-

ments that will influence the manner in which Aimms is started. The following

line illustrates the general structure of a call to the Aimms program.

aimms.exe [command-line-options] [project-file [session-arguments]]

Command line

options

Table 18.1 provides an overview of the command line options that you can

specify. Aimms offers both long and short option names, and some options

require a single argument. All short option names start with a single minus

(-) sign, followed by a single character. By convention, short options that re-

quire an argument use capital characters. The long option names are always

preceded by a double minus sign (--), followed by a descriptive text. In general,

the long option names are easier to remember, while the short names permit

a more compact command line. Short option names without an argument may

be appended one after another with only a single minus sign at the beginning.

Specifying a

user

When an Aimms project is linked to an end-user database (see Chapter 19), you

must log on to the project before being able to run it. Through the --user com-

mand line option, you can specify a user name and optionally a password with

which you want to log on to the system. When you specify just a user name,

a log on screen will appear with the provided user name already filled in. If

you specify a password as well, Aimms will verify its correctness and skip the

log on screen altogether if the user name- password combination is accept-

able. Providing both the user name and the password is not recommended

for interactive use, but may be convenient when you want the model to run

unattended.

208 Chapter 18. Calling Aimms

Long name Short name Argument

--user -U user[:password]

--backup-dir -B backup directory

--log-dir -L log directory

--config-dir -C configuration directory

--license license name

--license-wait-seconds seconds to wait

--run-only -R procedure name

--user-database user database file

--max-threads maximum number of threads

--minimized -m —

--maximized -x —

--hidden —

--as-server —

--end-user -e —

--no-solve —

--help -h —

--unpack-folder unpack folder

--export-to export aimmspack/folder

Table 18.1: Aimms command line options

Backup and log

directories

With the --backup-dir and --log-dir options you can override the default direc-

tories where Aimms will store temporary information such as case and model

backups, the Aimms and solver listings, and the message log. You can mod-

ify the defaults for these directories using the project options dialog box (see

Section 20.1).

Aimms

configuration

By default, Aimms stores a number of global configuration files, such as the

Aimms license file and the solver configuration file, in the common application

area of your computer (see also Section 2.6.4). If you want to store configura-

tion files in a different location, you can indicate this through the --config-dir

option. You can use this option, for instance, to indicate where the configu-

ration files for your particular machine can be found when the Aimms system

that you use is stored on a network disk, and when you do not use a license

server.

License name Through the --license option you can select any Aimms license that you in-

stalled in the Aimms License Configuration dialog box (see also Section 2.6).

The value that you specify for the --license option should match an entry in the

License column in the left pane of the License Configuration dialog box. In

case you are using a network license with different profiles, you should make

a different entry in the Aimms License Configuration for each profile you want

to use and you can use the --license option to open Aimms with a license with

18.1. Aimms command line options 209

a specific profile.

Network logon

timeout

When you are using a network license, the license server may not have a license

available for you right away. Through the --license-wait-seconds option you can

specify the number of seconds you want Aimms to wait for a network license

to become available. If you do not specify this option Aimms will use a default

timeout of 0 seconds. When reaching the given timeout, Aimms will try the

next license in your license configuration, or will return with a license error if

no other licenses are available.

User database

location

When your application has been set up for use by multiple users, all user

and group information associated with the application is stored in a sepa-

rate (encrypted) user database (see Section 19.2 for more details on this topic).

Through the --user-database option you can move the location of this user

database file (to for example a single location that is shared among all users

on the network) even though you might not have developer rights to the appli-

cation.

Limiting the

number of

parallel threads

Through the option --max-threads you can specify the maximum number of

(virtual) cores that Aimms is allowed to use during the execution of statements,

the evaluation of definitions or during a parallel solve. By default Aimms uses

the number of cores that are available on the machine, but during a heavy load

of multiple processes it might be beneficial to limit the number of cores that

Aimms will use. This option is ignored if you set it to a value that is larger than

the actual number of cores.

Running

minimized,

maximized,

hidden, or as

server

Through the --minimized, --hidden and --maximized options you can indicate

whether you want Aimms to start in a minimized or hidden state (i.e. just as

a button on the task bar, or not visible at all), or to fill up the entire screen.

Running Aimms minimized or hidden may be convenient when Aimms is called

non-interactively from within another program through the Aimms API (see

Chapter 34 of the Language Reference). In this way, your program can use

Aimms to solve an optimization model after which it resumes its own execu-

tion. The --as-server option extends the --hidden option, and should be used

when Aimms is started with limited privileges by a system service (e.g. through

the Internet Information Server). It suppresses all dialog boxes that may ap-

pear during startup of Aimms, as well as during the execution of your model.

Developer

versus end-user

mode

With the --end-user option you can force Aimms to start up a project in end-

user mode using a developer license, allowing you to preview your application

as if you were an end-user without the need to explicitly export an end-user

project (see alse Section 15.2). Please note that the option to emulate end-

user model using an Aimms developer license will not work, unless it has been

enabled in your Aimms developer license.

210 Chapter 18. Calling Aimms

Exporting an

end-user project

Through the --export-to option you can instruct Aimms to create an encrypted

end-user project either packed to the .aimmspack file specified, or unpacked

into a specified folder. When using this commandline option, Aimms will use

the export settings as saved by the previous call to the File-Export End-User

Project menu. You can use this commandline option, for instance, within the

context of a continuous integration server, to automate the deployment of

your Aimms application after new commits have been pushed to the version

control repository managing the project.

Specifying the

unpack folder

When running an .aimmspack file, Aimms will ask for the folder where you want

the .aimmspack file to be unpacked. Alteratively, you can already specify the

unpack folder through the --unpack-folder commandline option.

Solverless

Aimms sessions

Aimms strictly enforces that the number of Aimms sessions with full solving

capabilities running on your computer simultaneously is in accordance with

your Aimms license. Typically, for a single-user license, this means that you

can only start up a single Aimms session that is capable of solving optimization

programs at a time. However, for every fully capable Aimms session, Aimms

also allows you to start up an additional Aimms session without solving ca-

pabilities. You can use such a session, for instance, to make modifications to

your model, while a first session is executing an optimization run. In that case,

Aimms will present a dialog box during start up to indicate that the session has

no solving capabilities. You can suppress this dialog box, by specifying the --

no-solve command line option.

Executing a

procedure and

terminating

Aimms

When you want to run an Aimms project unattended, you can call Aimms

with the --run-only option. This option requires the name of a procedure

in the model, which will be executed after the project is opened. When you

use the --run-only option, all other initial project settings, such as the initial

case, procedure and page settings (see Section 15.1), will be ignored. Aimms

will, however, call the procedures MainInitialization, PostMainInitialization,

PreMainTermination, MainTermination, and all library initialization and termina-

tion procedures as usual. Once the procedure has finished, the Aimms session

will be terminated. You can only specify the --run-only option if you also spec-

ify a project file on the command line.

Opening a

project to run

Aimms will interpret the first non-option argument on the command line as

the name of the project file with which you want to open Aimms. If you specify

a project file, the settings of the project may initiate model-related execution

or automatically open a page within the project.

18.1. Aimms command line options 211

Opening a

project to edit

If you want to open a project for editing purposes only, you should hold down

the Shift key when opening the project. The initial actions will also not be

performed if the command line contains the --run-only option. In this case

execution takes place from within the specified procedure only.

Passing session

arguments

Directly after the name of the project file, Aimms allows you to specify an

arbitrary number of string arguments which are not interpreted by Aimms, but

can be used to pass command line information to the project. In the model,

you can obtain the values of these string arguments one at a time through

the predefined function SessionArgument, which is explained in more detail in

Section 17.3.6.

ExampleThe following call to Aimms, will cause Aimms to start the project called trans-

port.aimms in a minimized state using the user name batchuser with password

batchpw, run the procedure ComputeTransport, and subsequently end the ses-

sion. A single argument "Transport Data" is provided as a session argument

for the model itself.

aimms --minimized --user batchuser:batchpw --run-only ComputeTransport \

transport.aimms "Transport Data"

Note that the \ character at the end of the first line serves as the continuation

character to form a single command line. Using the short option names, you

can specify the same command line more compactly as

aimms -mUbatchuser:batchpw -RComputeTransport transport.aimms "Transport Data"

In this command line, the -m and -U options are combined. No space is required

between a short option name and its argument.

Using session

arguments

Given the above Aimms call, you can use the function SessionArgument to fetch

the first session argument and assign it to the string parameter ODBCDataSource

as follows.

if (SessionArgument(1, ODBCDataSource)) then

/*

* Execute a number of READ statements from ODBCDataSource

*/

endif;

Following this statement, the string parameter ODBCDataSource will hold the

string "Transport Data". In this example, the string parameter ODBCDataSource

is intended to serve as the data source name in one or more DATABASE TABLE

identifiers, from which the input data of the model must be read.

212 Chapter 18. Calling Aimms

18.2 Calling Aimms from external applications

Use Aimms as a

component

In addition to starting the Aimms program itself, you can also link Aimms,

as a component, to your own application. Using Aimms as a component has

the advantage that, from within your program, you can easily access data with

Aimms and run procedures in the associated Aimms project. Thus, for instance,

when your program requires optimization, and you do not want to bother

writing the interface to a linear or nonlinear solver yourself, you can

� specify the optimization model algebraically in Aimms,

� feed it with data from your application, and

� retrieve the solution after the model has been solved successfully.

Several options When linking Aimms as a component to your own application, you have several

options:

� when linking from within an Excel spreadsheet, use the Excel Add-In (see

The Excel Add-In User’s Guide), or

� link directly against the Aimms API (see Chapter 34 of the Language Ref-

erence).

Programming

required

Through the Aimms component technologies described above you have varying

degrees of control over the data inside your model. Use of these technologies

requires, however, that you set up the interface to your model in a program-

ming language such as C/C++, Java or .NET. While the control offered by these

technologies may be relevant for advanced or real-time applications where effi-

ciency in data communication is of the utmost importance, these technologies

come with a certain learning curve, and if you only want to perform simple

tasks such as communicating data in a blockwise manner and running pro-

cedures inside the model, you might consider setting up the communication

using either text data files or databases.

Using the

Aimms API

Please note that using the Aimms API to start up a new Aimms session from

within an external application that also performs other significant tasks than

starting up that Aimms session, is not recommended. Opening an Aimms

project from within another application may, especially under Windows, lead

to unwanted interactions between the Aimms and the original application. The

Aimms API is also not particularly suited to start up an Aimms session from

within the same process multiple times. In such cases we advise to use a tech-

nology that starts up an Aimms session in a separate process.

18.3. The Aimms command line tool 213

18.3 The Aimms command line tool

Aimms com-

mand line

tool

Next to accessing Aimms from within your own programs through the Aimms

component technologies, Aimms also supports a command line tool through

which you can control an Aimms project externally. You can start the Aimms

command line tool by running

AimmsCmd project-path

The AimmsCmd program is located in the Bin directory of your Aimms installation.

CommandsThe Aimms command line tool offers commands to

� assign values to sets, and to scalar and multidimensional identifier slices,

� display the contents of sets, and the values of scalar and multidimen-

sional identifier slices,

� empty sets or multidimensional identifier slices,

� retrieve the cardinality of sets or multidimensional identifier slices,

� run procedures,

� execute system commands, and

� close the Aimms project and quit the program.

Each command is terminated by a semicolon.

AssignmentsYou can assign a value to sets and multidimensional identifiers and slices

thereof through one of the commands

Let reference := data-expression ;

Let reference += data-expression ;

where the := operator refers to completely replacing the contents of reference

and the += operator refers to a merge operation.

ReferencesA reference in an assignment is either

� an identifier name such as “Transport”, or

� a reference to an identifier slice such as

Transport(’Amsterdam’,j)

where each sliced dimension must refer to a quoted set element.

Data

expressions

The data expressions allowed in an assignment are

� a set expression preceded by the keyword Set as in

Set {’Amsterdam’, ’Rotterdam’}

where all set elements must be quoted,

214 Chapter 18. Calling Aimms

� a ranged integer set preceded by the keyword Set as in

Set {1 .. 10}

� a scalar numeric, element or string value as in

10

11.7

’an element’

"a string"

� a tuple list of numeric, element or string values preceded by the keyword

List as in

List {(’Amsterdam’,’Paris’) : 10, (’Paris’,’London’) : 20}

List keyword may be optionally preceded by the keyword Strict. In this

case using an element name not present in the domain set will trigger an

error (it will be added automatically to the domain set otherwise),

� a dense multidimensional array of numeric, element or string values pre-

ceded by the keyword Array as in

Array [[1,2],[3,4],[5,6]]

Value display You can request Aimms to display the contents of sets and multidimensional

identifier slices in your model through the command

Display reference [:precision] [as Array] ;

For multidimensional identifier data Aimms will, by default, use the List for-

mat described above. Through the optional “as Array” clause you can instruct

Aimms to display the identifier data as a dense array.

Empty

identifiers

To empty the data of sets and multidimensional identifier slices in your model

you can use the command

Empty reference ;

Identifier

cardinality

You can request Aimms to retrieve the cardinality of sets and multidimensional

identifier slices in your model through the command

Card reference ;

Run procedures With the command

Run procedure-name ;

you can request Aimms to run a procedure (without arguments). When fin-

ished, Aimms will display the return value of the procedure.

18.3. The Aimms command line tool 215

Executing

system

commands

You can let Aimms execute a system command through the command

System system-command ;

where system-command is a string to be executed by command shell.

HelpThrough the Help command, a list with a brief description all available com-

mands will be displayed.

Closing the

project

You can close the Aimms project and quit the command line tool through the

command

Quit ;

Chapter 19

Project Security

Project security When you are creating a model-based end-user application there are a number

of security aspects that play an important role.

� How can you protect the proprietary knowledge used in your model?

� How can you prevent the end-users of your application from modifying

the project (thereby creating a potential maintenance nightmare)?

� How can you distinguish between the various end-users and their level

of authorization within your application?

This chapter Aimms offers several security-related features that address the security issues

listed above. These features allow you to

� encrypt the source code of your model,

� introduce authorization levels into your model, and

� set up an authentication environment for your application.

This chapter describes these mechanisms in full detail, together with the steps

that are necessary to introduce them into your application.

19.1 Encryption

Encryption . . . If you want to protect your investment in model development, the easiest way

to accomplish this protection is to use the encryption scheme discussed in this

section. Note that project access to the project and model is unconditionally

prohibited in an encrypted project, even by the developer of the model himself.

Several ways of

encryption

Aimms supports several manners of encryption of project and model source

files, including your model source. Please note that Aimms will only encrypt

.aimms, .libprj, and .ams files. All other files that are exported (including user

files that reside in your project file) are not encrypted. It is up to you to choose

the encryption scheme that works for you.

� Standard encryption: results in an end-user version of your application

that can be run by everybody.

� Password protected encryption: results in an end-user version of your

application that can be run by anyone who knows the password. Upon

starting of the application the user is prompted for the password.

19.1. Encryption 217

� Key-based encryption: result is an end-user version of your application

that can only be run by users whose public key was present in the key

folder that was specified during encryption. The users need to store their

private key in the ApplicationKeys folder on their local system or, in case

a license server is being used, on the system on which the license server

is running.

Exporting your

project

To ship your application for end-user deployment you should export your ap-

plication as a single .aimmspack file (see also Section 15.2). By combining the

export with one of the available encryption schemes you simply produce an

ready-to-ship version of your application in which the source of your project

and model files is securely protected.

Export . . .You can create such a single .aimmspack file version of your application through

the File-Export End User Project menu, which will open a Select Destination

.aimmspack file dialog box. This dialog box requires you to specify the loca-

tion and name for the .aimmspack file.

. . . and encryptHaving specified the name for the .aimmspack file, the Encryption of Exported

End-User Project dialog box (as illustrated in Figure 19.1) opens and allows you

to add encryption to the exported version of your application. Select one of

the available encryption schemes and specify all relevant missing information

(e.g. passwords, a folder containing the public keys of your users).

Restrict access

to a specific

license number

In addition to encrypting your application, you can restrict access to your ap-

plication such that only users whose Aimms’ license number lies within a spec-

ified range can run the application. This prevent the application from being

run by other Aimms users, even in case a password or private key has been

compromised.

Add an

expiration date

If you add an expiration date to the encrypted application, AIMMS will not

allow your end-user to run the application after that specific date. In addi-

tion, you can have AIMMS warn your end-user about the expiration date if the

application is started within a specified number of days of the expiration date.

19.1.1 Public key encryption

Public vs.

private keys

Aimms’ key encryption uses a common public key algorithm which assumes

the presence of two associated keys, a public key and a private key. Anyone

who has access to a certain public key can encrypt data, but only the owner of

the corresponding private key can decrypt the data. So, if you want someone

to send you encrypted data, you should share your public key. At all means, a

private key should be kept private.

218 Chapter 19. Project Security

Figure 19.1: The Encryption of Exported End-User Project dialog box

Creating a key

pair

Through the Tools-License-Generate Public/Private Key Pair menu, you can

generate two associated key files.

Encryption

using multiple

public keys

An application can be encrypted using a collection of public keys. The resulted

encrypted application can then only be run by any private key, matching one

of the public keys in the collection that was used during decryption.

Private key

folder

When attempting to decrypt an application, Aimms will look for matching pri-

vate keys in the AIMMS\ApplicationKeys folder. The folder is located as a sub-

folder of the folder described by the ProgramData Windows environment vari-

able. On a typical Windows 7 or Windows 8 system, this private key folder is

C:\ProgramData\AIMMS\ApplicationKeys. In case a license is provided over the

network by an Aimms network license server, the private key to decrypt the

application may also be present on the system that runs the license server.

In case the private key is provided by the license server, only users that are

granted access to a network license on the server, may use the private key

from the server.

19.2. User authentication and authorization 219

19.1.2 Encrypting your application: some use cases

Use an existing

public key

To encrypt an application for a specific user that has already created his own

key pair, just request the user for a copy of his public key and use the public

key to encrypt your application.

Use as

application

license

In case you generate a new public/private key pair yourself and use the newly

generated public key to encrypt your application, the corresponding private

key serves as an application license: As soon as you provide an Aimms user

with this private key (and access to the encrypted version of your application),

he will be able to run the application. In this scenario, it is even possible to

generate a collection of key pairs in advance and distribute a new application

license anytime you get a new user for your application.

Use in an

Aimms PRO

environment

When publishing an application on a Aimms PRO server, you are advised to

encrypt your application using the public key of the Aimms network license

server that is used in the PRO configuration. After that, any user who has been

granted access to the PRO server (and the specific application), is able to run

the the encrypted application, without the need to have a public/private key

pair of his own.

19.2 User authentication and authorization

User

authentication

When an application is set up for use by multiple users through Aimms PRO, it

is usually considered desirable to limit access to the application to particular

(groups of) users, make sure that users have access to only those parts of the

application that are of interest to them, and can be given or denied the right

of access to each others data.

Authorization

via Aimms PRO

portal

When publishing an application on a Aimms PRO server, you can manage ac-

cess to your application through the Aimms PRO portal. The Aimms PRO

User’s Guide http://manual.aimms.com/pro/ decribes more details about

the setup of users and groups for your application.

Authorization

via model

Next to arranging access to your application application-wide through the PRO

portal, the PRO system library extends your model with functionality to ac-

cess user- and group-related information from within your Aimms application.

More, specifically, through the PRO library function

pro::GetCurrentUserInfo

you can retrieve the currently connected PRO user name and the PRO group

membership of the currently connected user.

220 Chapter 19. Project Security

Role-based

security

Using the PRO user name and groups discussed above, you can set up your

own customized role-based security scheme within your application. You can

accomplish this by associating roles within your application with group mem-

bership of particular groups defined through the user management facilities

in the Aimms PRO portal. If PRO user management is linked to your Active Di-

rectory environmoment, role-based authorization to your application can also

be arranged directly through your company’s Active Directory environment.

Example Assume that ExecutionAllowed is a two-dimensional parameter defined over a

set AllApplicationRoles declared in your model, of which the actual set of PRO

groups, retrieved via pro::GetCurrentUserInfo, is a subset, and a user-defined

set of application-specific ActionTypes. Then the following code illustrates the

to allow or forbid a certain statement to be executed in a role-based manner.

if (exists(appRole | ExecutionAllowed(appRole, ’Solve’)) then

solve OptimizationModel;

else

DialogError("None of your application roles does allow you\n" +

"to solve the optimization model");

endif;

Use in the

interface

You can also use parameters defined over AllApplicationRoles to influence

the appearance and behavior of the end-user interface. More specifically, the

following aspects of an Aimms end-user interface can be influenced through

the nonzero status of (indexed) parameters:

� the access to a page through the page tree-based navigational controls,

� the visibility of graphical (data) objects on a page,

� the read-only status of data in a data object, and

� the visibility and enabled/disabled status of menu items and buttons.

Note that both the Windows and browser-based Aimms UIs support such dy-

namic model-based access controls.

Chapter 20

Project Settings and Options

This chapterSeveral aspects of Aimms, including its startup behavior, its appearance, the

inner workings of the Aimms execution engine or the solvers used in a session,

can be customized to meet the requirements of your project. This chapter

describes the various tools available in Aimms for making such customizations.

20.1 Aimms execution options

OptionsMany aspects of the way in which Aimms behaves during a session can be

customized through the Aimms execution options. Such options can be set

either globally through the options dialog box, or from within the model using

the OPTION statement. As every project has its own requirements regarding

Aimms’ behavior, option settings are stored per project in the project file.

Option typesAimms offers options for several aspects of its behavior. Globally, the Aimms

execution options can be categorized as follows.

� Project options: how does Aimms behave during startup, and how does

Aimms appear during a project.

� Execution options: how does the Aimms execution engine with respect

to numeric tolerances, reporting, case management and various other

execution aspects.

� General solver options: how does Aimms behave during the matrix gen-

eration process, and which information is listed.

� Specific solver options: how are the specific solvers configured that are

used in the project.

Option dialog

box

Through the Settings-Project Options menu you can open the global Aimms

Options dialog box illustrated in Figure 20.1. In this dialog box, an option tree

lists all available Aimms execution and solver options in a hierarchical fashion.

222 Chapter 20. Project Settings and Options

Figure 20.1: The Aimms Options dialog box

Modifying

options

After selecting an option category from the left-hand side of the Options di-

alog box, you can modify the values of the options in that category on the

right-hand side of the dialog box. As illustrated in Figure 20.1, Aimms lists

the currently selected value for every option (in the first edit field) along with

the allowable range of all possible option values (in the second field). Option

values can be either integer numbers, floating point numbers or strings, and,

depending on the option, you can modify its value through

� a simple edit field,

� radio buttons,

� a drop-down list, or

� a wizard in the case where the value of an option is model-related.

Committing

options

With the Apply button, you can commit the changes you have made to the

value of a particular option and continue changing other options; the OK but-

ton will commit the changes and close the option dialog box. With the Default

button at the right-hand side of the dialog box, you can always reset the option

to its default value. It is only active when the option has a nondefault value.

Option

description

When you have selected an option, and need to know more about its precise

meaning before changing its value, you can press the Help button at the right-

hand side of the options dialog box. As illustrated in Figure 20.2, this will open

a help window containing a more detailed description of the selected option.

20.1. Aimms execution options 223

Figure 20.2: Option help

Options with

nondefault

value

To help you quickly identify all the options which you have modified for a par-

ticular project, all modified options are summarized at the end of the options

tree in a special section, Options with nondefault value. You can modify these

options either in this section, or in their original locations. If you set a mod-

ified option back to its default value, it will be removed from the nondefault

section. When you select an option from the Options with nondefault value

section, the Location in Tree button will become available. Pressing this

button will select the originating option category in the option tree.

Copying solver

options

When you add a new version of some solver to the solver configuration (see

Section 20.3 for a description of how to add a new solver), the options of this

new solver will appear in the Specific Solvers category. To copy solver options

from the old solver version (e.g. Cplex 11.1 to Cplex 12.6), select the source

solver in the option tree and select the Copy Option command from the right-

mouse popup menu. This will open the Copy Options dialog box as shown in

Figure 20.3. By default this dialog will only show options that differ between

both solvers plus options that are only available in one of the two solvers. Once

you press the Ok button, all options that remain in this list (and are available

in both solvers) are copied from the source to the destination solver.

224 Chapter 20. Project Settings and Options

Figure 20.3: The Copy Options dialog box

Searching for

options

When you know (part of) the name of an option, but do not know where it

is located in the option tree, you can use the search facility in the lower left-

hand part of the option dialog box to help you find it. When you enter (part of)

an option name, Aimms will jump to the first option in the tree whose name

contains the entered string.

Setting options

within the

model

In addition to modifying option values in the options dialog box, you can also

set options from within your model using the OPTION statement. The OPTION

statement is discussed in the Aimms Language Reference. While changes to

option values in the options dialog box are stored in the project file and reused

at the beginning of the next project session, run time option settings are lost

when you close the project. Setting options during run time can be convenient,

however, if different parts of your model need different option settings.

20.2 End-user project setup

Setting up an

end-user project

A number of options and settings are of particular importance when you want

to set up a project in such a manner that it is ready to be used by end-users.

You can find these options in the Project-Startup & authorization and the

Project-Appearance sections of the Options dialog box. This section discusses

the most important options.

Startup

procedure

With the startup procedure option you can select a procedure within your

model which you want to be executed during the start up of your project. Such

a procedure can perform, for instance, all the necessary data initialization for

a proper initial display of the end-user GUI automatically, thus preventing your

end-users from having to perform such an initialization step themselves.

20.3. Solver configuration 225

Startup pageWith the startup page option, you can indicate the page which Aimms will dis-

play at start up. It is important to specify a startup page for end-user projects,

as all data communication with the model must take place through end- user

pages designed by you. Therefore, you should also ensure that every relevant

part of your application can be reached through the startup page.

Startup by-passIn a developer project you can by-pass the startup sequence by holding down

the Shift key when you select the project to be opened.

Project titleBy default, Aimms will display the name of the currently loaded project in the

title bar of the Aimms window. Using the project title option you can modify

this title, for instance to provide a longer description of your project.

20.3 Solver configuration

Configuring

solvers

With every Aimms system you can obtain a license to use particular solvers to

solve mathematical programs of a specific type. As Aimms provides a stan-

dardized interface to its solvers, it is even possible for you to link your own

solver to Aimms. This section provides an overview of how to add solvers to

your system or modify the existing solver configuration.

Solver

configuration

dialog box

You can obtain a list of solvers currently known to your Aimms system through

the Settings-Solver Configuration menu. This will open the Solver Configura-

tion dialog box illustrated in Figure 20.4. The dialog box shows an incidence

Figure 20.4: The Solver Configuration dialog box

matrix between all available solver and types of mathematical programs. An

‘x’ indicates the capability of a specific solver to solve mathematical programs

of a particular type. A bold ‘X’ indicates that the specific solver is used as the

default solver for mathematical problems of a particular type.

226 Chapter 20. Project Settings and Options

Modifying

solver settings

The buttons on the right-hand side of the dialog box let you globally modify

the solver configuration of your Aimms system. Through these buttons you

can perform tasks such as:

� modify the default solver for a particular model type, and

� add or delete solvers.

Selecting

default solver

With the Set Default button you can set the default solver for a particular type

of mathematical program. Aimms always uses the default solver when solving

a mathematical program of a particular type. A run time error will occur, if

you have not specified an appropriate solver.

Adding a solver When you want to add an additional solver to your system, you can select the

Add button from the Solver Configuration dialog box, respectively. This will

open a Solver Configuration Data dialog box as shown in Figure 20.5. In this

Figure 20.5: The Solver Configuration Data dialog box

dialog box you have an overview of the interface DLL, the name by which the

solver is known to Aimms and any appropriate arguments that may be needed

by the solver.

Select solver

DLL

In the Solver DLL area of the Solver Configuration Data dialog box you can

select the DLL which provides the interface to the solver that you want to link

to Aimms. Aimms determines whether the DLL you selected is a valid solver

DLL, and, if so, automatically adds the solver name stored in the DLL to the

Description field.

Solver

arguments

In the Arguments area of the Solver Configuration Data dialog box you can

enter a string containing solver-specific arguments. You may need such argu-

ments, for instance, when you have a special licensing arrangement with the

supplier of the solver. For information about which arguments are accepted

by specific solvers, please refer to the help file accompanying each solver.

20.4. Print configuration 227

Installation

automatically

adds

After you install a new Aimms version, Aimms will automatically add the solvers

available in that installation to the Solver Configuration dialog box. If the

newly installed solver is the first solver of a particular type, Aimms will also

automatically make the solver the default solver for that type. Thus, after in-

stalling a new Aimms system, you do not have to worry about configuring the

solvers in most cases, provided of course that your Aimms license permits the

use of the solvers you have installed.

Using a

nondefault

solver

By modifying the value of the predefined element parameter CurrentSolver in

the predefined AllSolvers during run time you can, at any time during the

execution of your model, select a nondefault solver for a given mathematical

programming type that you want Aimms to use during the next SOLVE state-

ment for a mathematical program of that type. At startup, Aimms will set

CurrentLPSolver to the default LP solver as selected in the solver configuration

dialog box.

20.4 Print configuration

Print

configuration

Aimms offers two distinct facilities to create printed reports associated with

your model, namely printouts of graphical end-user pages and print pages

(see Chapter 14), and printouts of text files such as a text representation of a

part of the model tree or the listing, log and PUT files. This section explains

how you can configure the printing properties for both types of reports.

Printing

end-user pages

End-user pages and print pages are printed according to the settings that you

have selected for these pages. These settings include:

� the selection of the paper type on which pages are printed (see Sec-

tion 14.1), and

� the selection of object fonts and colors through the Aimms font and color

selection dialog boxes (see Section 11.2).

These settings must be fixed by you as the application developer, and cannot

be changed by an end-user of your application. An end-user can, however, still

select the printer to which the output must be sent, as explained below.

Text printingText files can be printed from within Aimms, either from the File-Print menu

inside an Aimms text editor window, or through a call to the FilePrint pro-

cedure from within a procedure in your model. The print properties of all

text files that you want to print, in either manner, can be modified through

the Settings-Text Printing menu. This will invoke the dialog box illustrated in

Figure 20.6.

228 Chapter 20. Project Settings and Options

Figure 20.6: The Text Printing dialog box

Text printing

properties

In the Text Printing dialog box you can select the paper type and font with

which you want all text files to be printed. For the paper type you can select

one of the predefined paper types, or specify a user defined paper type by

providing the page height and width, as well as the margins on each side of

the page. By pressing the Font button on the right-hand side of the dialog box,

you can select the font with which you want your text files to be printed. The

text printing properties are stored globally on your machine.

Printer setup With the File-Print Setup menu you can select the printer on which print pages

and text files associated with your project are printed, and modify the prop-

erties of that printer. This command will invoke the standard Windows Print

Setup dialog box illustrated in Figure 20.7.

Figure 20.7: The Print Setup dialog box

20.4. Print configuration 229

Default settingsThe settings selected in this dialog box will only be valid during the current

session of Aimms. If you want to modify the default print setup globally, you

can do this through the Printer section in the Windows Control Panel. There

you can

� select a Default printer from the list of all printers available on your

system, and

� modify the Document Defaults (i.e. the printer settings with which each

print job is printed by default) for every individual printer on your sys-

tem.

Without a call to the File-Print Setup dialog box, Aimms will use the default

printer selected here, and print according to the document defaults of that

printer.

Chapter 21

Localization Support

Interface

localization

When you are creating an end-user interface around your modeling applica-

tion, you will most likely create the end-user interface in either your native

language or in a common language like English. Which language you choose

most probably depends on the intended user group of your application. In the

case that you are requested to distribute your application to end-users who

are not fluent in the language in which you originally developed the end-user

interface, Aimms offers a localization procedure which automatically separates

all static texts used in the end-user interface of your application. This allows

you to provide a relatively smooth translation path of your application to the

native language(s) of your end-users.

This chapter This chapter illustrates how to use the automated localization procedure built

into Aimms, and explains how you can use it to create a foreign version of an

end-user application.

21.1 Localization of end-user interfaces

Basic concepts Conceptually, localization of an end-user application consists of a number of

basic steps. These basic steps are to

� find all the strings that are used in the pages and menus of your end-user

interface of your application,

� store these strings separate from the other interface components, and

� provide translations in different languages of these separately stored

strings.

Through the Tools-Localization menu, Aimms offers an integrated localization

tool which can perform the first two steps for you automatically. The result is

a list of strings, each with a description of its origin, which can be easily trans-

lated to other languages. This section will explain the use of the localization

tool built into Aimms step by step.

21.1. Localization of end-user interfaces 231

Localization

and libraries

If your application consist of multiple library projects (see also Chapter 3), de-

veloped and maintained by different modelers, each of these libraries can have

its own Localization section and identifiers to store its localization strings.

When performing the localization conversion on a library project, all localized

pages and menus in a library project will refer to the library-specific localiza-

tion identifiers. This allows a developer of a library project to introduce lo-

calization into his library, independently of all other libraries and/or the main

project.

Setting up

localization

support

Before you can start the final localization conversion of your Aimms applica-

tion, Aimms needs to

� add a Localization section to the main model or library module which

contains a default setup for working with a localized end-user interface

of either the main project or library project, and

� register the names of the identifiers and procedures which are necessary

for storing, loading and saving the strings used in the end-user interface

of your application or library.

You can perform these steps through the Tools-Localization-Setup menu. As

a result, Aimms will add the (default) Localization section to your model or

library if such a section has not already been added before. Secondly, through

the dialog box presented in Figure 21.1, Aimms will request the names of the

Figure 21.1: Setting up localization support

identifiers to be used further on in the localization process to store the strings

used in the end-user interface of the main project or library. By default, Aimms

proposes the identifiers added for this purpose to the (newly added) Localiza-

tion section. If you change the names of these identifiers, or want to use

completely different identifiers, you can execute the Tools- Localization-Setup

menu again to specify the modified names.

232 Chapter 21. Localization Support

Selecting the

language

If you are adding localization support to a library project, Aimms lets you

choose whether the language to be used within the library project should fol-

low the global language selection of the entire application, or whether you

want the language selection for the end-user interface of your library to be

library-specific.

Localization

section

After the localization setup has been executed for the first time, your model or

library module has been extended with a new section called Localization. The

contents of this model section is illustrated in Figure 21.2. The declaration

Figure 21.2: Localization section in the model tree

section contained in it declares the default set and string parameters used for

storing all localization information.

� The set AllLanguages contains the names of all languages to which you

want to localize your application. You can add as many languages to

its definition as necessary. However, you should make sure that, at any

time, the first element in the set is your development language: during the

conversion process described below, Aimms will associate all strings in

the end-user interface with the first language from the set AllLanguages.

� Associated with the set AllLanguages is an element parameter Current-

Language, through which you (or your end-users) can select the language

in which all texts in the end-user interface are to be displayed.

� The set LocalizedTextIndexSet is a subset of the predefined set Integers,

and is used to number all strings within your end-user interface that are

replaced by Aimms during the conversion process.

� The string parameter LocalizedText contains the actual texts for all string

objects in your end-user interface for one or more languages. During the

21.1. Localization of end-user interfaces 233

localization conversion process, Aimms will fill this parameter with the

texts of your development language.

� The string parameter LocalizedTextDescription contains a short descrip-

tion of the origin of all converted string objects, and is filled by Aimms

during the localization conversion.

Using other

localization

identifiers

Through the Tools-Localization-Setup menu, you can modify the localization

parameters which Aimms will use during any subsequent conversion process.

If you choose to select different identifiers, you should make sure that:

� the identifier selected for the Localized Text Identifier is a 2-dimensional

string parameter, the identifier selected for the Current Language Iden-

tifier is a scalar element parameter, and the identifier selected for the

Text Description Identifier is a 1-dimensional string parameter.

� the second index set of the Localized Text Identifier and the range set

of the Current Language Identifier coincide. Aimms will interpret the

resulting set as the set of all languages.

� the first index set of the Localized Text Identifier and the first index

set of the Text Description Identifier coincide and is a subset of the

predefined set Integers. Aimms will use this set to number all string

objects during the conversion process.

Localization

procedures

In addition to the sets and string parameters discussed above, the Localization

section also contains a number of procedures added for your convenience to

perform tasks such as:

� loading and saving the localized text for a single language,

� loading and saving the localized texts for all languages, and

� to initialize support for a localized end-user interface.

The statements within these procedures refer to the default localization iden-

tifiers created by Aimms. If you have chosen different identifiers, or want to

store the localization data in a nondefault manner, you can modify the con-

tents of these procedures at your will. You must be aware, however, that the

facilities within Aimms to view and modify the localized text entries do not use

these procedures, and will, therefore, always use the default storage scheme

for localized data (explained later in this section).

The

initialization

procedure

The localization procedure LocalizationInitialize added to the Localization

section of your model will read the localized text for a single language. If the el-

ement parameter CurrentLanguage has been set before the call to Localization-

Initialize, Aimms will read the localized strings for the language selected

through CurrentLanguage. If CurrentLanguage has no value, the procedure will

read the localized strings for the first language (i.e. your development lan-

guage).

234 Chapter 21. Localization Support

Added to Main-

Initialization

If your model contains the (default) procedure MainInitialization (see also

Section 4.2), a call to the procedure LocalizationInitialize will be added to

the end of the body of MainInitialization during the first call to the Tools-

Localization-Setup menu. This makes sure that the localized strings on pages

and in end-user menus of a converted end-user interface contain the proper

(original or localized) texts when the project is opened.

Performing the

localization

conversion

Through the Tools-Localization-Convert menu you can instruct Aimms to re-

place all static string occurrences in your (end-user and print) pages, templates

and end-user menus by references to the localization identifiers selected dur-

ing the localization setup. During the conversion, Aimms

� scans all pages, templates and menus for static strings,

� creates a new localized entry in the Localized Text Identifier for each

such string, and

� in the interface component where the static string was found, replaces

it by the corresponding reference to the Localized Text Identifier. If

a localization setup is defined per library, Aimms will use the library-

specific Localized Text Identifier.

String

description

In addition, Aimms will, for each localized string, create a description in the

Localized Text Description Identifier, initialized with the name of the page or

menu plus the object in which the corresponding string was found. This may

help you to link localization texts to specific objects and pages.

Duplicate

occurrences

During the localization conversion, Aimms will warn for any duplicate string it

encounters. For such duplicate strings, you have the opportunity to create a

new entry in the Localized Text Identifier or to re-use an existing entry. Re-

using existing entries can be convenient for common strings such as “Open” or

“Close” that occur on many pages.

Editing localized

strings

Once you have performed the localization conversion, you can view all local-

ized strings through the Tools-Localization-Show Strings menu, which will

open the dialog box illustrated in Figure 21.3. In this dialog box, Aimms dis-

plays a numbered list of all localized strings, along with the description of the

origin of each string. The string numbers exactly correspond to the elements

of the set LocalizedTextIndexSet discussed above.

Modifying

dialog box

contents

Through the drop down lists at the top of the Localized Text dialog box of

Figure 21.3, you can select the contents of the first and second string columns,

respectively. For each column, you can select whether to display the localized

text for any language defined in the set AllLanguages, or the description as-

sociated with each string. By viewing the localized strings for two languages

alongside, you can easily provide the translation of all localized strings for a

21.1. Localization of end-user interfaces 235

Figure 21.3: The Localized Text dialog box

new language on the basis of the localized strings of, for example, your devel-

opment language.

Modifying

multiline strings

If a localized string consists of multiple lines, you can invoke a multiline edi-

tor dialog box to edit that string through the Full Edit button at the bottom of

the Localized Text dialog box, as illustrate Figure 21.4. To invoke this multi-

Figure 21.4: The Multineline Editor dialog box

line editor for the string corresponding to a particular language, click on the

localized text for that language, and press the Full Edit button. The multi-

line editor will now be opened with the exact string that you selected in the

Localized Text dialog box.

Localizing new

texts

If you have added new pages, page objects, or end-user menus to your project

after running the localization conversion procedure for the first time, you have

two options to localize such new interface components. More specifically, you

can

� localize every new component separately through the Localized Text

wizard present at all text properties of the object, or

236 Chapter 21. Localization Support

� run the localization conversion procedure again.

The Localized

Text wizard

Whenever a string is associated with a property of a page, page object or menu

item, the wizard button of such a property in the Properties dialog box

provides access to the Localized Text wizard, as illustrated in Figure 21.5

Invoking this wizard will open the Localized Text dialog box illustrated in

Figure 21.5: The Localized Text wizard

Figure 21.3, in which you can either select an existing localized string, or create

a new entry through the New Entry button. Notice that the Localized Text

wizard only shows the localization strings for the main or library project you

are currently editing, and any of the included library projects which have the

localization identifiers in their public interface. After closing the dialog box,

Aimms will add a reference to the localized text identifier in the edit field of

the property for which you invoked the wizard, corresponding to the particular

string selected in the Localized Text dialog box.

Performing the

conversion

procedure again

If you have added several new interface components without worrying about

localization aspects, your safest option is to simply run the localization con-

version procedure again. As a result, Aimms will re-scan all pages, templates

and menus for strings that are not yet localized, and add such strings to the

list of already localized texts as stored in the localization identifiers associated

with your project. Obviously, you still have to manually provide the proper

translations to all available languages for all newly added strings.

Localized text

storage

By default, Aimms stores the localization data as project user files containing

standard Aimms data statements within the project file (see also Section 2.5.1).

The localized strings for every language, as well as the string descriptions are

stored in separate user project files, as illustrated in Figure 21.6. The read

and write statements in the bodies of the localization procedures added to the

Localization section of your model, assume this structure of project user files

for localization support.

Automatically

updated

Whenever you use the Localized Text dialog box of Figure 21.3, either through

the Tools-Localization-Show Strings menu or by invoking the Localized Text

wizard, Aimms will make sure that the contents of appropriate localization

data files are read in before displaying the localization data for a particular

language. Likewise, Aimms will make sure that the contents of the appropriate

project user files are updated when you close the Localized Text dialog box.

21.1. Localization of end-user interfaces 237

Figure 21.6: Default of localization data as user project files

Manual editsBy using the import and export facilities for project user files (see also Sec-

tion 2.5.1), you can also edit the data files containing the localized strings

outside of Aimms. This can be a convenient option if you hire an external

translator to provide the localized texts for a particular language, who has no

access to an Aimms system. Obviously, you have to make sure that you do not

make changes to these files through the Localized Text dialog box, while they

are exported. In that case, importing that file again will undo any additions or

changes made to the current contents of the project user file.

Static strings in

the model

Besides the static strings in the end-user interface of your Aimms application,

the model itself may also contain references to static strings or to sets whose

elements are defined within the model itself. Such strings and set elements are

left untouched by Aimms’ localization procedure. If your model contains such

string or set element references, you still have the task to replace them by ref-

erences to a number of appropriate localized string and element parameters.

238 Chapter 21. Localization Support

Appendices

Index

Symbols

.Net, 7

A

active case, 188

named, 187

unnamed, 187

add

object to page, 126

solver, 226

split line, 167, 177

AIMMS, v

Aimms, v, 3

as server, 209

command line option, 207

compare to database, 10

compare to programming language, 11

compare to spreadsheet, 10

comparison summary, 12

deployment documentation, xiv

documentation, 7

example projects, xv

examples of use, 8

external usage, 212

help files, xiv

language features, 6

Language Reference, xiii

max parallel threads, 209

modeling tools, 6

Optimization Modeling, xiv

option, 221

run hidden, 209

run maximized, 209

run minimized, 209

tutorials, xv

User’s Guide, xiii

Aimms 4, xii

AimmsRevisionString function, 206

align page objects, 137

AllCases set, 192, 205

AllColors set, 149, 198

AllLanguages set, 232

AllUpdatableIdentifiers set, 198

analytic decision support, 3

applicability, 4

application

authorization, 219

application programming interface, 7, 212

argument

procedure or function, 67

prototype checking, 69

prototype info, 71

session, 211

solver, 226

assertion, 140

attribute window, 44, 57

argument, 68

check syntax, 61

context help, 60

data button, 63

function, 67

procedure, 67

structuring node, 45

wizard, 45, 58

authentication, 219

authors

Bisschop, J.J., xvii

Roelofs, G.H.M., xvii

automatic outlining, 70

B

backup files

command line option, 208

block, 70

body, 69

automatic outlining, 70

compile, 72

execution blocks, 70

book section

attribute window, 46

attributes, 45

export, 47

import, 47

node, 42

storage on disk, 46

border, 142

breakpoint

setting, 82

on data change, 85

C

C/C++, 7

case

242 Index

active, 187, 188

case reference, 191

functions, 203

load

as active, 188

into active, 189

merge into active, 189

multiple, 189

new, 189

case content type

all identifiers, 192

case file, 22, 187

load, 188

save, 188

case management, 6, 187

custom, 203

from within model, 203

CaseCommandLoadAsActive function, 204

CaseCommandLoadIntoActive function, 204

CaseCommandMergeIntoActive function, 204

CaseCommandNew function, 204

CaseCommandSave function, 204

CaseCommandSaveAs function, 204

CaseCompareIdentifier function, 203

CaseCreateDifferenceFile function, 203

CaseDialogConfirmAndSave function, 204

CaseDialogSelectForLoad function, 204

CaseDialogSelectForSave function, 204

CaseDialogSelectMultiple function, 204

CaseFileGetContentType function, 203

CaseFileLoad function, 203

CaseFileMerge function, 203

CaseFileSave function, 203

CaseFileURLtoElement function, 203

chart, 126

Gantt, 131

close

attribute window, 61

page from within model, 200

color, 140, 147

in library project, 148

model-based, 149, 198

parameter, 149, 198

command line option, 207

command line tool, 213

compilation

attribute window, 61

complete versus partial, 45, 72

procedure, 72

compound selection, 76

conditional selector, 74

create

end-user interface, 123

identifier selection, 73

page, 124

page object, 126

project, 15

view window, 78

CurrentCase parameter, 205

CurrentCaseSelection set, 192

CurrentDefaultCaseType parameter, 205

CurrentErrorMessage parameter, 200

CurrentInputs set, 198

CurrentLanguage parameter, 232

cut, copy and paste, 52

D

data change

breakpoint on, 85

data format, 142

data object

advanced, 131

data page, 63

modify type, 64

save, 64

database

compare to Aimms, 10

connectivity, 7

DataManagementExit function, 204

debugger, 80

DebuggerBreakpoint function, 206

decision support, 3

declaration section

attributes, 45

local, 69

node, 42

Delay function, 205

diagnostic tools

debugger, 80

identifier cardinalities, 93

profiler, 87

dialog box, 202

dialog page, 145

template, 146

DialogAsk function, 200, 202

DialogError function, 202

DialogGetDate function, 203

DialogGetElement function, 203

DialogGetElementByData function, 203

DialogGetElementByText function, 203

DialogGetNumber function, 203

DialogGetPassword function, 203

DialogGetString function, 203

DialogMessage function, 202

DialogProgress function, 202

DirectoryCopy function, 202

DirectoryCreate function, 202

DirectoryDelete function, 202

DirectoryExists function, 202

DirectoryGetCurrent function, 202

DirectoryMove function, 202

DirectorySelect function, 202

dockable windows, 19

documentation

deployment features, xiv

Index 243

double-click action, 140

drag and drop, 52

E

edit mode (page), 126

element text, 142

end user

application deployment, 180

end-user

authentication, 219

authorization, 219

command line option, 207

database, 22, 209

project, 224

project mode, 181

end-user mode, 209

setup, 224

end-user page, 123

localization, 230

print, 172

use as data page, 65

use as dialog box, 145

end-user project

automated export, 210

error file, 22

example projects, xv, 14

execute

procedure, 72

Execute function, 205

execution block, 70

execution option, 221

ExitAimms function, 205

export

automated, 210

book section, 47

expression

use in page object, 128

F

file

case, 22

end-user database, 22

error, 22

license, 208

listing, 22

log, 22

manipulation from within model, 201

name change, 21

project

user files, 23

FileAppend function, 202

FileCopy function, 202

FileDelete function, 200, 202

FileEdit function, 202

FileExists function, 200, 202

FileMove function, 202

FilePrint function, 202

FileSelect function, 202

FileSelectNew function, 202

FileTime function, 202

FileTouch function, 202

FileView function, 202

finding a node, 53

font, 141

in library project, 141

function

AimmsRevisionString, 206

argument, 66, 67

argument info, 71

body, 69

CaseCommandLoadAsActive, 204

CaseCommandLoadIntoActive, 204

CaseCommandMergeIntoActive, 204

CaseCommandNew, 204

CaseCommandSave, 204

CaseCommandSaveAs, 204

CaseCompareIdentifier, 203

CaseCreateDifferenceFile, 203

CaseDialogConfirmAndSave, 204

CaseDialogSelectForLoad, 204

CaseDialogSelectForSave, 204

CaseDialogSelectMultiple, 204

CaseFileGetContentType, 203

CaseFileLoad, 203

CaseFileMerge, 203

CaseFileSave, 203

CaseFileURLtoElement, 203

compile, 72

DataManagementExit, 204

DebuggerBreakpoint, 206

declaration node, 44, 66

Delay, 205

DialogAsk, 200, 202

DialogError, 202

DialogGetDate, 203

DialogGetElement, 203

DialogGetElementByData, 203

DialogGetElementByText, 203

DialogGetNumber, 203

DialogGetPassword, 203

DialogGetString, 203

DialogMessage, 202

DialogProgress, 202

DirectoryCopy, 202

DirectoryCreate, 202

DirectoryDelete, 202

DirectoryExists, 202

DirectoryGetCurrent, 202

DirectoryMove, 202

DirectorySelect, 202

Execute, 205

ExitAimms, 205

FileAppend, 202

FileCopy, 202

244 Index

FileDelete, 200, 202

FileEdit, 202

FileExists, 200, 202

FileMove, 202

FilePrint, 202

FileSelect, 202

FileSelectNew, 202

FileTime, 202

FileTouch, 202

FileView, 202

IdentifierMemory, 206

IdentifierMemoryStatistics, 206

index domain, 67

LicenseExpirationDate, 206

LicenseMaintenanceExpirationDate, 206

LicenseNumber, 206

LicenseStartDate, 206

LicenseType, 206

local declaration, 69

MemoryStatistics, 206

OpenDocument, 205

PageClose, 201

PageGetActive, 201

PageGetChild, 201

PageGetFocus, 201

PageGetNext, 201

PageGetNextInTreeWalk, 201

PageGetParent, 201

PageGetPrevious, 201

PageGetTitle, 201

PageGetUsedIdentifiers, 201

PageOpen, 146, 201

PageOpenSingle, 201

PageRefreshAll, 201

PageSetCursor, 201

PageSetFocus, 201

PrintEndReport, 175, 201

PrintPage, 175, 201

PrintPageCount, 201

PrintStartReport, 175, 201

ProfilerContinue, 206

ProfilerPause, 206

ProfilerRestart, 206

ProfilerStart, 206

ProjectDeveloperMode, 205

range, 67

return value, 200

ScheduleAt, 205

SessionArgument, 205, 211

ShowHelpTopic, 205

StatusMessage, 202

subnode, 44

UserColorAdd, 199

UserColorDelete, 199

UserColorGetRGB, 199

UserColorModify, 199

G

Gantt chart, 131

graph, 126

grid, 127

H

help file, 144

supported formats, 144

help function

in attribute window, 60

hidden menu item, 162

hidden object, 143

hidden page, 156

I

identifier

attribute window, 44, 57

cardinalities, 93

change type, 62

check syntax, 61

declaration node, 43, 54

declaration order, 43, 56

declared via attribute, 57

find node in model tree, 60, 71

index domain, 55

input versus output, 197

local, 56, 69

name, 54

name completion, 59, 71

rename, 61

selection, 73

compound, 76

default view, 79

named, 74

once only, 74

type, 74

type, 54

view attributes, 71

view data, 63, 71

view identifier attributes, 60

view identifier data, 60

view window, 77

identifier selector, 17, 74

type, 74

IdentifierMemory function, 206

IdentifierMemoryStatistics function, 206

import

book section, 47

index domain, 55

of function, 67

index linking, 133

use of, 134

interactive tutorial, 13

Index 245

J

Java, 7

L

language features, 6

library

interface, 38

library module

node, 43

library project, 35, 49

fonts, 141

localization, 231

user colors, 148

license

file, 208

name, 208

network logon timeout, 209

LicenseExpirationDate function, 206

LicenseMaintenanceExpirationDate function,

206

LicenseNumber function, 206

LicenseStartDate function, 206

LicenseType function, 206

licensing, 7

listing file, 22

load case

as active, 188

into active, 189

merge into active, 189

load case file, 188

localization, 230

interface conversion, 234

library project, 231

procedures, 233

section in model, 232

setup, 231

wizard, 236

LocalizedText parameter, 232

LocalizedTextDescription parameter, 233

LocalizedTextIndexSet set, 232

log file, 22

M

main model

attributes, 45

node, 42

MainExecution procedure, 45

MainInitialization procedure, 45

MainTermination procedure, 45

MemoryStatistics function, 206

menu

hidden item, 162

navigation, 156, 162

pop-up, 140

properties, 161

menu builder, 19, 160

open, 17

menu tree, 160

merge case into active, 189

model explorer, 16, 17, 41

open, 17

view identifier data, 63

view identifier selection, 76

model file, 15

model node

attribute window, 44

book section, 42

declaration section, 42

function declaration, 44, 66

identifier declaration, 43, 54

library module, 43

main model, 42

module, 43

procedure declaration, 44, 66

model tree, 41

compilation, 45

find identifier node, 60

navigation, 60

node type, 41

save, 61

skeleton, 45

storage on disk, 46

structuring nodes, 42

modeling tool, 17

identifier selector, 17, 74

menu builder, 19, 160

model explorer, 17, 41

page manager, 18, 124, 150

template manager, 18, 157

use identifier selection, 76

view manager, 78

module

node, 43

system, 48

multiple case, 189

advanced comparison, 192

in language, 191

object, 190

selection, 189

N

name change, 61

file, 21

version control, 22

name completion, 59, 71

navigation, 153

action, 151, 154

defined on template, 159

menu, 151, 156, 162

object, 151, 155

new

case, 189

246 Index

project, 15

node

create, 51

cut, copy and paste, 52

delete, 52

drag and drop, 52

duplicate, 52

find, 53

navigation, 60

open, 50

page, 124

rename, 51

select, 52

node-based selector, 74

O

open

attribute window, 57

case file, 188

data page, 63

dialog box, 202

menu builder, 17

model explorer, 17

page from within model, 200

page manager, 17

project, 17

template manager, 17

view window, 78

OpenDocument function, 205

option

dialog box, 221

execution, 221

modify, 222

modify from within model, 224

project, 221

solver, 221

outlining, 70

P

packed Aimms project, 182

creating, 183

running, 183

unpacking, 184

page, 123

add object, 126

add split line, 167

base resolution, 165

control from within model, 200

copy, 124

create, 124

data, 63

edit mode, 126

grid, 127

hidden, 156

menu, 163

name, 124

object, 125

print, 172

resizability, 165

startup, 182, 225

template, 125, 157

title, 125

toolbar, 163

use as dialog box, 145

user mode, 126

page manager, 18, 124, 150

open, 17

page object, 125

action, 140

align, 137

assert, 140

border, 142

color, 140

contents, 139

data format, 142

double-click, 140

drawing order, 137

element text, 142

font, 141

help, 144

hidden, 143

menu, 140

multiple case, 190

navigation, 155

overlapping, 137

print property, 144

printing occurrence, 176

procedure, 140

properties, 128, 138

read-only, 143

select

multiple, 137

object type, 126

on page, 136

select identifier, 127, 132

dimension reduction, 133

index linking, 133

slicing, 133

tab order, 137, 144

tag, 144

text, 142

unit, 142

use of expression, 128

page template, 157

dialog page, 146

page tree, 124, 150

navigational control, 151, 153

reference, 153

PageClose function, 201

PageGetActive function, 201

PageGetChild function, 201

PageGetFocus function, 201

PageGetNext function, 201

PageGetNextInTreeWalk function, 201

Index 247

PageGetParent function, 201

PageGetPrevious function, 201

PageGetTitle function, 201

PageGetUsedIdentifiers function, 201

PageOpen function, 146, 201

PageOpenSingle function, 201

PageRefreshAll function, 201

PageSetCursor function, 201

PageSetFocus function, 201

pop-up menu, 140

PostMainInitialization procedure, 45

predefined parameter

CurrentCase, 205

CurrentDefaultCaseType, 205

CurrentErrorMessage, 200

CurrentLanguage, 232

LocalizedText, 232

LocalizedTextDescription, 233

predefined set

AllCases, 192, 205

AllColors, 149, 198

AllLanguages, 232

AllUpdatableIdentifiers, 198

CurrentCaseSelection, 192

CurrentInputs, 198

LocalizedTextIndexSet, 232

PreMainTermination procedure, 45

print

configuration, 227

end-user page, 172

page from within model, 201

print page, 175

printer setup, 228

property, 144

report, 175, 201

template, 173

text file, 227

print page, 173

add split line, 177

margin, 174

multipage object, 176

non-printable object, 175

page number, 175

paper type, 173

printing occurrence, 176

print template, 178

PrintEndReport function, 175, 201

PrintPage function, 175, 201

PrintPageCount function, 201

PrintStartReport function, 175, 201

procedure

argument, 66, 67

argument info, 71

body, 69

command line option, 210

compile, 72

declaration node, 44, 66

local declaration, 69

MainExecution, 45

MainInitialization, 45

MainTermination, 45

PostMainInitialization, 45

PreMainTermination, 45

run, 72

startup, 182, 224

subnode, 44

profiler, 87

ProfilerContinue function, 206

ProfilerPause function, 206

ProfilerRestart function, 206

ProfilerStart function, 206

programming language

Aimms API, 212

compare to Aimms, 11

project

components, 15

create, 15

directory, 15

end-user database, 209

end-user mode, 181, 209

help, 144

library, 35

model file, 15

open, 17, 210

option, 221

packed, see packed Aimms project

related files, 21

security, 7, 216

session argument, 211

splash screen, 182

startup page, 225

startup procedure, 224

title, 225

user file

use in language, 24

user files, 23

version control, 35

ProjectDeveloperMode function, 205

prototype

checking, 69

info, 71

R

range of function, 67

read-only, 143, 197

reference

page tree, 153

resizable page, 165

edit, 169

opening mode, 171

try, 167

return value, 200

run procedure, 72

248 Index

S

save

attribute changes, 61

case file, 188

data page, 64

model, 61

scenario

view multiple, 189

ScheduleAt function, 205

SDK interface, 7

security

project, 216

select page object, 136

selection type

conditional, 74

element-dependent, 74

node-based, 74

scaling-based, 74

set-dependent, 74

status-based, 74

type-based, 74

value-based, 74

session argument, 211

SessionArgument function, 205, 211

set-dependent selector, 74

ShowHelpTopic function, 205

solver

add, 226

argument, 226

configuration, 225

default, 226

option, 221

splash screen, 182

split line, 165, 166

add to print page, 177

spreadsheet

compare to Aimms, 10

startup

page, 182

procedure, 182

StatusMessage function, 202

syntax check, 61

system module, 48

T

tab order, 137, 144

table, 126

tag, 144

template

add split line, 170

menu, 163

print, 173

resizable, 169

toolbar, 163

template manager, 18, 157

open, 17

template tree, 157

text, 142

toolbar, 160

tooltip, 162

tree

create a node, 51

cut, copy and paste, 52

delete a node, 52

drag and drop, 52

duplicate, 52

find a node, 53

menu, 160

model, 41

open a node, 50

page, 124, 150

rename a node, 51

select nodes, 52

selector, 74

template, 157

tutorial, 13

tutorials, xv

U

unit, 142

user color, 147

in library project, 148

user file, 23

user management, 7

user mode (page), 126

user setup, 219

UserColorAdd function, 199

UserColorDelete function, 199

UserColorGetRGB function, 199

UserColorModify function, 199

V

VCS, 35

version control, 35

name change file, 22

view window, 77

modify contents, 79

W

wizard

attribute, 45, 58

new project, 15

