
AIMMS
Optimization Modeling

AIMMS

June 2014

AIMMS
Optimization Modeling

AIMMS

Johannes Bisschop

Copyright c© 1993–2019 by AIMMS B.V. All rights reserved.

Email: info@aimms.com

WWW: www.aimms.com

ISBN 978–1–84753–912–0

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

About Aimms

HistoryAimms was introduced as a new type of mathematical modeling tool in 1993—

an integrated combination of a modeling language, a graphical user inter-

face, and numerical solvers. Aimms has proven to be one of the world’s

most advanced development environments for building optimization-based

decision support applications and advanced planning systems. Today, it is

used by leading companies in a wide range of industries in areas such as sup-

ply chain management, energy management, production planning, logistics,

forestry planning, and risk-, revenue-, and asset- management. In addition,

Aimms is used by universities worldwide for courses in Operations Research

and Optimization Modeling, as well as for research and graduation projects.

What is Aimms?Aimms is far more than just another mathematical modeling language. True,

the modeling language is state of the art for sure, but alongside this, Aimms

offers a number of advanced modeling concepts not found in other languages,

as well as a full graphical user interface both for developers and end-users.

Aimms includes world-class solvers (and solver links) for linear, mixed-integer,

and nonlinear programming such as baron, cplex, conopt, gurobi, knitro,

path, snopt and xa, and can be readily extended to incorporate other ad-

vanced commercial solvers available on the market today. In addition, con-

cepts as stochastic programming and robust optimization are available to in-

clude data uncertainty in your models.

Mastering

Aimms

Mastering Aimms is straightforward since the language concepts will be intu-

itive to Operations Research (OR) professionals, and the point-and-click graph-

ical interface is easy to use. Aimms comes with comprehensive documentation,

available electronically and in book form.

Types of Aimms

applications

Aimms provides an ideal platform for creating advanced prototypes that are

then easily transformed into operational end-user systems. Such systems can

than be used either as

� stand-alone applications, or

� optimization components.

vi About Aimms

Stand-alone

applications

Application developers and operations research experts use Aimms to build

complex and large scale optimization models and to create a graphical end-

user interface around the model. Aimms-based applications place the power of

the most advanced mathematical modeling techniques directly into the hands

of end-users, enabling them to rapidly improve the quality, service, profitabil-

ity, and responsiveness of their operations.

Optimization

components

Independent Software Vendors and OEMs use Aimms to create complex and

large scale optimization components that complement their applications and

web services developed in languages such as C++, Java, .NET, or Excel. Appli-

cations built with Aimms-based optimization components have a shorter time-

to-market, are more robust and are richer in features than would be possible

through direct programming alone.

Aimms users Companies using Aimms include

� ABN AMRO

� Areva

� Bayer

� Bluescope Steel

� BP

� CST

� ExxonMobil

� Gaz de France

� Heineken

� Innovene

� Lufthansa

� Merck

� Owens Corning

� Perdigão

� Petrobras

� Philips

� PriceWaterhouseCoopers

� Reliance

� Repsol

� Shell

� Statoil

� Unilever

Universities using Aimms include Budapest University of Technology, Carnegie

Mellon University, George Mason University, Georgia Institute of Technology,

Japan Advanced Institute of Science and Technology, London School of Eco-

nomics, Nanyang Technological University, Rutgers University, Technical Uni-

versity of Eindhoven, Technische Universität Berlin, UIC Bioengineering, Uni-

versidade Federal do Rio de Janeiro, University of Groningen, University of

Pittsburgh, University of Warsaw, and University of the West of England.

A more detailed list of Aimms users and reference cases can be found on our

website www.aimms.com.

Contents

About Aimms v

Contents vii

Preface xiii

What is in the Aimms documentation xiii

What’s in the Optimization Modeling guide xvi

The authors . xviii

Part I Introduction to Optimization Modeling 3

1 Background 3

1.1 What is a model? . 3

1.2 Why use models? . 4

1.3 The role of mathematics . 5

1.4 The modeling process . 7

1.5 Application areas . 8

1.5.1 Production . 8

1.5.2 Production and inventory management 9

1.5.3 Finance . 10

1.5.4 Manpower planning . 11

1.5.5 Agricultural economics 12

1.6 Summary . 13

2 Formulating Optimization Models 14

2.1 Formulating linear programming models 14

2.1.1 Introduction . 14

2.1.2 Example of a linear programming model 15

2.1.3 Picturing the formulation and the solution 18

2.2 Formulating mixed integer programming models 24

2.3 Formulating nonlinear programming models 28

2.4 Summary . 32

viii Contents

3 Algebraic Representation of Models 33

3.1 Explicit form . 33

3.2 Symbolic form . 34

3.3 Symbolic-indexed form . 35

3.4 Aimms form . 38

3.5 Translating a verbal problem into a model 40

3.6 Summary . 41

4 Sensitivity Analysis 42

4.1 Introduction . 42

4.2 Shadow prices . 43

4.3 Reduced costs . 46

4.4 Sensitivity ranges with constant objective function value . . . 49

4.5 Sensitivity ranges with constant basis 50

4.6 Summary . 52

5 Network Flow Models 53

5.1 Introduction . 53

5.2 Example of a network flow model 54

5.3 Network formulation . 56

5.4 Solution and sensitivity analysis 58

5.5 Pure network flow models . 59

5.6 Other network models . 61

5.7 Summary . 62

Part II General Optimization Modeling Tricks 65

6 Linear Programming Tricks 65

6.1 Absolute values . 65

6.2 A minimax objective . 68

6.3 A fractional objective . 69

6.4 A range constraint . 70

6.5 A constraint with unknown-but-bounded coefficients 71

6.6 A probabilistic constraint . 73

6.7 Summary . 76

7 Integer Linear Programming Tricks 77

7.1 A variable taking discontinuous values 77

7.2 Fixed costs . 78

7.3 Either-or constraints . 79

7.4 Conditional constraints . 81

7.5 Special Ordered Sets . 82

7.6 Piecewise linear formulations . 83

7.7 Elimination of products of variables 85

Contents ix

7.8 Summary . 87

Part III Basic Optimization Modeling Applications 91

8 An Employee Training Problem 91

8.1 Hiring and training of flight attendants 91

8.2 Model formulation . 92

8.3 Solutions from conventional solvers 94

8.4 Solutions from rounding heuristics 96

8.5 Introducing probabilistic constraints 97

8.6 Summary . 99

Exercises . 99

9 A Media Selection Problem 100

9.1 The scheduling of advertising media 100

9.2 Model formulation . 101

9.3 Adding logical conditions . 103

9.4 Set covering and related models 106

9.5 Summary . 107

Exercises . 108

10 A Diet Problem 109

10.1 Example of a diet problem . 109

10.2 Model formulation . 110

10.3 Quantities and units . 112

10.4 Summary . 116

Exercises . 116

11 A Farm Planning Problem 117

11.1 Problem description . 117

11.2 Model formulation . 120

11.3 Model results . 124

11.4 Summary . 126

Exercises . 126

12 A Pooling Problem 127

12.1 Problem description . 127

12.2 Model description . 130

12.3 A worked example . 133

12.4 Summary . 136

Exercises . 136

x Contents

Part IV Intermediate Optimization Modeling Applications 139

13 A Performance Assessment Problem 139

13.1 Introduction and terminology . 139

13.2 Relative efficiency optimization 140

13.3 A worked example . 143

13.4 Computational issues . 147

13.5 Summary . 147

Exercises . 148

14 A Two-Level Decision Problem 149

14.1 Problem description . 149

14.2 Model formulation . 151

14.3 Algorithmic approach . 153

14.4 Optimal solution . 155

14.5 Alternative solution approach 159

14.6 Summary . 161

Exercises . 162

15 A Bandwidth Allocation Problem 163

15.1 Problem description . 163

15.2 Formulation I: enumerating bandwidth intervals 165

15.2.1 Preventing overlap using pairs of allocations 167

15.2.2 Preventing overlap using channel constraints 168

15.3 Formulation II: avoiding bandwidth interval construction . . 169

15.3.1 Improving sparsity in overlap constraints 171

15.4 Summary . 172

Exercises . 172

16 A Power System Expansion Problem 173

16.1 Introduction to methods for uncertainty 173

16.2 A power system expansion problem 175

16.3 A deterministic expansion model 178

16.4 What-if approach . 179

16.5 Stochastic programming approach 181

16.6 Summary . 184

Exercises . 185

17 An Inventory Control Problem 186

17.1 Introduction to multi-stage concepts 186

17.2 An inventory control problem 189

17.3 A multi-stage programming model 190

17.4 Equivalent alternative objective function 194

17.5 A worked example . 195

17.6 Summary . 197

Contents xi

Exercises . 198

Part V Advanced Optimization Modeling Applications 201

18 A Portfolio Selection Problem 201

18.1 Introduction and background . 201

18.2 A strategic investment model . 204

18.3 Required mathematical concepts 206

18.4 Properties of the strategic investment model 209

18.5 Example of strategic investment model 212

18.6 A tactical investment model . 214

18.7 Example of tactical investment model 217

18.8 One-sided variance as portfolio risk 219

18.9 Adding logical constraints . 221

18.10 Piecewise linear approximation 222

18.11 Summary . 225

Exercises . 226

19 A File Merge Problem 227

19.1 Problem description . 227

19.2 Mathematical formulation . 230

19.3 Solving large instances . 234

19.4 The simplex method . 235

19.5 Algorithmic approach . 236

19.6 Summary . 238

Exercises . 239

20 A Cutting Stock Problem 241

20.1 Problem description . 241

20.2 The initial model formulation . 242

20.3 Delayed cutting pattern generation 244

20.4 Extending the original cutting stock problem 248

20.5 Summary . 250

Exercises . 250

21 A Telecommunication Network Problem 251

21.1 Problem description . 251

21.2 Bottleneck identification model 252

21.3 Path generation technique . 256

21.4 A worked example . 261

21.5 Summary . 263

Exercises . 263

xii Contents

22 A Facility Location Problem 264

22.1 Problem description . 264

22.2 Mathematical formulation . 266

22.3 Solve large instances through decomposition 267

22.4 Benders’ decomposition with feasible subproblems 268

22.5 Convergence of Benders’ decomposition 272

22.6 Formulating dual models . 273

22.7 Application of Benders’ decomposition 275

22.8 Computational considerations 278

22.9 A worked example . 280

22.10 Summary . 282

Exercises . 283

Part VI Appendices 287

Keyword Table 287

Index 288

Bibliography 293

Preface

Three Aimms

books

The printed Aimms documentation consists of three books

� Aimms—The User’s Guide,

� Aimms—The Language Reference, and

� Aimms—Optimization Modeling.

The first two books emphasize different aspects in the use of the Aimms sys-

tem, while the third book is a general introduction to optimization modeling.

All books can be used independently.

Available onlineIn addition to the printed versions, these books are also available on-line in the

Adobe Portable Document Format (PDF). Although new printed versions of the

documentation will become available with every new functional Aimms release,

small additions to the system and small changes in its functionality in between

functional releases are always directly reflected in the online documentation,

but not necessarily in the printed material. Therefore, the online versions of

the Aimms books that come with a particular version of the system should

be considered as the authoritative documentation describing the functionality

regarding that particular Aimms version.

Release notesWhich changes and bug fixes are included in particular Aimms releases are

described in the associated release notes.

What is in the Aimms documentation

The User’s

Guide

The Aimms User’s Guide provides a global overview of how to use the Aimms

system itself. It is aimed at application builders, and explores Aimms’ capabil-

ities to help you create a model-based application in an easy and maintainable

manner. The guide describes the various graphical tools that the Aimms sys-

tem offers for this task. It is divided into five parts.

� Part I—Introduction to Aimms—what is Aimms and how to use it.

� Part II—Creating and Managing a Model—how to create a new model in

Aimms or manage an existing model.

� Part III—Creating an End-User Interface—how to create an intuitive and

interactive end-user interface around a working model formulation.

xiv Preface

� Part IV—Data Management—how to work with cases and datasets.

� Part V—Miscellaneous—various other aspects of Aimms which may be

relevant when creating a model-based end-user application.

The Language

Reference

The Aimms Language Reference provides a complete description of the Aimms

modeling language, its underlying data structures and advanced language con-

structs. It is aimed at model builders only, and provides the ultimate reference

to the model constructs that you can use to get the most out of your model

formulations. The guide is divided into seven parts.

� Part I—Preliminaries—provides an introduction to, and overview of, the

basic language concepts.

� Part II—Nonprocedural Language Components—describes Aimms’ basic

data types, expressions, and evaluation structures.

� Part III—Procedural Language Components—describes Aimms’ capabili-

ties to implement customized algorithms using various execution and

flow control statements, as well as internal and external procedures and

functions.

� Part IV—Sparse Execution—describes the fine details of the sparse execu-

tion engine underlying the Aimms system.

� Part V—Optimization Modeling Components—describes the concepts of

variables, constraints and mathematical programs required to specify an

optimization model.

� Part VI—Data Communication Components—how to import and export

data from various data sources, and create customized reports.

� Part VII—Advanced Language Components—describes various advanced

language features, such as the use of units, modeling of time and com-

municating with the end-user.

Optimization

Modeling

The book on optimization modeling provides not only an introduction to mod-

eling but also a suite of worked examples. It is aimed at users who are new

to modeling and those who have limited modeling experience. Both basic con-

cepts and more advanced modeling techniques are discussed. The book is

divided into five parts:

� Part I—Introduction to Optimization Modeling—covers what models are,

where they come from, and how they are used.

� Part II—General Optimization Modeling Tricks—includes mathematical

concepts and general modeling techniques.

� Part III—Basic Optimization Modeling Applications—builds on an under-

standing of general modeling principles and provides introductory appli-

cation-specific examples of models and the modeling process.

� Part IV—Intermediate Optimization Modeling Applications—is similar to

part III, but with examples that require more effort and analysis to con-

struct the corresponding models.

Preface xv

� Part V—Advanced Optimization Modeling Applications—provides appli-

cations where mathematical concepts are required for the formulation

and solution of the underlying models.

Documentation

of deployment

features

In addition to the three major Aimms books, there are several separate docu-

ments describing various deployment features of the Aimms software. They

are:

� Aimms—The Function Reference,

� Aimms—The COM Object User’s Guide and Reference,

� Aimms—The Excel Add-In User’s Guide, and

� Aimms—The Open Solver Interface User’s Guide and Reference.

These documents are only available in PDF format.

Help filesThe Aimms documentation is complemented with a number of help files that

discuss the finer details of particular aspects of the Aimms system. Help files

are available to describe:

� the execution and solver options which you can set to globally influence

the behavior of the Aimms’ execution engine,

� the finer details of working with the graphical modeling tools, and

� a complete description of the properties of end-user screens and the

graphical data objects which you can use to influence the behavior and

appearance of an end-user interface built around your model.

The Aimms help files are both available as Windows help files, as well as in PDF

format.

Aimms tutorialsTwo tutorials on Aimms in PDF format provide you with some initial work-

ing knowledge of the system and its language. One tutorial is intended for

beginning users, while the other is aimed at professional users of Aimms.

Searching the

documentation

As the entire Aimms documentation is available in PDF format, you can use the

search functionality of Acrobat Reader to search through all Aimms documen-

tation for the information you are looking for.

Aimms model

library

Aimms comes with an extensive model library, which contains a variety of ex-

amples to illustrate simple and advanced applications containing particular

aspects of both the language and the graphical user interface. You can find

the Aimms model library in the Examples directory in the Aimms installation

directory. The Examples directory also contains an Aimms project providing an

index to all examples, which you can use to search for examples that illustrate

specific aspects of Aimms.

xvi Preface

What’s in the Optimization Modeling guide

Introduction to

optimization

modeling

Part I—Introduction to Optimization Modeling—covers what models are, where

they come from, and how they are used. This part is for anyone who is new to

the area of optimization modeling.

� Chapter 1. “Background,” gives background information on optimization

modeling, and highlights the process from a real life problem to a well-

posed problem statement.

� Chapter 2. “Formulating Optimization Models,” lays the foundation for

all chapters that follow. It gives an overview of linearly constrained op-

timization models and their characteristics. These models are then ex-

tended to include integer and nonlinear constraints.

� Chapter 3. “Algebraic Representation of Models,” compares different for-

mulations of the same model, and introduces the fundamental concept

of index notation.

� Chapter 4. “Sensitivity Analysis,” gives an extensive introduction to the

use of marginal values for sensitivity analysis.

� Chapter 5. “Network Flow Models,” describes classes of network flow

models as well as a example network formulation in Aimms.

General

optimization

modeling tricks

Part II—General Optimization Modeling Tricks—includes mathematical con-

cepts and modeling tricks for linear and mixed-integer linear programming.

� Chapter 6. “Linear Programming Tricks,” provides some standard for-

mulation tricks for linear programming.

� Chapter 7. “Integer Linear Programming Tricks,” describes some stan-

dard formulation tricks for mixed-integer linear programming, and in-

troduces the concept of Special Ordered Sets.

Basic

optimization

modeling

applications

Part III—Basic Optimization Modeling Applications—builds on an understand-

ing of general modeling principles and gives introductory application-specific

examples of models and the modeling process.

� Chapter 8. “An Employee Training Problem,” comes from an application

for hiring and training new flight attendants and incorporates a heuristic

for rounding a continuous solution into an integer-valued solution.

� Chapter 9. “A Media Selection Problem,” comes from an application for

deciding how best to market a product based on demographic data and

contains examples of modeling logical conditions and set covering, pack-

ing, and partitioning.

� Chapter 10. “A Diet Problem,” comes from an application for planning a

healthy and inexpensive diet. The model shows how to use units and to

change the formulation of a linear program into a mixed-integer program.

� Chapter 11. “A Farm Planning Problem,” comes from an application for

farm management and illustrates the use of units.

Preface xvii

� Chapter 12. “A Pooling Problem, ” comes from an application in which

final products are blended from intermediate products to meet various

quality specifications. Both linear and nonlinear blending rules are intro-

duced.

Intermediate

optimization

modeling

applications

Part IV—Intermediate Optimization Modeling Applications—similar to part III,

but with examples that require extra effort and analysis to construct the cor-

responding models.

� Chapter 13. “A Performance Assessment Problem,” comes from an ap-

plication for evaluating the performance of several comparable organiza-

tions. The chapter illustrates a step-wise approach to determine efficient

decision making units.

� Chapter 14. “A Two-Level Decision Problem, ” comes from an applica-

tion in which waste water regulations are enforced through taxes and

subsidies. Both an iterative approach and a single-step approach using

marginal values are used to solve the problem.

� Chapter 15. “A Frequency Allocation Problem, ” concerns the assignment

of frequency intervals to links in a communication system while mini-

mizing total interference. Two formulations are discussed in detail.

� Chapter 16. “A Power System Expansion Problem,” comes from the elec-

tric power industry and provides an overview of several approaches to

uncertainty, namely what-if analysis, two-stage stochastic programming

and robust optimization.

� Chapter 17. “An Inventory Control Problem,” comes from an applica-

tion for storing enough beer to meet uncertain demand. The demand is

time dependent, and the model is formulated as a multi-stage stochastic

model.

Advanced

optimization

modeling

applications

Part V—Advanced Optimization Modeling Applications—provides applications

where mathematical concepts are required for the formulation and solution of

the underlying models.

� Chapter 18. “A Portfolio Selection Problem,” comes from a financial ap-

plication in which both strategic and tactical investment decisions are

made. One-side variance is used as a measure of portfolio risk.

� Chapter 19. “A File Merge Problem,” comes from a database application

in which two large statistical data files are merged into one single file.

The corresponding model is formulated as a network model for which

columns are evaluated as needed.

� Chapter 20. “A Cutting Stock Problem,” comes from an application in

which large raws of paper and textile are sliced into patterns. Patterns

are generated by an auxiliary model during the solution process, which

makes this chapter a first introduction to column generation.

� Chapter 21. “A Telecommunication Network Problem,” comes from an

application in telecommunication network design with a focus on bot-

xviii Preface

tleneck capacity identification. Again, a column generation technique is

used to generate paths through the network.

� Chapter 22. “A Facility Location Problem,” comes from a multi-commo-

dity transportation application and implements a Benders’ decomposition

algorithm to solve the problem.

Preliminaries Before you begin, you should be familiar with mathematical notation. This

should be sufficient to read Parts I and III. Basic linear algebra and probability

analysis is required for Parts II and IV. An introductory course in mathematical

programming is recommended before reading the advanced chapters in Part V.

The authors

Johannes

Bisschop

Johannes Bisschop received his Ph.D. in Mathematical Sciences from the Johns

Hopkins University in Baltimore USA in 1974. From 1975 to 1980 he worked

as a Researcher in the Development Research Center of the World Bank in

Washington DC, USA. In 1980 he returned to The Netherlands and accepted a

position as a Research Mathematician at Shell Research in Amsterdam. After

some years he also accepted a second part-time position as a full professor in

the Applied Mathematics Department at the Technical University of Twente.

From 1989 to 2003 he combined his part-time position at the University with

managing Paragon Decision Technology B.V. and the continuing development

of Aimms. From 2003 to 2005 he held the position of president of Paragon

Decision Technology B.V. His main interests are in the areas of computational

optimization and modeling.

Other contribu-

tors to Aimms

In addition to the main authors, various current and former employees of

Aimms B.V. (formerly known as Paragon Decision Technology B.V.) and exter-

nal consultants have made a contribution to the Aimms documentation. They

are (in alphabetical order):

� Pim Beers

� John Boers

� Peter Bonsma

� Mischa Bronstring

� Ximena Cerda Salzmann

� Michelle Chamalaun

� Horia Constantin

� Guido Diepen

� Robert Entriken

� Floor Goddijn

� Thorsten Gragert

� Koos Heerink

� Nico van den Hijligenberg

� Marcel Hunting

� Roel Janssen

� Gertjan Kloosterman

� Joris Koster

� Chris Kuip

� Gertjan de Lange

� Ovidiu Listes

� Peter Nieuwesteeg

� Franco Peschiera

� Bianca Rosegaar

� Diego Serrano

� Giles Stacey

� Richard Stegeman

Preface xix

� Selvy Suwanto

� Jacques de Swart

� Martine Uyterlinde

xx Preface

Part I

Introduction to Optimization

Modeling

Chapter 1

Background

This chapterThis chapter gives a basic introduction to various aspects of modeling. Dif-

ferent types of models are distinguished, some reasons for using models are

listed, some typical application areas of modeling are mentioned, and the roles

of mathematics and Aimms are described. Finally, an overview is given of the

“model formulation process.”

1.1 What is a model?

A modelSince this guide describes different models and modeling techniques, it will

start by defining what a model is. In general: a model is a prototype of some-

thing that is real. Such a prototype can be concrete or abstract.

Concrete modelAn example of a concrete model is a teddy bear. A teddy bear is concrete—

you can touch it and play with it—and it is also a scaled-down (and somewhat

friendlier) version of a real bear.

Abstract modelTo illustrate an abstract model, the Teddy Bear Company is introduced. This

company produces black and brown teddy bears in three sizes, and its owners

consider the teddy bear in terms of an abstract model. That is, they describe

everything they need to know about producing it:

� materials: fur cloth in black and brown, thread, buttons, different quali-

ties of foam to stuff the bears,

� information on prices and suppliers of materials,

� three different sized patterns for cutting the fur, and

� assembly instructions for the three sizes of bears.

In this abstract model of the teddy bear, there is just the basic information

about the bear. A mathematical model can be used to derive further informa-

tion.

4 Chapter 1. Background

Mathematical

models

Suppose you want to know the cost of a small black teddy bear. Then you

sum the material costs (material prices by the amounts used) and the produc-

tion costs (assembly time by labor cost). The relationship between all these

components can be expressed in general terms. Once formulated, you have

developed a mathematical model. A mathematical model is an abstract model.

It is a description of some part of the real world expressed in the language of

mathematics. There may be some variables in the description—values that are

unknown. If the model is formulated so that you can calculate these values

(such as the cost of a small black teddy bear) then you can solve the model.

Optimization

models

One class of mathematical models is referred to as optimization models. These

are the main subject of this guide. For now, a small example will be given. Re-

call that the teddy bears are filled with foam which comes in small pieces and

is available in different qualities. By choosing a certain mix you can achieve a

specified “softness” for each size of teddy bear. The company wants to decide

how much to buy of each quality. A constrained optimization model could

be used to determine the cheapest mix of foams to yield a certain softness.

Note that the optimization is in the determination of the cheapest combina-

tion (cost minimization), and that the constraint(s) are in terms of the softness

requirement.

1.2 Why use models?

This section In Section 1.1 two types of models were introduced and some typical modeling

applications given. Advantages of using models are now listed.

Learning while

constructing

A model serves as a learning tool. In the process of constructing a model you

are forced to concentrate on all the elements required to realize the model. In

this way, you learn about the relationships between the elements that make up

the model. For instance, during the design of a teddy bear you must consider

the outside—what is the shape of the ears?—as well as the inside—the foam

to choose. During the process, you may discover an unexpected relationship

between the softness of the bear and its assembly.

Filtering

information

Depending on the purpose of the model you then need to set priorities since

mathematical models can grow in complexity with the quantity of detail. If

the objective of the model is to determine the cheapest mix of foams, you

may wish to ignore the softness of the ears. Such filtering and structuring of

information is an important contribution to the modeling process.

1.3. The role of mathematics 5

Medium of

discussion

Models can also be a valuable tool of expression during discussions between

concerned parties. If the formulation and data of a model are agreed, it can be

used to make predictions of the consequences of different actions, which can

then be compared.

Making

predictions

Some decisions are irreversible or expensive. In these cases, it is beneficial to

be able to predict the consequences and to experiment with different options.

Again models can help. The Teddy Bear Company may use the optimization

model to calculate the cost of different foam mixes while varying the soft-

ness requirements. Perhaps a slightly softer bear turns out to be considerably

cheaper.

Cutting costs to

stay competitive

For the Teddy Bear Company it might be possible to cut the foam cost further

by buying it from several suppliers and monitoring price variations. The op-

timization model could easily be extended to incorporate this information. It

will enable the Teddy Bear Company to react quickly to changes in foam prices.

With computersThe combination of models and computers enhances the speed of decision

making. The computer enables you to handle far more information than could

be done manually.

StreamliningAnother benefit possible from modeling is called streamlining. That is, in the

process of constructing a model and structuring its information you may dis-

covery inefficiencies which can then be addressed. For example, consider a

consulting company, while making a model of the Teddy Bear Company as

a whole, discovers that there are two business units performing virtually the

same task. Suppose that for some historical reason, there are separate units

producing black and brown teddy bears. Since the only difference is in the

color of the cloth, integrating these business units would make the company

more efficient.

1.3 The role of mathematics

Mathematical

requirements

Even though this guide concerns the specification of mathematical programs

(optimization models), you do not have to be a mathematician to become a

good modeler. The degree of mathematics required depends upon the sort

of model you are building. In this book there is a distinction between basic,

intermediate and advanced models such that each type requires an increase in

knowledge of mathematical theory and concepts. When considering the role

of mathematics, one can distinguish three aspects, namely, language, theory

and algorithms. These aspects are discussed in the following paragraphs.

6 Chapter 1. Background

Mathematical

language

Mathematics provides a language in which abstract models can be formulated

using the following elements.

� Mathematical concepts such as variables (unknowns) and parameters

(symbols representing known data);

� Operators such as:

– unary operators (+, −, not),

– comparison operators (equal to, not equal to, etc.),

– algebraic operators (addition, subtraction, multiplication, division,

power, etc.),

– logical operators (and, or, etc.),

– differential operators and integral operators;

� Data: which links a model to a real-world situation.

Mathematical

theory

Mathematics provides a theoretical framework for the formulation and solu-

tion of those models for which the translation from problem to model is not

immediate. Mathematical concepts are then needed to capture aspects of tan-

gible and non-tangible real-life situations. A non-tangible example is the risk

minimization in a financial portfolio selection model. There is no hard defini-

tion of risk but there are plenty of interpretations. When building a model one

or more of these interpretations must be made concrete in the form of a math-

ematical formula for risk. This can only be achieved by using mathematical

concepts and their associated theory.

Mathematical

algorithms

Mathematical algorithms are needed to obtain solutions of mathematical mod-

els. Fortunately, there are algorithms that have wide spread application and

give solutions for whole classes of mathematical models. As a model builder

you can choose not to acquire an in-depth knowledge of these algorithms as

they are commercially available and directly accessible within a modeling sys-

tem. Nevertheless, there are instances of large-scale models for which stan-

dard solution algorithms no longer suffice, and special algorithms need to be

developed. Examples of these can be found in Part 21 containing advanced

optimization modeling applications.

Aimms

minimizes need

for mathematics

The Aimms modeling system is especially designed to minimize the mathemat-

ical complexity.

� The Aimms modeling language incorporates indexing facilities to guide

you in expressing and verifying complex mathematical models.

� Since there is a separation between the formulation and the solving of

a model, you do not need to know the details of the solution method.

If you do not specify a solution method, Aimms will determine the best

method for you.

1.4. The modeling process 7

1.4 The modeling process

Iteration of

activities

The process of developing a model usually involves several different activities.

Although these activities are listed sequentially below, several will be repeated

as new information becomes available during the execution of other steps,

thus an iterative approach will often be necessary.

� Define the goal.

� Consult literature and other people.

� Formulate the model, and collect the data.

� Initial testing.

� Validation.

Investigating

contribution of

a model

In a complex problem, the structure and goal of the model may not be obvious.

Therefore, the first step should be to analyze the general problem conceptually

and to determine which aspects of the real-world situation must be included.

At this stage the emphasis is on problem definition, rather than on mathemat-

ics. It is likely there are different views on the problem and its causes, and

these must be resolved so that all concerned parties agree on the goal of the

model. In one sense, you can say that the goal of a model is to support a de-

cision. In a wider sense, a model can be used to predict the consequences of

particular decisions, and so to compare alternatives.

Investigating

sources

Once the goal of the model is agreed, the next step is to investigate if a similar

model has already been developed. There are benefits to review the work of

others. It may help you to find the data you need and it may give you some

hints on how to formulate your model. However, in general you can expect to

do some customization.

Data collectionIn most cases, by far the harder task is collecting the data. This task is both

time consuming and prone to errors. Most models, built to analyze real-world

problems, require lots of data. In some instances data is available through

databases. In other instances data may not be readily available, and once it

is found, it is seldom in a form directly suitable for your purposes. In this

case data must be copied, checked for errors, and manipulated. During this

data adjustment phase, errors of different types may be introduced. Examples

are approximation errors, typographical errors, and consistency errors. Many

typographical errors and inconsistencies in data can be identified by Aimms,

and will result in error messages when compiled.

8 Chapter 1. Background

Choosing a

formulation

It is not usually self-evident which particular type of model formulation is the

most appropriate. There are no clear rules for making a choice. As mentioned

in the previous paragraph, the choices of other modelers in similar situations

can give suggestions, and your own experience and knowledge will always in-

fluence your eventual choice. In any case, when you want to stay within the

framework of the available modeling tools, you may have to compromise.

Initial testing It is recommended that you start with a small model containing only the basic

relationships. You should verify that these are formulated correctly before

adding increased complexity, and continue in this gradual fashion.

Validation Validation is the process of checking whether initial model results agree with

known situations. It is an important final step before the model results are

used in support of a real-world decision. Two situations may occur:

� A methodology already exists with the same purpose as the new model.

In order to be credible, you will have to prove that the results of the new model

are at least as good as the results produced with an existing method. Since the

“old method” is probably known to be accurate (or its weaknesses are known),

you can compare the old and new methods side by side. Your model should at

a minimum reproduce the old results, and you should aim for better results.

� There is no existing methodology.

In this case, you should use historical data, and try to reproduce the past. In

essence, you try to predict what you already know.

1.5 Application areas

This section This section gives an indication of the applicability of optimization models

in practice. Obviously, these few pages do not pretend to give a complete

overview. Rather the goal is to combine a limited overview with a description

of a typical example taken from each application area mentioned. These de-

scriptions are qualitative in that specific data and formulas are not given. The

focus is on the general structure of models.

1.5.1 Production

The petroleum

industry

In the petroleum industry refinery models are used for planning, scheduling

and process control, see for instance [Ma56]. Following is a brief account of a

refinery planning model.

1.5. Application areas 9

Refinery

planning model

Planning models support long-term decisions, concerning raw material pur-

chases, and utilization of production processes, in order to meet future de-

mands for final products with specific qualities. These quality specifications

require blending models to be embedded in refinery models, see for instance

[Ke81]. A refinery planning model describes the process from crude oils to

final products such as different blends of gasoline, fuel oil, and distillate. The

production process makes use of various production units including crude

distillers, catalytic crackers, and vacuum distillers.

Refinery model

description

This qualitative model description is based on a model as described in [Ke81].

Maximize: profit = revenue − material cost − operating cost,

Subject to:

� for all crude oils: a constraint stating that the amount of crudes

used in processes must not exceed the amount of crudes

purchased,

� for all intermediates: a constraint stating that the net production

and purchases of an intermediate commodity must exceed its

use in blending,

� for each production unit: a capacity constraint,

� for all crude oils: limits on purchases,

� for all final products: a constraint stating that final sales must

equal the output of the blending process, and

� for all final products, and all quality attributes: upper and lower

bounds on the quality of final products.

Other

applications

The application area that studies the efficient production and distribution of

energy is known as energy economics. This area is of strategic importance

to modern economies because of the world’s dependence on energy, and in

particular oil. The conversion of scarce energy resources to electricity and heat

can be modeled, see for instance [Ma76]. From such a model, the least-cost

mix including extraction of energy resources, and investment in production

technologies, can be determined. Moreover, constraints on emission levels

for certain pollutants and the use of abatement technologies can be included.

Another application is scheduling power plants to meet the varying load at

different times of the day, and in different seasons. An example is given in

Chapter 16.

1.5.2 Production and inventory management

Typical model

components

The scheduling of production and inventory can be formulated as a linear op-

timization model. Typically, multiple time periods and material balances are

incorporated in such a model. Suppose factory production must satisfy a fluc-

tuating demand. There are many strategies for reacting to these fluctuations:

10 Chapter 1. Background

extra workers can be hired and fired, workers can work overtime, a stock in-

ventory can be kept to cover future shortages, etc. Obviously, the hiring and

firing of workers or overtime working adds extra costs. Storage however is

also costly.

An example A verbal formulation of the production and inventory problem, which can be

found in [Ch83], follows.

Minimize: costs of storage, hiring, firing, and overtime work,

Subject to:

� for each time period: upper bounds on overtime work and

changes in work force level, and

� for each time period: a material balance involving production,

inventory, and demand.

Other useful references on inventory planning are [Ch55] and [Ha60].

Other

applications

Linear optimization models are quite successful for resource allocation prob-

lems. The potato chips problem in Chapter 2 is a simplified example. Different

products compete for a finite set of resources, and decisions may possibly be

made about the selection of a production process for a particular product.

Another widespread application of mathematical optimization models is in

developing production schedules. An overview of techniques is given in [Bu89].

1.5.3 Finance

Portfolio

selection

A widely-used application in the finance field is the selection of investment

portfolios. A portfolio is a collection of securities held by an investor, such as

a pension fund. Diversification is the spreading of investments over different

securities with the aim to reduce the overall risk content of a portfolio while

still maintaining a respectable return. One of the original models is due to

Markowitz ([Ma52]). An investor wants the expected return of the portfolio to

be high, and the risk to be low. The risk can be measured using the statistical

concept variance—the deviation of realized return from the expected return.

Furthermore, the covariance between two securities is a measure of correla-

tion. A covariance matrix of returns summarizes variance and covariance fig-

ures, and can be derived from historical data. It can be used to compute the

risk attached to the objective.

An example Minimize: risk,

Subject to:

� a constraint on minimum expected return,

� a limitation on the budget that can be spent, and

� additional constraints concerning the proportions invested in

certain securities.

1.5. Application areas 11

The resulting model has a quadratic objective and linear constraints, and is

known as a quadratic optimization model. In Chapter 18, a more elaborate

treatment of portfolio models is given. In real situations, the size of the co-

variance matrix can be overwhelming. For example, 100 possible securities

give rise to a covariance matrix of 100 × 100 = 10,000 entries. Alternative

methods have been developed to compress this information.

Other

applications

Optimization models can be used to plan the cash receipts and disbursements

of an individual firm. These cash management models can sometimes be for-

mulated as networks in which the nodes represent different time periods. The

arcs then represent flows of money over time. Optimization models can also

be used for the management of large funds. Such a fund requires careful plan-

ning since commitments made today have long term financial consequences.

A multi-period model considers, for each period, loans, repayments, and in-

vestments, subject to financial and political constraints. In accountancy, linear

optimization models are often used because of the useful economic informa-

tion that can be derived from shadow prices and reduced costs. A thorough

account of the use of optimization models in finance is given by in [Ko87].

1.5.4 Manpower planning

Scheduling

work shifts

Linear and integer optimization models can be used to schedule work shifts

when the demand for workers varies over the hours of the day, or the days of

the week. The decision to be made is how many people should work during

each shift, see for instance [Sc91] and [Ch68b]. Examples are the scheduling

of bus drivers, nurses, and airline crews. A general framework for the solution

process is as follows:

1. Identify or make a forecast of the personnel requirements for the period

to be scheduled.

2. Evaluate all possible shift patterns. All these patterns have costs associ-

ated with them, depending on efficiency, wasted time etc.

3. Determine the least cost combination of shifts that satisfies the person-

nel requirements.

An optimization model is used for the final step. Obviously, the second step

can also be computerized. In large problems this will be essential. Advanced

methods exist in which promising shift patterns are generated using shadow

prices produced by the simplex method. An iterative process between the

Steps 2 and 3 evolves. Such a technique is known as delayed column genera-

tion, see for instance [An91] and [Ch83].

12 Chapter 1. Background

A model for

scheduling bus

drivers

A slightly different approach is taken in the following problem. Suppose a

bus company employs drivers who are entitled to two consecutive days off per

week. For each day of the week the number of drivers required is known. The

problem is: “How many drivers should start their five-day working week on

each day of the week?” The qualitative model formulation can now be given:

Minimize: total number of drivers,

Subject to:

for each day: the driver requirements must be satisfied.

The formulation of the constraint is a special task, because for each day the

number of drivers that are part way through their shift must also be calculated.

Complicating factors might be higher costs for working during weekends, or

the availability of part-time workers.

Other

applications

Longer time-scale models exist which consider personnel as human capital,

whose value increases as experience grows, training followed, etc., see for in-

stance [Th92]. Such a model can be formulated as a network-with-gains model.

The nodes represent moments in time, and the flow between these nodes rep-

resents the flow of employees whose value varies in time due to training, res-

ignations, and new hiring.

1.5.5 Agricultural economics

Individual farm

models

Models of both a country’s agricultural sector and of individual farms have

been used extensively by governments of developing countries for such pur-

poses as assessing new technologies for farmers, deciding on irrigation invest-

ments, and determining efficient planting schedules to produce export-goods.

A short account of an agricultural subsector model, see for instance [Ku88], is

given here, Chapter 11 has a more extensive account.

A subsector

model

The subsector model combines the activities, constraints, and objective func-

tions of a group of farms. The main activity of a farm is growing different

crops and perhaps keeping livestock. Typical constraints restrict the avail-

ability of land and labor. Agricultural models become multi-period models as

different growing seasons are incorporated.

Similar farms The simplest type of agricultural subsector model is one comprised of a num-

ber of similar farms which compete for a common resource or share a common

market. By “similar” is meant that they share the same technology in terms of

crop possibilities, labor requirements, yields, prices, etc. Such subsector mod-

els can be used to verify if common resources are really a limiting factor at

a regional level. Hired labor, for instance, might well be a constraint at the

regional level.

1.6. Summary 13

Farm typesA different situation arises when there are fundamental differences between

some of the farms in the subsector to be modeled. One common difference

is in size, which means that resource availabilities are no longer similar. In

the following example, it is assumed that the types of farms are distinguished

mostly by size.

An exampleMaximize:

regional income = income aggregated over different farm types,

Subject to:

� for each type of farm, for each time period: a restriction on the

availability of resources (land, labor, water) needed for cropping

activities, and

� for each time period: a regional labor restriction on the

availability of hired workers (temporary plus permanent).

Other

applications

Other farming applications include blending models for blending cattle feed

or fertilizers at minimum cost. Distribution problems may arise from the dis-

tribution of crops or milk. Large models can be used for the management of

water for irrigation, or to examine the role of livestock in an economy. Further-

more, these principles can be applied with equal success to other economic

subsectors.

1.6 Summary

This chapter discussed the basic concepts of modeling. Some of the main

questions addressed in this chapter are: What is a mathematic model, why

use mathematical models, and what is the role of mathematics during the con-

struction of models. The modeling process has been introduced as an iterative

process with the steps to be executed described in detail. The latter portion of

this chapter introduced several application areas in which optimization mod-

els can be used.

Chapter 2

Formulating Optimization Models

This chapter This chapter explains the general structure of optimization models, and some

characteristics of their solution. In Chapter 1, an introduction to optimization

models was given. In this chapter, optimization models are introduced at a

more technical level.

Three classes of

constrained

optimization

models

The three main classes of constrained optimization models are known as lin-

ear, integer, and nonlinear programming models. These types have much in

common. They share the same general structure of optimization with restric-

tions. Linear programming is the simplest of the three. As the name indicates,

a linear programming model only consists of linear expressions. Initially,

linear programming will be explained, followed by integer and nonlinear pro-

gramming.

The term

programming

The term programming, as used here, does not denote a particular type of

computer programming, but is synonymous with the word planning. The three

classes of programming models mentioned above all come under the heading

of mathematical programming models.

2.1 Formulating linear programming models

Wide

applicability

Linear programming was developed at the beginning of the mathematical pro-

gramming era, and is still the most widely used type of constrained optimiza-

tion model. This is due to the existence of extensive theory, the availability

of efficient solution methods, and the applicability of linear programming to

many practical problems.

2.1.1 Introduction

Linear

equations and

inequalities

Basic building blocks of linear programming models are linear equations and

linear inequalities in one or more unknowns. These used in linear program-

ming models to describe a great number of practical applications. An example

of a linear equation is:

2x + 3y = 8

2.1. Formulating linear programming models 15

By changing the “=” sign to a “≥” or “≤”, this equation becomes a linear in-

equality, for instance:

2x + 3y ≥ 8

The signs “<” and “>”, denoting strict inequalities, are not used in linear pro-

gramming models. The linearity of these equations and inequalities is char-

acterized by the restriction of employing only “+” and “−” operations on the

terms (where a term is defined as a coefficient times a variable) and no power

terms.

VariablesThe unknowns are referred to as variables. In the example above the vari-

ables are x and y . A solution of a linear programming model consists of a

set of values for the variables, consistent with the linear inequalities and/or

equations. Possible solutions for the linear equation above are, among others:

(x,y) = (1,2) and (4,0).

2.1.2 Example of a linear programming model

Production of

potato chips

To illustrate a linear programming model, the production of chips by a small

company will be studied. The company produces plain and Mexican chips

which have different shapes. Both kinds of potato chips must go through three

main processes, namely slicing, frying, and packing. These processes have the

following time characteristics:

� Mexican chips are sliced with a serrate knife, which takes more time than

slicing plain chips.

� Frying Mexican chips also takes more time than frying plain chips be-

cause of their shape.

� The packing process is faster for Mexican chips because these are only

sold in one kind of bag, while plain chips are sold in both family-bags

and smaller ones.

There is a limit on the amount of time available for each process because

the necessary equipment is also used for other purposes.The chips also have

different contributions to net profit.

DataThe data is specified in Table 2.1. In this simplified example it is assumed that

the market can absorb all the chips at the fixed price.

The planner of the company now has to determine a production plan that

yields maximum net profit, while not violating the constraints described above.

16 Chapter 2. Formulating Optimization Models

time [min/kg] plain Mexican availability

required for: chips chips [min]

slicing 2 4 345

frying 4 5 480

packing 4 2 330

net profit

contribution [$/kg] 2 1.5

Table 2.1: Data in the potato chips problem

Decision

variables

The planner’s decision problem can be formulated in terms of a mathematical

notation using linear inequalities. The variables in the inequalities must reflect

what is unknown to the planner, namely his decisions. In this example, the de-

cision variables concern a production plan. The quantity of plain and Mexican

chips to be produced are unknown to the planner. Therefore, the variables are

the amounts of both types of chips to be produced.

Variable names In order to obtain a concise mathematical description it is convenient to choose

short names for the variables. Let Xp therefore denote the unknown amount

of plain chips to be produced, and let Xm denote the unknown quantity of

Mexican chips to be produced. Xp and Xm are both measured in kilograms.

Inequalities that reflect the availability of the production processes can now

be stated.

The constraint

on frying

The following inequality, measured in minutes, can be written to describe the

limited availability of the fryer:

4Xp + 5Xm ≤ 480 [min]

In words this inequality states:

The four minutes required to fry a kilogram of plain chips

multiplied by the planned number of kilograms of plain chips

plus

the five minutes required to fry a kilogram of Mexican chips

multiplied by the planned number of kilograms of Mexican chips

must be less than or equal to

the 480 minutes the fryer is available.

Or, a bit shorter:

The time required to fry the plain chips

plus

the time required to fry the Mexican chips

must be less than or equal to

the time the fryer is available.

2.1. Formulating linear programming models 17

So now there is an inequality that describes the limited availability of the fryer.

Units of

measure

An easy check to see whether the meaning of an inequality makes sense is to

write it in terms of units of measure. This yields:

4[min/kg]Xp[kg]+ 5[min/kg]Xm[kg] ≤ 480[min]

The resulting units for each term should be identical, which they are in this

case (minutes).

Other

constraints

Similar inequalities can also be written for the availabilities of the slicer and

the packer:

2Xp + 4Xm ≤ 345 [min]

4Xp + 2Xm ≤ 330 [min]

Together these inequalities almost give a complete description of the situation.

One set of inequalities is still missing. Obviously, it is not possible to produce

a negative amount of chips. So, the following lower bounds on the variables

must be added for a complete description of the problem:

Xp ≥ 0, Xm ≥ 0 [kg]

These last inequalities are referred to as nonnegativity constraints.

Optimal

decisions

The company’s planner has to make a choice. From these possible production

options, he wants to choose the plan that yields the maximum net profit. By

maximizing profit, the number of plans is reduced to those that are preferred.

The following linear equation gives the net profit:

P = 2Xp + 1.5Xm [$]

The quantity P can be regarded as an additional variable, for which the maxi-

mum value is to be found. The value of P depends on the value of the other

variables.

Verbal

summary

The decision problem has just been posed as a mathematical problem instead

of a verbal problem. In order to show similarities and differences between

them, both a verbal description of the problem and the mathematical model

are given. The verbal description of the decision problem is:

Maximize: Net profit,

Subject to:

� a time restriction on slicing,

� a time restriction on frying,

� a time restriction on packing, and

� negative amounts cannot be produced.

18 Chapter 2. Formulating Optimization Models

Mathematical

summary

The mathematical model is formulated as follows:

Maximize: P = 2Xp + 1.5Xm
Subject to:

2Xp + 4Xm ≤ 345 (slicing)

4Xp + 5Xm ≤ 480 (frying)

4Xp + 2Xm ≤ 330 (packing)

Xp, Xm ≥ 0

2.1.3 Picturing the formulation and the solution

Picturing

the decision

problem

In this small problem the inequalities can be visualized in a two-dimensional

drawing. Where the x-axis and the y-axis represent Xp and Xm respectively,

the inequalities and their implications can be plotted. The easiest way to plot

the slicer availability inequality is as follows.

◮ First change the “≤” sign to an “=” and plot the border.

Setting the value of Xp to 0, then the value of Xm can be calculated: Xm =
345/4 = 86.25. In the same way the value of Xp is calculated as 172.5 when

Xm is set to zero.

Amount of

(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(172.5, 0)

Figure 2.1: The constraint on slicing visualized

So far, two points have been found in the Xp-Xm plane, namely (Xp, Xm) =
(0,86.25) and (Xp, Xm) = (172.5,0). The line that connects these points is the

line

2Xp + 4Xm = 345

which is plotted.

◮ Second, determine whether a single point at one side of the line, such as

the origin, satisfies the constraint. If it does, shade that side of the line.

2.1. Formulating linear programming models 19

The shaded region in Figure 2.1 contains all (Xp, Xm) that satisfy the con-

straints:

2Xp + 4Xm ≤ 345, Xp ≥ 0 and Xm ≥ 0

In other words, the shaded region contains all combinations of the quantities

of the two types of chips that can be sliced in one day.

Picturing

the feasible

region

Other inequalities can also be represented graphically, as shown in Figure 2.2.

From this figure, it is clear that there are many combinations of production lev-

els for plain and Mexican chips that satisfy all these inequalities. The shaded

region bounded by the lines corresponding to the inequalities represents all

the allowed production levels, and is called the feasible region.

(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(82.5, 0)

packing

frying slicing

Amount of

Figure 2.2: The feasible region

Picturing

the profit

function

When a value, of say $150, is chosen for the variable P , a line can be drawn that

represents all combinations of production levels for Mexican and plain chips

that yield a profit of $150. Such a line is called a contour of the profit function,

and is drawn in Figure 2.3. The arrow indicates the direction of increasing

profit. Since the profit function is linear, the contours are straight lines.

Picturing

the optimal

decision

But how can one determine which combination yields the maximum net profit?

Observe that a higher value for P yields a contour parallel to the previous one.

Moreover, increasing the value of P causes the line to shift to the right. This is

also illustrated in Figure 2.3. However, the profit cannot increase indefinitely,

because the profit line will fall outside the feasible region if it shifts too far to

the right. In fact, it is clear from the application that the profit cannot increase

indefinitely because of the limitations imposed by the availability of the slicer,

fryer, and packer.

20 Chapter 2. Formulating Optimization Models

profit = $150

(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(82.5, 0)

Amount of

Figure 2.3: Different profit lines

Best solution The best solution attainable is when the profit line is shifted as far to the right

as possible while still touching the feasible region.

(0, 0)

Amount of

Mexican chips

plain chips

packing

frying slicing

Amount of

profit = $190

(57.5, 50)

Figure 2.4: The optimal solution

From Figure 2.4, it can be seen that this point is the intersection of the lines

corresponding to the frying and packing restrictions. The coordinates of this

point can now be calculated by solving a system of two equations in two

unknowns—the frying and packing restrictions as equalities:

2.1. Formulating linear programming models 21

4Xp + 5Xm = 480 (frying)

4Xp + 2Xm = 330 (packing)

The above system yields (Xp, Xm) = (57.5,50) and the corresponding profit

is $190. This combination of values for the decision variables is called the

optimal solution.

Non-binding

constraints

Considering Figure 2.4 once again, it can be observed that only two constraints

really restrict the optimal solution. Only the constraints on frying and pack-

ing are binding. The constraint on slicing can be omitted without changing

the optimal solution. Such a constraint is known as a non-binding constraint.

Although non-binding constraints can be removed from the model without

consequences, it is often sensible to include them anyway. A non-binding con-

straint could become binding as data change, or when experiments are carried

out using the model. Moreover, when you build a model, you probably will not

know in advance which constraints are non-binding. It is therefore better to

include all known constraints.

Corner solutionsConsidering Figure 2.4 once again, one can see that the optimal solution is on a

corner of the feasible region, namely, the intersection of two lines. This implies

that the exact value can be calculated by solving a system of two equations and

two unknowns. In general, it can be stated that if a linear programming model

has an optimal solution, then there is always an optimal corner solution. This

is illustrated in Figure 2.5. Depending on the slope of the objective function,

the solution is either at A, B, or C.

A
B

C

Figure 2.5: There is always an optimal corner solution

22 Chapter 2. Formulating Optimization Models

Multiple optima A special case occurs when the slope of the objective is parallel to the slope

of one of the binding constraints, as in Figure 2.6. Then there are two optimal

corner solutions and an infinite number of optimal solutions along the line

segment connecting these two corner solutions. This is a case of so-called

multiple or alternative optima.

Figure 2.6: Multiple optima

Limitations of

pictures

The graphical solution method so far used in this section is only suitable for

problems with two decision variables. When there are three decision variables,

a similar three-dimensional figure evolves, but this is a lot harder to draw

and interpret. Figures with more than three dimensions, corresponding to the

number of decision variables, cannot be drawn. The optimal solution must

then be expressed algebraically, and solved numerically. The graphical solu-

tion method is only used for purposes of illustration.

Computer

solutions

The method most often used to calculate an optimal solution is the so-called

simplex method, developed by George Dantzig ([Da63]). This method examines

the corners of the feasible region in a structured sequence, and stops when

the optimal solution has been found. For very small models, these calcula-

tions could be done manually, but this is both time consuming and prone to

errors. In general, these calculations are best done by a computer, using a

sophisticated implementation of the simplex method. Almost without excep-

tion, such an algorithm finds an optimal solution, or concludes that no such

solution exists.

Optimality When an optimal solution is found by a solver, caution is still needed. Since

a model is a simplified picture of the real problem, there may be aspects that

are neglected by the model but still influence the practical optimality of the

solution. Moreover, for most situations there is no single, excellent from all

aspects, optimal solution, but a few different ones, each one optimal in its own

way. Therefore, the practical interpretation of the model results should always

be considered carefully. Experiments can be done using different objectives.

2.1. Formulating linear programming models 23

In Chapter 4, an introduction is given to sensitivity analysis—solution changes

due to changes in the data.

InfeasibilityWhen a problem is declared to be infeasible by a solver, it means that the

feasible region is empty. In other words, there is no solution that satisfies all

the constraints simultaneously. This is illustrated in Figure 2.7. Infeasibility

can be caused by having too many or conflicting requirements, or by errors in

data specification, or by errors in the construction of model equations. Such

a result is an incentive to check the correctness of the model. Sometimes an

infeasible solution is practically acceptable because the constraints that are

violated are not so critical.

Figure 2.7: Infeasibility illustrated

UnboundednessUnboundedness is just what the word implies; the constraints fail to bound

the feasible region in the direction in which the objective is optimized. As a

result, the value of the objective function increases or decreases indefinitely,

which might look attractive, but is certainly not realistic. In Figure 2.8, a graph-

ical illustration is given. Unboundedness is not a problem occurring in reality

but a formulation error. Common errors causing unboundedness include the

following. It could be that a free variable should be nonnegative, or that the

direction of optimization has been inadvertently reversed. Alternatively, a con-

straint may have been omitted. Note that whether an unbounded constraint

set causes difficulties depends on the objective function. In Figure 2.9 an ex-

ample is given in which an optimal solution does exist, although the feasible

region is unbounded.

24 Chapter 2. Formulating Optimization Models

Figure 2.8: Unbounded objective, unbounded feasible region

References Readers who want to know more about the theoretical aspects of linear pro-

gramming, or the simplex method, can refer to [Ch83] or [Lu73], and there are

many other excellent works on the subject.

Figure 2.9: Bounded objective, unbounded feasible region

2.2 Formulating mixed integer programming models

This section In this section some basic characteristics of mixed integer programming mod-

els and their solution will be discussed.

Need for integer

solutions . . .

Recall the example of the chips-producing company in the previous section

where the optimal solution was (Xp, Xm) = (57.5,50). If chips are packed in

bags of 1 kilogram, this optimal solution cannot be translated into a practical

2.2. Formulating mixed integer programming models 25

solution. One approach is to round down the solution. In this example, round-

ing yields the feasible solution (Xp, Xm) = (57,50), but the profit is reduced

from $190 to $189.

. . . illustratedThere are many real-world problems that require their solutions to have inte-

ger values. Examples are problems that involve equipment utilization, setup

costs, batch sizes, and “yes-no” decisions. Fractional solutions of these prob-

lems do not make real-world sense; just imagine constructing half a building.

Pros and cons of

rounding . . .

Rounding is a straightforward way to obtain integer values. There might be

doubt, however, whether such a solution is optimal or even feasible. In prac-

tice, rounding is a satisfactory approach when:

� the figures to be rounded are so large that the error is negligible,

� the input data are not known with certainty, so that a fractional solution

is not that accurate anyway,

� the rounding procedure is certain to give a feasible solution, and

� algorithms developed especially to search for an integer solution are too

expensive in terms of computer resources and time.

. . . an

alternative

The alternative to rounding has already been mentioned—making use of an

integer programming algorithm. Next, the potato chips example will be used to

present some aspects of integer programming. When an integer programming

algorithm is used in the example above, the solution (Xp, Xm) = (58,49) yields

a higher profit, $189.5.

Extending the

potato chips

example

Consider again the chips-producing company. Their special chips are becom-

ing so popular that a large supermarket chain wants to sell these potato chips

in their stores. The additional restriction is that the chips must be delivered

in batches of 30 kg, for efficiency reasons. As a result, the optimal produc-

tion plan, determined above, is no longer adequate. The optimal amounts of

57.5 kg of plain and 50 kg of Mexican chips would make up, respectively, 1.92

and 1.67 batches of potato chips. This solution does not satisfy the additional

restriction imposed by the supermarket chain. An integer programming model

could now be used to determine a new (and acceptable) production plan.

DescriptionThe linear programming model of Section 2 can be reformulated as an inte-

ger programming model by measuring the amounts of chips in batches, and

by adding the requirement that the solution takes on integer values. When

measuring the amounts of chips in batches of 30 kg, the production processes

require the following amounts of time. Each batch of plain chips takes 60

minutes to slice, 120 minutes to fry, and 120 minutes to pack. Each batch of

Mexican chips takes 120 minutes to slice, 150 minutes to fry, and 60 minutes

to pack. Furthermore, the net profit on a batch of plain chips is $60, while the

net profit on a batch of Mexican chips is $45.

26 Chapter 2. Formulating Optimization Models

Formulation Let XBp denote the number of batches of plain chips produced, and let XBm de-

note the number of batches of Mexican chips produced. Note that the restric-

tion is added that XBp and XBm must have integer values (fractions of batches

are not allowed). Then the integer programming model becomes:

Maximize: 60XBp + 45XBm = P
Subject to:

60XBp + 120XBm ≤ 345 (slicing)

120XBp + 150XBm ≤ 480 (frying)

120XBp + 60XBm ≤ 330 (packing)

XBp , X
B
m ≥ 0

XBp , X
B
m integers

(0, 0)

Batches of

Mexican chips

plain chips

Batches of

profit = $165

(2, 1)

Figure 2.10: The feasible region in the integer program

Picturing the

solution

Figure 2.10 is almost the same as Figure 2.4, except that the feasible region is

now limited to the grid points within the region bounded by the constraints. It

is clear that the grid point that maximizes the profit, subject to the constraints,

is (XBp , X
B
m) = (2,1). This implies a production plan with 60 kilograms of

plain chips, 30 kilograms of Mexican chips, and a profit of $165. Note that

this solution is not a corner or on the boundary of the region determined by

the frying, slicing, and packing constraints. These constraints do limit the

feasible region, however, because otherwise a higher profit would be possible.

Notice also that the profit has dropped from $190 to $165. The company might

consider making a weekly production plan, and delivering the batches once a

week. In this way the production of a part of a batch in a day would be allowed,

and this would increase the average daily profit. From this last comment, it is

2.2. Formulating mixed integer programming models 27

clear that formulating a model involves more than merely formulating a set of

constraints and an objective function.

Pure and mixed

integer

programming

Constrained optimization problems in which all variables must take on inte-

ger values are referred to as pure integer programming problems. Constrained

optimization problems, in which only some of the variables must take on in-

teger values, are referred to as mixed integer programming problems. If both

the objective and all constraints are linear, then the term (mixed) integer linear

programming applies.

Zero-one

programming

A zero-one programming problem is a pure integer programming problem with

the additional restraint that all variables are either zero or one. Such zero-one

variables are referred to as binary variables. Binary variables provide a variety

of new possibilities for formulating logical conditions and yes/no decisions

in integer programming models. The use of binary variables is illustrated in

Chapters 7 and 9.

SolvabilityFor a model builder it is a straightforward matter to add the requirement of

integrality to a mathematical problem description. However, solving an inte-

ger programming problem is almost always harder than solving the underlying

linear program. Most of the solution algorithms available do, in fact, test all

promising integer solutions until the best (or a good) one is found. A sequence

of linear programs is solved in order to obtain a solution of an integer pro-

gram. The most widely used solution algorithms work on the so-called branch

and bound method, in which a tree structure is used to conduct the search

systematically. The branch and bound method, as well as some alternative

algorithms, is explained in many textbooks on integer programming, for ex-

ample [Ne88].

Relaxed LP

models

In integer programming, the way a model is formulated can influence its solv-

ability. If you have trouble finding an integer solution, a good approach is

to first drop the integrality requirement and solve the model as an LP (this

LP model is referred to as the relaxed (LP) model of the integer programming

model). Then reformulate the model until the optimal LP solution value is

close to the integer one. You can then apply an integer programming solution

algorithm (see [Ga72] for examples). One method of speeding up the solution

process is to bound all variables (upper and lower bounds) as tight as possible,

so that the number of possible integer solutions is reduced.

Optimality

tolerance

In the previous paragraph, the remark was made that in integer programming,

searching for an optimal solution might take too much time, because a se-

quence of linear programs has to be solved in order to obtain an integer solu-

tion. A widespread strategy is to specify a measure of the maximum (absolute

or relative) deviation between the objective value of the integer solution and

28 Chapter 2. Formulating Optimization Models

the optimal objective value of the relaxed (LP) problem. As soon as a solution

is within this measure, the algorithm terminates. The solution thus found can

be regarded as a compromise between optimality and practical feasibility.

Infeasibility Notice that a feasible linear program may become infeasible as soon as the

requirement of integrality is added. For example, picture a feasible region

which is not empty, but excludes all grid points.

Unboundedness To be able to solve a mixed integer models, integer variables should only be

able to take a finite number of values. For this reason, pure integer models (i.e.

models without any continuous variable) are never unbounded.

Integer solutions

from linear

programs

Besides difficult integer programming problems, there exist also easy ones.

These are problems that can be formulated as network flow problems. These

problems can be solved as linear programs, and the optimal solution is guar-

anteed to be integer. This is due to a special mathematical property of net-

work flow problems (i.e. totally unimodularity of the constraint matrix). It is

unfortunate that this property can easily disappear as a result of small model

extensions, so the number of easy-to-solve integer programming problems en-

countered in practice is relatively small. Network flow problems are discussed

in more detail in Chapter 5.

2.3 Formulating nonlinear programming models

This section In this section some basic characteristics of the third type of constrained mod-

els, namely nonlinear programming models, will be discussed.

Nonlinear

expressions

Besides adding integrality constraints to a linear programming model, an-

other major extension can be made by relaxing the convention that all expres-

sions must be linear. Since many physical and economic phenomena in the

world surrounding us are highly nonlinear, nonlinear programming models

are sometimes required rather than linear ones.

Extending the

potato chips

example

Competition is growing. The chips-producing company decides to change its

selling prices, which seem to be too high. The company decides to maximize

the production of potato chips (which forms the supply), by setting the prices

so that supply and demand are equal. Models in which supply and demand are

equated are widely used in economics, and are known as equilibrium models.

[Va84] gives an introduction. The company’s marketing manager has deter-

mined the relationship between demand (D) and price (P) to be the following

identities.

� Demand for plain chips: Dp = −66.7Pp + 300

� Demand for Mexican chips: Dm = −83.4Pm + 416.6

2.3. Formulating nonlinear programming models 29

Furthermore, the fixed production costs are $2 per kg for both chip types.

FormulationThe constraints on the limited availability of the slicer, fryer, and packer have

not changed. The objective, however, has. The net profit now depends on the

prices that the company sets. By definition, the profit equals revenue minus

costs, which can be written as

P = (Pp − 2)Xp + (Pm − 2)Xm

Since the company wants to set the price in such a way that supply equals

demand, the demand curves can be used to determine that price.

� Supply equals demand for plain chips:

Xp = Dp = −66.7Pp + 300

� Supply equals demand for Mexican chips:

Xm = Dm = −83.4Pm + 416.6

Which can also be written as

Pp = −0.015Xp + 4.5

Pm = −0.012Xm + 5.0

where Dp and Dm have been eliminated , and Pp and Pm have been solved

for. These prices can now be used in the objective function, which becomes a

nonlinear function depending only on Xp and Xm:

P = (−0.015Xp + 4.5− 2)Xp + (−0.012Xm + 5− 2)Xm

or

P = −0.015X2
p + 2.5Xp − 0.012X2

m + 3Xm

Algebraic

description

A new (nonlinear) objective function has been derived, and the model can now

be stated completely.

Maximize: −0.015X2
p + 2.5Xp − 0.012X2

m + 3Xm = P
Subject to:

2Xp + 4Xm ≤ 345 (slicing)

4Xp + 5Xm ≤ 480 (frying)

4Xp + 2Xm ≤ 330 (packing)

Xp, Xm ≥ 0

30 Chapter 2. Formulating Optimization Models

(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(82.5, 0)

Amount of

Figure 2.11: The feasible region in the nonlinear programming model

Picturing the

solution

When the contour of the objective and the area of the feasible region are plot-

ted, the same pictorial solution procedure can be followed as in the previous

examples. Figure 2.11 shows this plot. One difference from previous exam-

ples is that the contour of the profit function is no longer linear. This contour

can still be shifted to the right as long as it touches the feasible region. From

the figure the optimal point can roughly be determined: about 40 kg of plain

chips, and about 60 kg of Mexican chips. Note that this optimal point is not on

a corner. Using Aimms to determine the exact solution gives 42.84 kg of plain

chips, and 61.73 kg of Mexican chips, which yields a profit of $219.03.

Terminology A nonlinear programming problem consists of an algebraic objective function

subject to a set of algebraic constraints and simple bounds. The term alge-

braic is used here to indicate that algebraic operators for addition, subtraction,

division, multiplication, exponentiation, etc. are applied to the variables. Dif-

ferential and integral operators are not considered. The algebraic constraints

consist of equations and/or inequalities. The simple bounds are lower and/or

upper bounds on the variables. The variables themselves can take on any real

value between these bounds. If no simple bounds are stated for a particu-

lar variable, then its value may vary between minus infinity and plus infinity.

Nonlinear programming models are often referred to as NLP models, and their

objective contours and constraint boundaries need no longer be straight lines.

The combinations of curved contours and boundaries can make them very dif-

ficult to solve.

2.3. Formulating nonlinear programming models 31

Local and global

optima

Figure 2.12: A non-corner solution of a nonlinear program

global maximum

local maximum

Figure 2.13: Local and global optima illustrated

Figures 2.11 and 2.12 illustrate that the optimal solution of a nonlinear pro-

gramming model need not be on a corner. Furthermore if a solution is found,

it may only be optimal with respect to the points in a small neighborhood,

while a better optimum exists further away. An example of this is given in Fig-

ure 2.13. The terms globally and locally optimal are used to make the distinc-

tion. Only in the specific situation where the nonlinear programming problem

has only one optimal solution can one ignore this distinction. The theoretical

conditions under which a problem only has one optimal solution are not easy

to verify for most real problems. As a result caution on the part of a model

builder is needed. For a theoretical treatment of nonlinear programming, see

[Ba79].

32 Chapter 2. Formulating Optimization Models

Solvability Even though it is not too difficult to construct a large variety of nonlinear

programming problems, solving them is a different matter. The reasons for

this are that the theory of nonlinear programming is much less developed than

the theory of linear programming, and because the solution algorithms are not

always capable of solving the nonlinear programming problems presented to

them. It should be noted, however, that problems in which the nonlinear terms

appear only in the objective function are generally easier to solve than those

in which nonlinear terms occur in the constraints. Nonlinear programming

models with integer variables are even more difficult to solve and will not be

addressed in this book.

2.4 Summary

In this chapter, the three most common types of constrained have been intro-

duced: linear programming models, integer linear programming models and

nonlinear programming models. Linear programming (LP) models must sat-

isfy the restriction that both the objective function and the constraints are

linear. Despite this restriction, linear programming models are still the most

common due to the availability of powerful solution algorithms. Integer lin-

ear programming (IP) models are like linear ones, except that one or more of

the variables must take on integer values. Except for a small group, namely

network flow models, integer programming models are harder to solve than

linear programs. Nonlinear programming (NLP) models can have a nonlinear

objective and/or nonlinear constraints. An optimal solution is not guaranteed

to be globally optimal. When an optimization model is solved, one of the fol-

lowing situations will occur: an optimal solution is found, which is the desired

situation; the problem is infeasible, which is a result of inconsistencies in the

constraint set; the problem is unbounded, which is often caused by a modeling

error.

Chapter 3

Algebraic Representation of Models

This chapterIn this chapter, the method of translating an explicit formulation to an Aimms

formulation is explained. A sequence of different representations of the same

model demonstrates the use of symbols to represent data, the use of index

notation, and the Aimms modeling language.

ReferencesThe notation in this chapter is derived from standard mathematical notation.

For the representation of models, you are referred to [Sc91] and [Wi90].

3.1 Explicit form

This sectionIn this section, the potato chips example from the previous chapter is revisited.

The formulation below is usually referred to as the explicit form in standard

algebraic notation. Algebraic notation is a mathematical notation, as are other

notations such as matrix notation, or the Aimms notation in Section 3.4. With

the help of this example, the differences between several representations of

the same model are illustrated.

Potato chips

model

Variables:

Xp amount of plain chips produced [kg]

Xm amount of Mexican chips produced [kg]

Maximize:

2Xp + 1.5Xm (net profit)

Subject to:

2Xp + 4Xm ≤ 345 (slicing)

4Xp + 5Xm ≤ 480 (frying)

4Xp + 2Xm ≤ 330 (packing)

Xp, Xm ≥ 0

The above formulation is a correct representation of the problem description

in mathematical form. However, it is not a practical mathematical description

of the problem.

34 Chapter 3. Algebraic Representation of Models

Unexplained

numbers

The most obvious shortfall of the explicit form is that the numbers in the

model are given without comment. While examining the model one must either

look up or recall the meaning of each number. This is annoying and does not

promote a quick understanding of the model. In larger models, it can cause

errors to go unnoticed.

Possible

improvements

It is better to attach a descriptive symbol to each number or group of numbers,

plus a brief description for even further clarification. Entering these symbols

into the model formulation instead of the individual numbers will lead to a

model statement that is easier to understand. In addition, it paves the way for

a more structured approach to model building. Specifically, if the values asso-

ciated with a symbol change at a later stage, then the changes only need to be

made at one place in the model. This leads to a considerable improvement in

efficiency. These remarks give the motivation for symbolic model formulation.

3.2 Symbolic form

Separation

between

symbols and

values

In the symbolic form, there is a separation between the symbols and their

values. A model in symbolic form consists of the following building blocks:

� symbols (parameters), representing data in symbolic form,

� variables, representing the unknowns, and

� objective and constraints, defining the relationships between symbols

and variables.

The data is not a part of a symbolic model formulation. Values are assigned

to the symbols when the model is solved. The data for the potato chips model

can be found in Chapter 2.

Potato chips

model

Parameters:

AS available slicing time [min]

AF available frying time [min]

AP available packing time [min]

Np net profit of plain chips [$/kg]

Nm net profit of Mexican chips [$/kg]

Sp time required for slicing plain chips [min/kg]

Sm time required for slicing Mexican chips [min/kg]

Fp time required for frying plain chips [min/kg]

Fm time required for frying Mexican chips [min/kg]

Pp time required for packing plain chips [min/kg]

Pm time required for packing Mexican chips [min/kg]

Nonnegative variables:

Xp quantity of plain chips produced [kg]

Xm quantity of Mexican chips produced [kg]

3.3. Symbolic-indexed form 35

Maximize:

NpXp +NmXm (net profit)

Subject to:

SpXp + SmXm ≤ AS (slicing time)

FpXp + FmXm ≤ AF (frying time)

PpXp + PmXm ≤ AP (packing time)

Xp, Xm ≥ 0

This representation is evaluated and discussed below.

Too many

symbols

In this small example, eleven parameters and two variables are needed to gen-

erate a symbolic description of the model. Imagine a situation in which the

number of production processes and the number of chip types are both in

double figures. The number of constraints will be in the tens but the number

of parameters will be in the hundreds. This is clearly unacceptable in practice.

The way to compact the formulation is to use index notation, as explained in

Section 3.3.

Meaningful

names for

symbols

It is worthwhile to note that the names of the symbols have not been chosen

arbitrarily. Although they are short, they give more meaning than a number.

For instance, the S which indicates the slicer in AS (available slicing time) also

indicates the slicer in Sp (time required for slicing plain chips). Furthermore,

the A in AS obviously denotes availability. It is important to choose the names

of the symbols in a sensible way because it improves the clarity of the model.

However, as observed earlier, there are quite a lot of symbols in the model

statement above. The larger the model, the more inventiveness one requires to

think of meaningful, unique names for all the identifiers. Again, index notation

provides a way out, and thus, the naming of symbols will be reconsidered in

the next section.

Separation of

model and data

When the data is kept separate from the symbolic model statement, the model

statement can describe a whole range of situations, rather than one particular

situation. In addition, if changes occur in the data, these changes only have to

be made in one place. So the separation of model and data provides greater

flexibility and prevents errors when updating values.

3.3 Symbolic-indexed form

This sectionIndex notation is a technique for reducing the number of symbols and facili-

tating the naming of parameters. Consider the potato chip example using this

new, compressed formulation.

36 Chapter 3. Algebraic Representation of Models

Indicating an

element of a set

According to Webster’s dictionary [We67], one of the meanings of the word

index is pointer. It points to, or indicates an element of a set. The terms, set

and index, are elaborated further using the potato chips example.

Set of chip types Recall the notation in the previous example, for instance: Xp “amount of plain

chips produced.” It is clear that the “p” indicates plain chips. So the “p” is

used as an index, but it only points to a set with one element. The difficulty

encountered in the previous section, where there were too many symbols, was

caused by having all indices pointing only to single-element sets. When com-

bining these sets with similar entities, the number of symbols can be reduced.

The first set that seems logical to specify is a set of chip types:

I = {plain,Mexican}

Then one can state:

xi amount of chips produced of type i [kg]

Index notation So the index i indicates an element of the set I, and the two decision variables

are now summarized in one statement. It is customary to use subscripts for

indices. Moreover, the mathematical shorthand for “i taken from the set I” is

i ∈ I. The index i for every symbol referring to chip types in the model can be

introduced to obtain four new parameter declarations.

Parameters:

ni net profit of chips of type i [$/kg]

Si time required for slicing chips of type i [min/kg]

Fi time required for frying chips of type i [min/kg]

Pi time required for packing chips of type i [min/kg]

The number of parameters has been reduced from eleven to seven by adding

one set. Note that indices do not need units of measurement. They just indi-

cate certain entities—elements of a set.

Set of

production

processes

What is striking in the above list is the similarity of Si, Fi, and Pi. All three

symbols are for time requirements of different production processes. In a

way, S, F , and P serve as indices pointing to single element sets of production

processes. Because the processes all play a similar role in the model, one more

general set an be introduced.

J = {slicing, frying,packing}

An index j, pointing to members of J, can take over the role of S, F , and P . Now

one symbol can summarize the six symbols Sp , Sm, Fp , Fm, Pp , Pm that were

previously needed to describe the time required by the production processes.

rij time required by process j for chips of type i [min/kg]

3.3. Symbolic-indexed form 37

The index j can also be used to express the availabilities of the machines that

carry out the processes.

aj available processing time for process j [min]

At this point two sets (I and J) and three parameters (aj , ni, rij) remain.

The notation for the constraint specifications can also be compacted using

indexing.

Summation

operator

When looking at the first constraint, and trying to write it down with the nota-

tion just developed, the following expression can be obtained.

rmexican,slicingxmexican + rplain,slicingxplain ≤ aslicing

Obviously there is room for improvement. This is possible using the well-

known summation operator; now used to indicate a summation over different

elements of the set of chip types,

∑

i

rijxi ≤ aj ∀j

where ∀j is shorthand notation meaning for all elements j (in the set J).

Symbolic-

indexed

formulation

The symbols defined above are used in the following indexed formulation of

the potato chips problem with the actual numeric data omitted.

Indices:

i chip types

j production processes

Parameters:

aj available processing time of process j [min]

ni net profit of chips of type i [$/kg]

rij time requirements of type i and of process j [min/kg]

Variables:

xi amount of chips produced of type i [kg]

Maximize:

∑

i

nixi (net profit)

Subject to: ∑

i

rijxi ≤ aj ∀j (time limits)

xi ≥ 0 ∀i

38 Chapter 3. Algebraic Representation of Models

Reducing the

number of

statements

In previous statements of the potato chips model, there were always three con-

straints describing the limited availability of different production processes. In

the symbolic indexed formulation, the use of the index j for production pro-

cesses enables one to state just one grouped constraint, and add the remark

“∀j” (for all j). Thus, index notation provides not only a way to summarize

many similar identifiers, but also to summarize similar equations. The latter

are referred to as constraint declarations

Reducing the

number of

identifiers

In the previous section, it was noted that index notation would also be helpful

in reducing the number of identifiers. Using indices of group parameters and

variables has reduced the number of identifier descriptors from thirteen to

four.

More

meaningful

names

As a result of reducing the number of identifiers, it is easier to choose unique

and meaningful names for them. A name should indicate the common feature

of the group. For algebraic notation, the convention is to choose single let-

ter names, but this marginally improves the readability of a model. At most,

it contributes to its compactness. In practical applications longer and more

meaningful names are used for the description of identifiers. The Aimms lan-

guage permits the names of identifiers to be as long as you find convenient.

Expanding the

model with set

elements

Note that the size of a set can be increased without increasing the length of

the model statement. This is possible because the list of set elements is part

of the data and not part of the model formulation. The advantages are obvi-

ous. Specifically, the number of indexed identifiers and the number of indexed

equations are not impacted by the number of set elements. In addition, as

with the rest of the data, changes can be made easily, so index notation also

contributes to the generality of a model statement. When symbolic notation

is introduced there is separation between the model statement and the data.

This separation is complete when index notation is used.

3.4 Aimms form

This section The last step is to represent the model using the Aimms modeling language.

This yields the advantages that error checks can be carried out, and that the

software can activate a solver to search for a solution.

Models in

Aimms

By using the Aimms Model Explorer, a model created in Aimms is essentially a

graphical representation. At the highest level there is a tree to structure your

model in sections and subsections. At the leaves of the tree you specify your

declarations and procedures. For each identifier declaration there is a form by

which you enter all relevant attributes such as index domain, range, text, unit,

definition, etc.

3.4. Aimms form 39

ExampleFigure 3.1 gives you an idea on how the symbolic-indexed representation of

the potato chips problem can be structured in the Model Editor. Note that in

Aimms, the full length descriptor of ProcessTimeRequired(p, c) replaces the rij
which was used in the earlier mathematical formulation. Clearly, this improves

the readability of the model. In Aimms, symbols are still typically used for set

indexing. The set of chips is given the index c and the set of processes, the

index p. In the earlier mathematical representation, i and j were used for

these sets respectively.

Figure 3.1: Aimms Model representation of the potato chips model

Multiple viewsThe graphical tree representation of models inside the Model Explorer is just

one way to view a model. In large-scale applications it is quite natural to want

to view selected portions of your model. Aimms allows you to create your

own identifier selections and your own view windows. By dragging a particu-

lar identifier selection to a particular view window you obtain your own cus-

tomized view. You may also edit your model components from within such a

customized view.

ExampleFigure 3.2 gives an example of a view in which the variables and constraints

of the potato chips problem are listed, together with their index domain, def-

inition and unit. Note that the Aimms notation in the definition attributes

resembles the standard algebraic index notation introduced in the previous

section.

Figure 3.2: An Aimms view for the potato chips model

40 Chapter 3. Algebraic Representation of Models

Data

initialization

Data must be initialized and added to an Aimms model formulation because

the computer needs this data to solve the model. More than one such data

set can be associated with a model, allowing for different versions of the same

model. The data set for the potato chips problem is presented in the form of

an text file. In most real-world applications such data would be read directly

by Aimms from a database.

3.5 Translating a verbal problem into a model

Getting verbal

problem

description

Throughout this book, the same sequence of steps will be used when trans-

lating a verbal problem description into an optimization model. It is assumed

that a verbal problem description, posed in such a way that a model can be

used to support the decision, is available. Of course, the translation from a

real-life problem into a well-posed verbal problem statement is far from triv-

ial, but this exercise is outside the scope of this book.

A general

framework

The framework for analyzing a verbal problem is presented below. Such a

framework has the advantage that it facilitates a structured approach.

When analyzing a problem in order to develop a model formulation the follow-

ing questions need to be answered.

� Which sets can be specified for indexing data and variables?

Such sets have just been explained. The advantages mentioned in Section 3.3

justify the use of index notation throughout the remainder of this manual.

Sets often appear in verbal problem descriptions as lists of similar entities, or

as labels in tables, such as the production processes in Table 2.1.

� What are the decision variables in the problem?

Decision variables reflect a choice, or a trade-off, to be made. They are the

unknowns to be determined by the model. In fact, the decision reflected in the

decision variables is often the very reason for building the model.

� What entity is to be optimized?

In small examples, the objective is often stated explicitly in the problem de-

scription. In real-world problems, however, there may be many, possibly con-

flicting, objectives. In these cases, it is worthwhile experimenting with differ-

ent objectives.

� What constraints are there?

Constraints can also include procedural checks on solutions to see if they are

usable. A potential solution that does not satisfy all constraints is not usable.

The two questions about the objective and constraints can often be answered

simultaneously. It is strongly recommended that you specify the measurement

3.6. Summary 41

units of the variables, the objective and the constraints. Since this is a way of

checking the consistency of the model statement and can prevent you from

making many mistakes.

Potato chips

model

The answers to these questions for the potato chips problem have already

been given implicitly. They are summarized here once more. The sets in the

potato chips problem are given by the sets of production processes and types

of chips. The decision variables are the amounts of both types of chips to be

produced, measured in kilograms. The objective is net profit maximization,

measured in dollars. The constraints are formed by the limited availability of

the production processes, measured in minutes.

3.6 Summary

This chapter has shown a sequence of different representations of the same

model in order to introduce the use of symbols, index notation and the Aimms

language. While using an explicit (with numeric values) form of standard al-

gebraic notation may initially be the intuitive way to write down a model, this

form is only suitable for the simplest of models. A superior representation

is to replace numbers with symbols, thereby obtaining a symbolic model rep-

resentation . Advantages of this representation are that you do not have to

remember the meanings of the numbers and that the data, which does not in-

fluence the model structure, is separated from the model statement. Another

refinement to model formulation is to specify index sets and to use indices to

group identifiers and constraints. This yields the symbolic-indexed form. This

form is recommended because it combines the advantages of the symbolic

form with the compactness of index notation. Finally, the sequence of steps

to translate a verbal description of a problem to a mathematical programming

model was given.

Chapter 4

Sensitivity Analysis

This chapter The subject of this chapter is the introduction of marginal values (shadow

prices and reduced costs) and sensitivity ranges which are tools used when

conducting a sensitivity analysis of a linear programming model. A sensitivity

analysis investigates the changes to the optimal solution of a model as the

result of changes in input data.

References Sensitivity analysis is discussed in a variety of text books. A basic treatment

can be found in, for instance, [Ch83], [Ep87] and [Ko87].

4.1 Introduction

Terminology In a linear program, slack variables may be introduced to transform an inequal-

ity constraint into an equality constraint. When the simplex method is used to

solve a linear program, it calculates an optimal solution (i.e. optimal values for

the decision and/or slack variables), an optimal objective function value, and

partitions the variables into basic variables and nonbasic variables. Nonbasic

variables are always at one of their bounds (upper or lower), while basic vari-

ables are between their bounds. The set of basic variables is usually referred

to as the optimal basis and the corresponding solution is referred to as the

basic solution. Whenever one or more of the basic variables (decision and/or

slack variables) happen to be at one of their bounds, the corresponding basic

solution is said to be degenerate.

Marginal values The simplex algorithm gives extra information in addition to the optimal so-

lution. The algorithm provides marginal values which give information on the

variability of the optimal solution to changes in the data. The marginal values

are divided into two groups:

� shadow prices which are associated with constraints and their right-hand

side, and

� reduced costs which are associated with the decision variables and their

bounds.

These are discussed in the next two sections.

4.2. Shadow prices 43

Sensitivity

ranges

In addition to marginal values, the simplex algorithm can also provide sen-

sitivity range information. These ranges are defined in terms of two of the

characteristics of the optimal solution, namely the optimal objective value and

the optimal basis. By considering the objective function as fixed at its optimal

value, sensitivity ranges can be calculated for both the decision variables and

the shadow prices. Similarly, it is possible to fix the optimal basis, and to cal-

culate the sensitivity ranges for both the coefficients in the objective function

and the right-hand sides of the constraints. All four types will be illustrated in

this chapter.

Linear

programming

only

Although algorithms for integer programming also provide marginal values,

the applicability of these figures is very limited, and therefore they will not be

used when examining the solution of an integer program.

4.2 Shadow prices

Constant

right-hand side

In this section all constraints are assumed to be in standard form. This means

that all variable terms are on the left-hand side of the (in)equality operator and

the right-hand side consists of a single constant. The following definition then

applies.

DefinitionThe marginal value of a constraint, referred to as its shadow price, is

defined as the rate of change of the objective function from a one unit

increase in its right-hand side. Therefore, a positive shadow price indi-

cates that the objective will increase with a unit increase in the right-

hand side of the constraint while a negative shadow price indicates that

the objective will decrease. For a nonbinding constraint, the shadow

price will be zero since its right-hand side is not constraining the opti-

mal solution.

Constraint

weakening

To improve the objective function (that is, decreases for a minimization prob-

lem and increases for a maximization problem), it is necessary to weaken a

binding constraint. This is intuitive because relaxing is equivalent to enlarging

the feasible region. A “≤” constraint is weakened by increasing the right-hand

side and a “≥” constraint is weakened by decreasing the right-hand side. It

therefore follows that the signs of the shadow prices for binding inequality

constraints of the form “≤” and “≥” are opposite.

Equality

constraints

When your model includes equality constraints, such a constraint could be in-

corporated into the LP by converting it into two separate inequality constraints.

In this case, at most one of these will have a nonzero price. As discussed above,

the nature of the binding constraint can be inferred from the sign of its shadow

price. For example, consider a minimization problem with a negative shadow

price for an equality constraint. This indicates that the objective will decrease

44 Chapter 4. Sensitivity Analysis

(i.e. improve) with an increase in the right-hand side of the equality constraint.

Therefore, it is possible to conclude that it is the “≤” constraint (and not the

“≥” constraint) that is binding since it is relaxed by increasing the right-hand

side.

Potato chips

model

Table 4.1 presents the shadow prices associated with the constraints in the

potato chips example from Chapter 2.

process constraint optimal time upper bound shadow price

[min] [min] [$/min]

slicing 2Xp + 4Xm ≤ 345 315 345 0.00

frying 4Xp + 5Xm ≤ 480 480 480 0.17

packing 4Xp + 2Xm ≤ 330 330 330 0.33

Table 4.1: Shadow prices

The objective in the potato chips model is profit maximization with less than

or equal process requirement constraints. The above shadow prices can be

used to estimate the effects of changing the binding constraints. Specifically,

as discussed below, it is possible to deduce from the positive values of the

frying and packing constraints that there will be an increase in the overall

profit if these process times are increased.

Nonbinding

constraint

It is important to note that the slicing inequality constraint is nonbinding at

the optimal solution and hence its associated shadow price is zero. This pre-

dicts that there will be no improvement in the objective function value if the

constraint is relaxed. This is expected because a sufficiently small change in

the right-hand side of such a constraint has no effect on the (optimal) solution.

In contrast, a change in the objective function is expected for each sufficiently

small change in the right-hand side of a binding constraint.

Relaxing

binding

constraints

The benefit of relaxing a binding constraint can be investigated by resolving

the LP with the upper bound on the availability of the packer increased to 331

minutes. Solving gives a new profit of $190.33, which is exactly the amount

predicted by the shadow price ($0.33). Similarly an upper bound of 332 min-

utes gives rise to a profit of $190.67. This shows that the shadow price gives

the revenue of an extra minute of packing time, which can then be compared

with the cost of installing additional packing equipment. The shadow price can

therefore be considered to represent the benefit of relaxing a constraint. From

comparing the shadow prices of frying and packing, it is fair to conclude that

upgrading packing equipment is probably more attractive than frying equip-

ment.

4.2. Shadow prices 45

Tightening

constraint

If a binding constraint is tightened, the value of the objective will deteriorate

by the amount approximated by the shadow price. For the case of lowering the

upper bound on the availability of the packer to 329 minutes, profit decreases

by $0.33 to $189.67. This shows that the shadow price gives the amount of

change in both directions.

Amount of

plain chips

Amount of

Mexican chips

(0,0)

(0,70)

(0,86.25)

(32.5,0) (120,0)(82.5,0)

frying

packing

Figure 4.1: Weakening the constraint on packing

Picturing the

process

In Figure 4.1, there is a graphical illustration of what happens when the pack-

ing constraint is weakened. The corresponding line shifts to the right, thus

enlarging the feasible region. Consequently, the dashed line segment repre-

senting the linear objective function can also shift to the right, yielding a more

profitable optimal solution. Notice that if the constraint is weakened much

further, it will no longer be binding. The optimal solution will be on the corner

where the frying line and the plain chips axis intersect (120,0). This demon-

strates that the predictive power of shadow prices in some instances only ap-

plies to limited changes in the data.

Shadow price

limitations

In general, the conclusions drawn by analyzing shadow prices are only true for

small changes in data. In addition, they are only valid if one change is made at

a time. The effects of changing more data at once cannot be predicted.

DegeneracyIn the two decision variable example to date, there have only been two bind-

ing constraints. However, if there were three or more constraints binding at

the optimal solution, weakening one requirement may not have the effect sug-

gested by the shadow prices. Figure 4.2 depicts this situation, where the bold

lines can be interpreted as three constraints that intersect at the optimal so-

lution. This condition is referred to as degeneracy and can be detected when

one or more of the variables (decision and/or slack variables) in the basis are

at one of their bounds. In this example, one of the three slack variables will

be in the basis at their bound of zero. In the presence of degeneracy, shadow

46 Chapter 4. Sensitivity Analysis

prices are no longer unique, and their interpretation is therefore ambiguous.

Under these conditions, it is useful to analyse sensitivity ranges as discussed

in Section 4.4.

Amount of

plain chips

Amount of

Mexican chips

(0,0)

31 2

Figure 4.2: Non-unique solutions illustrated

Conclusion In general, the information provided by shadow prices should only be used as

an indication of the potential for improvement to the optimal objective func-

tion value. However, there are some circumstances where a slightly stronger

conclusion can be drawn. Specifically, if there are shadow prices that are large

relative to others, then it is possible that the optimal solution is overly sen-

sitive to changes in the corresponding data. Particular care should be taken

when this data is not known exactly. Under these conditions, it might be wise

to use methods specifically designed for handling uncertainty in data, or to

run a set of experiments investigating the exact effect on the (optimal) solu-

tion with particular data modifications.

4.3 Reduced costs

Definition A decision variable has a marginal value, referred to as its reduced cost,

which is defined as the rate of change of the objective function for a one

unit increase in the bound of this variable. If a nonbasic variable has

a positive reduced cost, the objective function will increase with a one

unit increase in the binding bound. The objective function will decrease

if a nonbasic variable has a negative reduced cost. The reduced cost of

a basic variable is zero since its bounds are nonbinding and therefore

do not constrain the optimal solution.

4.3. Reduced costs 47

Improving the

objective

By definition, a nonbasic variable is at one of its bounds. Moving it off the

bound when the solution is optimal, is detrimental to the objective function

value. A nonbasic variable will improve the objective function value when its

binding bound is relaxed. Alternatively, the incentive to include it in the basis

can be increased by adjusting its cost coefficient. The next two paragraphs

explain how reduced cost information can be used to modify the problem to

change the basis.

Bound

relaxation

A nonbasic variable is at either its upper or lower bound. The reduced cost

gives the possible improvement in the objective function if its bound is re-

laxed. Relax means decreasing the bound of a variable at its lower bound or

increasing the bound of a variable at its upper bound. In both cases the size

of the feasible region is increased.

Objective

coefficient

The objective function value is the summation of the product of each variable

by its objective cost coefficient. Therefore, by adjusting the objective cost

coefficient of a nonbasic variable it is possible to make it active in the optimal

solution. The reduced cost represents the amount by which the cost coefficient

of the variable must be lowered. A variable with a positive reduced cost will

become active if its cost coefficient is lowered, while the cost coefficient of a

variable with a negative reduced cost must be increased.

Potato chips

model

Table 4.2 gives the reduced costs associated with the optimal solution of the

potato chips model. In this problem the decision variables are the quantity of

both types of chips to be included in the optimal production plan. The reduced

costs of both chip types are zero. This is expected since neither chip type is

at a bound (upper or lower) in the optimal solution. It is possible to make one

variable nonbasic (at a bound) by modifying the data.

chip type optimal value reduced costs

[kg] [$/kg]

plain 57.5 0.0

Mexican 50.0 0.0

Table 4.2: Reduced costs in the potato chips model

The modified

potato chips

model

A modification to the potato chips model which results in a nonzero reduced

cost, is to lower the net profit contribution of Mexican chips from 1.50 to 0.50

$/kg. Solving the model gives the optimal production plan in Table 4.3, where

Mexican chips production is now nonbasic and at its lower bound of zero. As a

result, there is a reduced cost associated with the production of Mexican chips.

The profit has dropped from $190 to $165, which is the best achievable with

these profit contributions.

48 Chapter 4. Sensitivity Analysis

chip type optimal value reduced costs

[kg] [$/kg]

plain 82.5 0.0

Mexican 0.0 −0.5

Table 4.3: Reduced costs in the modified potato chips model

Interpretation In Table 4.3, the zero reduced cost of plain chips production reflects that it

is basic. The nonzero reduced cost for Mexican chips indicates that it is at a

bound (lower). Its negative reduced cost indicates that the objective function

value will decrease should the quantity of Mexican chips be increased by one

unit. Given that it is a maximization problem, this is unattractive and hence is

consistent with the decision to place the variable at its lower bound.

Adjusting

objective

coefficient

The optimal Mexican chips production is at its lower bound because it is more

attractive to produce plain chips. However, by adjusting its objective cost

coefficient it is possible for Mexican chips to become active in the optimal

solution. From Table 4.3, and using the fact that the potato chips model is a

maximization model, it can be concluded that if the profit contribution from

Mexican chips is increased by at least 0.5 $/kg, then Mexican chips will become

basic.

Picturing the

process

Changing coefficients in the objective can be regarded as changing the slope

of the objective function. In Figure 4.3, profit lines corresponding to different

profit contributions from Mexican chips are given. It can easily be seen that the

slope of the objective determines which corner solution is optimal. Reduced

costs give the minimal change in a coefficient of the objective such that the

optimal solution shifts from a corner on one of the axes to another corner

of the feasible region (possibly on one or more of the other axes). Note that

the slope of line (2) is parallel to the slope of the constraint on packing, thus

yielding multiple optimal solutions.

Conclusion One might conclude that a model never needs to be solved on the computer

more than once since all variations can be derived from the reduced costs and

shadow prices. However, often it is useful to conduct some further sensitivity

analysis. In general, shadow prices and reduced costs are only valid in a limited

sense, but that they are useful when their values are large relative to others.

Their exact range of validity is not known a priori and their values need not

be unique. It is a result of this limitation that the study of sensitivity ranges

becomes useful.

4.4. Sensitivity ranges with constant objective function value 49

Amount of

plain chips

Amount of

Mexican chips

(0,0)

2 13

2Xp + 0.5Xm (optimal value is 165) (1)

2Xp + 1.0Xm (optimal value is 165) (2)

2Xp + 2.0Xm (optimal value is 215) (3)

Figure 4.3: Varying the slope of the objective function

4.4 Sensitivity ranges with constant objective function value

This sectionOptimal decision variables and shadow prices are not always unique. In this

section the range of values of optimal decision variables and optimal shadow

prices for the potato chips model is examined. In Aimms there are in-built

facilities to request such range information.

Amount of

plain chips

Amount of

Mexican chips

(0,0)

31 2

[50.0,70.0]

[32.5,57.5]

Figure 4.4: Decision variable ranges illustrated

50 Chapter 4. Sensitivity Analysis

Decision

variable ranges

Figure 4.4 illustrates the sensitivity ranges for decision variables if the three

bold lines are interpreted as different objective contours. It is clear that for

contour (1) there is a range of values for the amount of plain chips ([32.5,57.5]

kg) and, a corresponding range for the amount of Mexican chips ([50.0,70.0]

kg) that can yield the same objective value. Contour (3) also exhibits this be-

havior but the ranges are different. For objective contour (2), there is a unique

optimal decision.

Shadow price

ranges

The bold lines in Figure 4.4 were initially interpreted as constraints that inter-

sect at the optimal solution. In this case, the shadow prices are not unique

and the situation is referred to as a case of degeneracy. The potato chip prob-

lem to date does not have a constraint corresponding to line (2) but a new

constraint can easily be added for illustrative purposes only. This constraint

limits the objective value to be less than its optimal value. Thus, the contours

in Figure 4.4 can also be interpreted as follows:

1. frying constraint,

2. new constraint limiting the optimal value, and

3. packing constraint.

Examining their

values

Examine the shadow prices for values of the bounds in a very small neigh-

borhood about their nominal values. This helps to see that there are multiple

solutions for the shadow prices. If constraint (2) in Figure 4.4 is binding with

shadow price equal to 1.0 $/min, then the shadow prices on constraints (1)

and (3) will necessarily be zero. By relaxing constraint (2) a very small amount,

it becomes non-binding. Its shadow price will go to zero, and as this happens,

constraints (1) and (3) become binding with positive prices equal to the opti-

mal values from Table 4.1. This means that in this special case there is a range

of shadow prices for all three constraints where the optimal objective value

remains constant.

1. frying constraint has shadow price range [0.0,0.17]

2. new constraint has shadow price range [0.0,1.0], and

3. packing constraint has shadow price range [0.0,0.33].

4.5 Sensitivity ranges with constant basis

This section The optimal basis does not always remain constant with changes in input data.

In this section the ranges of values of objective function coefficients and right-

hand sides of the original potato chips model are examined with the require-

ment that the optimal basis does not change. In Aimms there are in-built facil-

ities to request such range information.

4.5. Sensitivity ranges with constant basis 51

Ranges of

objective

coefficients

Changing one or more coefficients in the objective has the effect of changing

the slope of the objective contours. This can be illustrated by interpreting the

bold lines in Figure 4.4 as the result of

1. decreased plain chip profits (1.2 $/kg)

2. nominal plain chip profits (2.0 $/kg), and

3. increased plain chip profits (3.0 $/kg),

Note that the optimal basis for the nominal profits is still optimal for the other

two objectives. Therefore, the range of objective coefficient values defined by

contours (1) and (3) represent the amount of plain chips for which the optimal

basis remains constant. Outside this range, there would be a change in the

optimal basis (movement to a different extreme point).

Amount of

plain chips

Amount of

Mexican chips

(0,0)

packing

4Xp + 2Xm ≤ 4804Xp + 2Xm ≤ 270

Figure 4.5: Right-hand side ranges illustrated

Ranges of

right-hand sides

The potato chip model uses less than or equal constraints, but the following

analysis also holds for greater than or equal constraints. The nominal solution

of the potato chip problem has the packing and frying constraints binding.

These binding constraints represent a basis for the shadow prices. By changing

the right-hand side on the packing constraint, it will shift as can be seen in

Figure 4.5.

Examining their

values

The right-hand side can shift up to 480.0 minutes, where it would become

redundant with the lower bound of zero on the amount of Mexican chips. The

solution is then degenerate, and there are multiple shadow price solutions.

This can also be interpreted as a change in the basis for the shadow prices. The

right-hand side can shift down to 270.0 minutes, where it becomes redundant

with the slicing constraint, and another change in the shadow price basis can

occur. Through this exercise, it has been shown that the right-hand side on

52 Chapter 4. Sensitivity Analysis

the packing constraint has a range of [270.0,480.0] minutes over which the

shadow price basis does not change. Any extension of this range will force a

change in the binding constraints at the optimal solution. Changing the right-

hand side of non-binding constraints can make them become binding. The

non-binding constraints in the potato chip problem are the slicing constraint

and the two non-negativity constraints on the decision variables.

4.6 Summary

In this chapter, the concepts of marginal values and ranges have been ex-

plained using the optimal solution of the potato chips model. The use of

both shadow prices and reduced costs in sensitivity analysis has been demon-

strated. Sensitivity ranges have been introduced to provide validity ranges for

the optimal objective function value and optimal basis. Although there is some

benefit in predicting the effect of changes in data, it has been shown that these

indicators do have their limits. Repeated solving of the model provides the

best method of sensitivity analysis, and the Aimms modeling system has some

powerful facilities to support this type of sensitivity analysis.

Chapter 5

Network Flow Models

This chapterHere, network flow models are introduced as a special class of linear program-

ming models. The Aimms network formulation is also introduced, and some

sensitivity analysis is performed. Furthermore, several classes of network flow

models are described.

ReferencesOverviews of network algorithms can be found in [Go77], [Ke80] and [Or93].

An overview of applications of network flow models can be found in [Gl92] and

[Or93].

5.1 Introduction

What is a

network?

A network is a schematic diagram, consisting of points which are connected by

lines or arrows. An example is given in Figure 5.1. The points are referred to

as nodes and the lines are called arcs. A flow may occur between two nodes, via

an arc. When the flow is restricted to one direction, then the arcs are pointed

and the network is referred to as a directed network.

Figure 5.1: A directed network

What is a

network flow

model?

Network flow models form a class by themselves. They are linear program-

ming models, and can be formulated and solved as such. In practice, however,

network flow models are modeled more naturally in terms of nodes and arcs,

and are solved quicker by special network algorithms. Therefore, a special

type of Aimms formulation is available for network problems.

54 Chapter 5. Network Flow Models

The next section In the following section, an example of a network flow model is given. This

example concerns the shipment of goods from factories to customers. The

nodes of the network are the factories and the customers, while the arcs rep-

resent the possible routes over which the goods can be shipped. The amounts

of goods actually shipped form the flows along the various arcs.

5.2 Example of a network flow model

Verbal

description

A Dutch company has two factories, one located at Arnhem and one located

at Gouda. The company sells its products to six customers, located in Lon-

don, Berlin, Maastricht, Amsterdam, Utrecht and The Hague. For reasons of

efficiency, deliveries abroad are only made by one factory: Arnhem delivers to

Berlin, while Gouda ships goods to London. Figure 5.2 illustrates the situation.

Maastricht

Arnhem

Amsterdam

The Hague

Gouda

Utrecht

London

Berlin

Figure 5.2: Factories and customers

5.2. Example of a network flow model 55

Model dataEach factory has a limited supply of goods: Arnhem has 550 tons, and Gouda

has 650 tons available. Customer demands and transportation costs from fac-

tory to customer are specified in Table 5.1. The goal is to satisfy the customers’

demand while minimizing transportation costs.

from Arnhem Gouda Demand

to [1000 $/ton] [1000 $/ton] [tons]

London 2.5 125

Berlin 2.5 175

Maastricht 1.6 2.0 225

Amsterdam 1.4 1.0 250

Utrecht 0.8 1.0 225

The Hague 1.4 0.8 200

Table 5.1: Transportation costs and customer demands

Index setsThe index sets are the sets of factories and customers. These two quantities

determine the size of the underlying optimization model.

Decision

variables

Since the goal of the model is to answer the question, “How many tons of goods

should be shipped from the various factories to the various customers?”, the

decision variables are the numbers of items to be shipped from each factory

to each customer, and are measured in tons. Notice that there are ten deci-

sion variables, one for each factory-customer pair drawn in Figure 5.2. Models

like this one illustrate the usefulness of index notation, since the number of

variables increases rapidly when the number of factories or customers grows.

ObjectiveThe objective is to minimize the transportation costs of transporting goods

from factories to customers. The costs are measured in thousands of dollars

per ton.

ConstraintsThe constraints follow logically from the problem statement. First, the amount

of goods shipped from a factory must be less than or equal to the supply at

that factory. Second, the amount of goods shipped to customers must meet

their demand. So there are two groups of constraints: supply and demand

constraints, both measured in tons.

The verbal

formulation

Minimize: The total transportation costs,

Subject to:

� for all factories: Total shipment from a factory can at most be

the supply, and

� for all customers: Total shipment to a customer must at least be

the demand.

56 Chapter 5. Network Flow Models

Modeling

non-permitted

combinations . . .

In the verbal formulation, no attention has been paid to the fact that not all

combinations of factories and customers are permitted. There are several ways

to model this. The first one is to incorporate non-permitted combinations with

high cost, so that they will never be used. This option is not recommended for

efficiency reasons, since the model contains unwanted variables that unneces-

sarily increase the size of the problem. The second, and recommended, alter-

native is to restrict the domain over which the variables are defined, thereby

eliminating unwanted variables. For example, one could replace the first con-

straint as follows:

� for all factories: Total shipment from a factory to permitted

customers can at most be the supply.

. . . using

nonzero costs

In this example, the nonzero transportation costs from Table 5.1 can be used

as a basis to restrict the index domain of the variables. These costs give an

unambiguous indication of which combinations are permitted. When no cost

figure is supplied, then a particular combination factory-customer is to be ig-

nored.

5.3 Network formulation

Two

formulation

options

There are two possible formulations for network problems. One is the version

of the linear programming model stated above. Another option is to take ad-

vantage of the special structure of the network. Network flow models can be

formulated in a natural way in terms of nodes and arcs. In addition, Aimms

provides a special network flow algorithm, that solves these problems faster

than would a standard linear programming algorithm.

Network

interpretation

Before formulating the example as a network flow model, some comments are

made on the network interpretation of this problem. The basic concepts are

supply and demand. The factories are considered supply nodes. The flow

(of goods) out of the various supply nodes must not exceed the amount of

goods available. This is again the supply constraint. The customers are con-

sidered demand nodes. The flow into the demand nodes must at least match

the amount of goods required. Again, the demand constraint appears. Finally,

the flows must be such that the costs of transportation are minimized.

Network

formulation and

Aimms

In Aimms it is possible to specify a problem by creating a model using arcs

and nodes. ARC and NODE declarations have taken the place of VARIABLES and

CONSTRAINTS, respectively. Furthermore, the keyword NetInflow indicates

the flow into a node minus the flow out of it, whereas the keyword NetOutflow

has the opposite interpretation. These keywords enable one to specify the

balance constraints on each node. For each arc, the associated pair of nodes

is specified, as well as costs attached to it, using the attributes FROM, TO, and

COST. Capacities on arcs are specified using its RANGE attribute.

5.3. Network formulation 57

Model

declarations

The following symbols are used in the mathematical description of the network

example of the previous section.

Indices:

f factories

c customers

Parameters:

Sf supply at factory f

Dc demand by customer c

Tfc unit transport cost between f and c

Nodes:

FNf factory supply node for f

CNc customer demand node for c

Arcs:

Flowfc transport between f and c

Nodes and arcs

in Aimms

The following declarations mimic the declarations typically found in Aimms

network models. They take the place of the usual algebraic notation to de-

scribe constraints in constraint-based models.

NODES:

identifier : FN

index domain : f

definition : NetOutflow <= S(f)

text : factory supply node for f ;

identifier : CN

index domain : c

definition : NetInflow >= D(c)

text : customer demand node for c ;

ARC:

identifier : Flow

index domain : (f,c) | T(f,c)

range : nonnegative

from : FN(f)

to : CN(c)

cost : T(f,c) ;

No standard

notation

Network models form a special class of mathematical programs for which

there is no generally accepted notation other than the standard flow balances.

This is an instance in which modeling languages such as Aimms have intro-

duced their own keywords to facilitate the description of large-scale symbolic

network models.

58 Chapter 5. Network Flow Models

5.4 Solution and sensitivity analysis

The optimal

solution

The optimal solution of the model and data described in the previous sections

could be given in a table, but it is more clearly presented as a picture. The

optimal deliveries are given in Figure 5.3. The optimal total transportation

cost is $1,715,000.

Arnhem

Gouda

Berlin

Maastricht

Amsterdam

Utrecht

The Hague

London

175

225

150

250

75

200

125

Figure 5.3: The optimal network solution

Reduced costs In Table 5.2, the reduced costs are given for those routes that were not in-

cluded in the optimal solution.

from factory to customer reduced costs

[1000 $/ton]

Arnhem Amsterdam 0.6

The Hague 0.8

Gouda Maastricht 0.2

Table 5.2: Reduced costs

The modified

network model

From this table, it is likely that shipments from Gouda to Maastricht would be

included in the optimal program if the transportation costs were reduced by

approximately $200/ton (from $2000/ton to $1800/ton). Solving the modified

model confirms this prediction . Another optimal solution exists and is given

in Figure 5.4. The total costs are still $1,715,000.

5.5. Pure network flow models 59

Arnhem

Gouda

Berlin

Maastricht

Amsterdam

Utrecht

The Hague

London

175

150

225

250

75

200

125

Figure 5.4: An optimal solution of the modified network model

Shadow pricesIn Table 5.3, the shadow prices corresponding to the demand constraints for

the original network model are given. Adjusting the demand in Berlin down-

wards reduces the objective the most. There is a reduction of $2,500 per unit

transport, but there is the extra benefit that Arnhem is then free to supply

Utrecht at a reduction of $200 per unit over Gouda. This gives an overall re-

duction of $2,700 per unit.

shadow price

[$1000/ton]

London 2.5

Berlin 2.7

Maastricht 1.8

Amsterdam 1.0

Utrecht 1.0

The Hague 0.8

Table 5.3: The shadow prices for the demand constraint

5.5 Pure network flow models

This sectionIn this section several generic examples of a pure network flow model are

presented.

60 Chapter 5. Network Flow Models

The

transportation

problem

The example from the previous sections is generally referred to as a trans-

portation problem. Transportation problems are characterized by the fact

that the nodes are divided into two distinct sets of supply nodes and demand

nodes. Supply nodes are often referred to as sources, and demand nodes are

known as sinks. All the arcs in the network go from a source to a sink.

The assignment

problem

The assignment problem is a special case of the transportation problem. It

has the same bipartite structure as the transportation problem, but the supply

or demand of each node is exactly one. Several practical problems can be

modeled as an assignment problem. Examples are the assignment of personnel

to tasks and the assignment of jobs to machines.

The

transshipment

problem

A general pure network flow model may also contain intermediate (or trans-

shipment) nodes. These nodes can have both a flow into the node and a flow

out of the node. This type of problem is often referred to as the transshipment

problem. For instance, adding nodes for distribution centers, with arcs from

the factories and arcs to the customers, turns the transportation problem into

a transshipment problem. Transshipment models are used in a wide range of

practical problems, such as distribution problems, scheduling inventory and

production problems, and land allocation problems.

Adding

capacities on

the arcs

In most practical situations, the flow along an arc is not unlimited, but re-

stricted to some finite capacity. Upper bounds on the flow along arcs are easily

handled by the network algorithm. Similarly, lower bounds on the flow along

arcs can also be included.

The general

pure network

flow model

Assuming that the objective is to minimize the total costs associated with the

flow along the arcs, the general pure network flow model can be summarized

as follows.

Minimize: Total costs,

Subject to:

� for each supply node: the net outflow must be (less than or)

equal to the available supply,

� for each demand node: the net inflow must be (greater than or)

equal to the required demand,

� for each transshipment node: the net inflow must be equal to the

net outflow, and

� for each arc: the flow must be within its bounds.

Integer solutions Pure network flow problems have a surprising feature. When all demands are

integer-valued, and all lower and upper bounds on the flows along the arcs are

integer-valued, then the following is true:

5.6. Other network models 61

If the network flow model has at least one feasible solution, it has an

integer-valued feasible solution, furthermore if it has an optimal solu-

tion, it has an integer-valued optimal solution.

In this situation, the network simplex algorithm is guaranteed to find such a

solution, and you do not have to resort to an integer programming algorithm.

The gains in computation time are considerable.

5.6 Other network models

This sectionThis section describes two types of problems that can be formulated as pure

network flow models, and also some types of network problems that cannot be

formulated as pure network models. All of these models can be represented

within the Aimms modeling language.

The shortest

path problem

The shortest path problem is a problem that can be formulated as a trans-

shipment model. As the name suggests, the goal is to find the shortest path

between a single origin and a single destination. All one has to do is to place a

supply of one at the origin node and a demand of one at the destination node.

All the intermediate nodes have zero demand and supply. The lengths of the

arcs are used as costs. The shortest path from the origin to the destination is

then determined by the arcs that carry a nonzero flow in the optimal solution

of the transshipment model.

The maximum

flow problem

The objective in a maximum flow problem is to maximize the flow through the

network from a single source to a single sink, while the arcs can only carry a

limited flow. This problem can be stated as a capacitated transshipment prob-

lem by introducing one additional arc from the sink to the source with infinite

capacity. The cost attached to this new arc is −1.0, while the cost attached to

all the original arcs is zero. All nodes in the network (including the source and

sink) have zero demand and supply. By minimizing the total cost, the maxi-

mum flow through the network is found. An example of the maximum flow

problem can be found in a traffic network, where the arcs, representing roads,

have limited traffic capacity. The traffic flows are measured in, for example,

number of cars per hour. There are other examples in which the flows rep-

resent either messages in a telephone network, or cash in a currency trading

network, or water in a pipe transport network.

Generalized

network

problems

In a pure network flow model, the flow along an arc is conserved, while in gen-

eralized network problems gains or losses can be specified for each arc. Gains

and losses can be due to conversion of units, waste, loss in quality, etc. Gener-

alized network models cannot be solved with a pure network flow algorithm.

There are special codes, however, that solve generalized network models, but

62 Chapter 5. Network Flow Models

these codes, just as with linear programming solvers, do not necessarily ter-

minate with an integer-valued optimal solution.

Multi-

commodity

network

problems

Multi-commodity network flow problems are just like capacitated transship-

ment or transportation problems, except that there is more than one com-

modity to be shipped. In most applications, the arc capacity restrictions do

not apply to just a single commodity, but to several commodities together. In

this case, the multi-commodity network model cannot be solved with a pure

network flow algorithm. The comments made for generalized network models

apply here as well. There are specialized solvers, but they too do not necessar-

ily terminate with an integer-valued optimal solution. In practice, linear pro-

gramming solvers and constraint generation techniques are frequently used

for the solution of large-scale multi-commodity network models.

5.7 Summary

In this chapter, a transportation problem has been formulated as an optimiza-

tion model. Transportation problems belong to a special class of network flow

problems. Although these problems can be formulated as linear programming

models, it is much more natural to formulate them in terms of nodes and

arcs, taking advantage of the special structure of the problem. Moreover, so-

lution algorithms exist that take advantage of the network structure of the

problem. These algorithms often reach an optimal solution much faster than

would linear programming solvers. Aimms provides facilities for both formu-

lating and solving network models. A special property of many network flow

models is that the optimal solution is integer-valued as long as the supplies

and demands attached to the sources and sinks are integers. Some examples

of different well-known classes of network flow problems were given

Part II

General Optimization Modeling

Tricks

Chapter 6

Linear Programming Tricks

This chapterThis chapter explains several tricks that help to transform some models with

special, for instance nonlinear, features into conventional linear programming

models. Since the fastest and most powerful solution methods are those for

linear programming models, it is often advisable to use this format instead of

solving a nonlinear or integer programming model where possible.

ReferencesThe linear programming tricks in this chapter are not discussed in any partic-

ular reference, but are scattered throughout the literature. Several tricks can

be found in [Wi90]. Other tricks are referenced directly.

Statement of a

linear program

Throughout this chapter the following general statement of a linear program-

ming model is used:

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

In this statement, the cj ’s are referred to as cost coefficients, the aij ’s are re-

ferred to as constraint coefficients, and the bi’s are referred to as requirements.

The symbol “≷” denotes any of “≤” , “=”, or “≥” constraints. A maximiza-

tion model can always be written as a minimization model by multiplying the

objective by (−1) and minimizing it.

6.1 Absolute values

The modelConsider the following model statement:

Minimize:
∑

j∈J
cj|xj| cj > 0

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj free

66 Chapter 6. Linear Programming Tricks

Instead of the standard cost function, a weighted sum of the absolute values

of the variables is to be minimized. To begin with, a method to remove these

absolute values is explained, and then an application of such a model is given.

Handling

absolute

values . . .

The presence of absolute values in the objective function means it is not possi-

ble to directly apply linear programming. The absolute values can be avoided

by replacing each xj and |xj| as follows.

xj = x+j − x−j
|xj| = x+j + x−j

x+j , x
−
j ≥ 0

The linear program of the previous paragraph can then be rewritten as follows.

Minimize:
∑

j∈J
cj(x

+
j + x−j) cj > 0

Subject to: ∑

j∈J
aij(x

+
j − x−j) ≷ bi ∀i ∈ I

x+j , x
−
j ≥ 0 ∀j ∈ J

. . . correctly The optimal solutions of both linear programs are the same if, for each j, at

least one of the values x+j and x−j is zero. In that case, xj = x+j when xj ≥ 0,

and xj = −x−j when xj ≤ 0. Assume for a moment that the optimal values

of x+j and x−j are both positive for a particular j, and let δ = min{x+j , x−j }.
Subtracting δ > 0 from both x+j and x−j leaves the value of xj = x+j − x−j
unchanged, but reduces the value of |xj| = x+j +x−j by 2δ. This contradicts the

optimality assumption, because the objective function value can be reduced by

2δcj .

Application:

curve fitting

Sometimes xj represents a deviation between the left- and the right-hand side

of a constraint, such as in regression. Regression is a well-known statistical

method of fitting a curve through observed data. One speaks of linear regres-

sion when a straight line is fitted.

Example Consider fitting a straight line through the points (vj ,wj) in Figure 6.1. The

coefficients a and b of the straight line w = av + b are to be determined.

The coefficient a is the slope of the line, and b is the intercept with the w-axis.

In general, these coefficients can be determined using a model of the following

form:

Minimize: f(z)

Subject to:

wj =avj + b − zj ∀j ∈ J

6.1. Absolute values 67

v

w

(0, b)

(0, 0)

slope is a

Figure 6.1: Linear regression

In this model zj denotes the difference between the value of avj +b proposed

by the linear expression and the observed value, wj . In other words, zj is the

error or deviation in thew direction. Note that in this case a, b, and zj are the

decision variables, whereas vj and wj are data. A function f(z) of the error

variables must be minimized. There are different options for the objective

function f(z).

Different

objectives in

curve fitting

Least-squares estimation is an often used technique that fits a line such that

the sum of the squared errors is minimized. The formula for the objective

function is:

f(z) =
∑

j∈J
z2
j

It is apparent that quadratic programming must be used for least squares es-

timation since the objective is quadratic.

Least absolute deviations estimation is an alternative technique that minimizes

the sum of the absolute errors. The objective function takes the form:

f(z) =
∑

j∈J
|zj |

When the data contains a few extreme observations, wj , this objective is ap-

propriate, because it is less influenced by extreme outliers than is least-squares

estimation.

Least maximum deviation estimation is a third technique that minimizes the

maximum error. This has an objective of the form:

f(z) = max
j∈J

|zj|

This form can also be translated into a linear programming model, as ex-

plained in the next section.

68 Chapter 6. Linear Programming Tricks

6.2 A minimax objective

The model Consider the model

Minimize: max
k∈K

∑

j∈J
ckjxj

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Such an objective, which requires a maximum to be minimized, is known as a

minimax objective. For example, when K = {1,2,3} and J = {1,2}, then the

objective is:

Minimize: max{c11x1 + c12x2 c21x1 + c22x2 c31x1 + c32x2}

An example of such a problem is in least maximum deviation regression, ex-

plained in the previous section.

Transforming a

minimax

objective

The minimax objective can be transformed by including an additional decision

variable z, which represents the maximum costs:

z = max
k∈K

∑

j∈J
ckjxj

In order to establish this relationship, the following extra constraints must be

imposed: ∑

j∈J
ckjxj ≤ z ∀k ∈ K

Now when z is minimized, these constraints ensure that z will be greater than,

or equal to,
∑
j∈J ckjxj for all k. At the same time, the optimal value of z

will be no greater than the maximum of all
∑
j∈J ckjxj because z has been

minimized. Therefore the optimal value of z will be both as small as possible

and exactly equal to the maximum cost over K.

The equivalent

linear program

Minimize: z

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

∑

j∈J
ckjxj ≤ z ∀k ∈ K

xj ≥ 0 ∀j ∈ J

The problem of maximizing a minimum (a maximin objective) can be trans-

formed in a similar fashion.

6.3. A fractional objective 69

6.3 A fractional objective

The modelConsider the following model:

Minimize:

(∑

j∈J
cjxj +α

) / (∑

j∈J
djxj + β

)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

In this problem the objective is the ratio of two linear terms. It is assumed

that the denominator (the expression
∑
j∈J djxj + β) is either positive or neg-

ative over the entire feasible set of xj . The constraints are linear, so that a

linear program will be obtained if the objective can be transformed to a linear

function. Such problems typically arise in financial planning models. Possible

objectives include the rate of return, turnover ratios, accounting ratios and

productivity ratios.

Transforming a

fractional

objective

The following method for transforming the above model into a regular linear

programming model is from Charnes and Cooper ([Ch62]). The main trick is to

introduce variables yj and t which satisfy: yj = txj . In the explanation below,

it is assumed that the value of the denominator is positive. If it is negative, the

directions in the inequalities must be reversed.

1. Rewrite the objective function in terms of t, where

t = 1/(
∑

j∈J
djxj + β)

and add this equality and the constraint t > 0 to the model. This gives:

Minimize:
∑

j∈J
cjxjt +αt

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

∑

j∈J
djxjt + βt = 1

t > 0

xj ≥ 0 ∀j ∈ J

2. Multiply both sides of the original constraints by t, (t > 0), and rewrite

the model in terms of yj and t, where yj = xjt. This yields the model:

70 Chapter 6. Linear Programming Tricks

Minimize:
∑

j∈J
cjyj +αt

Subject to: ∑

j∈J
aijyj ≷ bit ∀i ∈ I

∑

j∈J
djyj + βt = 1

t > 0

yj ≥ 0 ∀j ∈ J

3. Finally, temporarily allow t to be ≥ 0 instead of t > 0 in order to get a

linear programming model. This linear programming model is equivalent

to the fractional objective model stated above, provided t > 0 at the

optimal solution. The values of the variables xj in the optimal solution

of the fractional objective model are obtained by dividing the optimal yj
by the optimal t.

6.4 A range constraint

The model Consider the following model:

Minimize:
∑

j∈J
cjxj

Subject to:

di ≤
∑

j∈J
aijxj ≤ ei ∀i ∈ I

xj ≥ 0 ∀j ∈ J

When one of the constraints has both an upper and lower bound, it is called

a range constraint. Such a constraint occurs, for instance, when a minimum

amount of a nutrient is required in a blend and, at the same time, there is a

limited amount available.

Handling

a range

constraint

The most obvious way to model such a range constraint is to replace it by two

constraints:

∑

j∈J
aijxj ≥ di and

∑

j∈J
aijxj ≤ ei ∀i ∈ I

However, as each constraint is now stated twice, both must be modified when

changes occur. A more elegant way is to introduce extra variables. By intro-

ducing new variables ui one can rewrite the constraints as follows:

ui +
∑

j∈J
aijxj = ei ∀i ∈ I

6.5. A constraint with unknown-but-bounded coefficients 71

The following bound is then imposed on ui:

0 ≤ ui ≤ ei − di ∀i ∈ I

It is clear that ui = 0 results in

∑

j∈J
aijxj = ei

while ui = ei − di results in ∑

j∈J
aijxj = di

The equivalent

linear program

A summary of the formulation is:

Minimize:
∑

j∈J
cjxj

Subject to:

ui +
∑

j∈J
aijxj = ei ∀i ∈ I

xj ≥ 0 ∀j ∈ J
0 ≤ ui ≤ ei − di ∀i ∈ I

6.5 A constraint with unknown-but-bounded coefficients

This sectionThis section considers the situation in which the coefficients of a linear in-

equality constraint are unknown-but-bounded. Such an inequality in terms

of uncertainty intervals is not a deterministic linear programming constraint.

Any particular selection of values for these uncertain coefficients results in an

unreliable formulation. In this section it will be shown how to transform the

original nondeterministic inequality into a set of deterministic linear program-

ming constraints.

Unknown-but-

bounded

coefficients

Consider the constraint with unknown-but-bounded coefficients ãj

∑

j∈J
ãjxj ≤ b

where ãj assumes an unknown value in the interval [Lj , Uj], b is the fixed

right-hand side, and xj refers to the solution variables to be determined. With-

out loss of generality, the corresponding bounded uncertainty intervals can be

written as [aj −∆j , aj +∆j], where aj is the midpoint of [Lj , Uj].

72 Chapter 6. Linear Programming Tricks

Midpoints can

be unreliable

Replacing the unknown coefficients by their midpoint results in a deterministic

linear programming constraint that is not necessarily a reliable representation

of the original nondeterministic inequality. Consider the simple linear pro-

gram

Maximize: x

Subject to:

ãx ≤ 8

with the uncertainty interval ã ∈ [1,3]. Using the midpoint a = 2 gives the

optimal solution x = 4. However, if the true value of ã had been 3 instead of

the midpoint value 2, then for x = 4 the constraint would have been violated

by 50%.

Worst-case

analysis

Consider a set of arbitrary but fixed xj values. The requirement that the con-

straint with unknown-but-bounded coefficients must hold for the unknown

values of ãj is certainly satisfied when the constraint holds for all possible

values of ãj in the interval [aj − ∆j , aj + ∆j]. In that case it suffices to con-

sider only those values of ãj for which the term ãjxj attains its maximum

value. Note that this situation occurs when ãj is at one of its bounds. The sign

of xj determines which bound needs to be selected.

ãjxj ≤ ajxj +∆jxj ∀xj ≥ 0

ãjxj ≤ ajxj −∆jxj ∀xj ≤ 0

Note that both inequalities can be combined into a single inequality in terms

of |xj|.

ãjxj ≤ ajxj +∆j|xj| ∀xj

An absolute

value

formulation

As a result of the above worst-case analysis, solutions to the previous formula-

tion of the original constraint with unknown-but-bounded coefficients ãj can

now be guaranteed by writing the following inequality without reference to ãj .

∑

j∈J
ajxj +

∑

j∈J
∆j|xj| ≤ b

A tolerance . . . In the above absolute value formulation it is usually too conservative to require

that the original deterministic value of b cannot be loosened. Typically, a

tolerance δ > 0 is introduced to allow solutions xj to violate the original right-

hand side b by an amount of at most δmax(1, |b|).

6.6. A probabilistic constraint 73

. . . relaxes the

right-hand side

The term max(1, |b|) guarantees a positive increment of at least δ, even in case

the right-hand side b is equal to zero. This modified right-hand side leads to

the following δ-tolerance formulation where a solution xj is feasible whenever

it satisfies the following inequality.

∑

j∈J
ajxj +

∑

j∈J
∆j|xj| ≤ b + δmax(1, |b|)

The final

formulation

This δ-tolerance formulation can be rewritten as a deterministic linear pro-

gramming constraint by replacing the |xj| terms with nonnegative variables

yj , and requiring that −yj ≤ xj ≤ yj . It is straightforward to verify that these

last two inequalities imply that yj ≥ |xj|. These two terms are likely to be

equal when the underlying inequality becomes binding for optimal xj values

in a linear program. The final result is the following set of deterministic lin-

ear programming constraints, which captures the uncertainty reflected in the

original constraint with unknown-but-bounded coefficients as presented at the

beginning of this section.

∑

j∈J
ajxj +

∑

j∈J
∆jyj ≤ b + δmax(1, |b|)

−yj ≤ xj ≤ yj
yj ≥ 0

6.6 A probabilistic constraint

This sectionThis section considers the situation that occurs when the right-hand side of a

linear constraint is a random variable. As will be shown, such a constraint can

be rewritten as a purely deterministic constraint. Results pertaining to proba-

bilistic constraints (also referred to as chance-constraints) were first published

by Charnes and Cooper ([Ch59]).

Stochastic

right-hand side

Consider the following linear constraint

∑

j∈J
ajxj ≤ B

where J = {1,2, . . . , n} and B is a random variable. A solution xj , j ∈ J, is

feasible when the constraint is satisfied for all possible values of B.

Acceptable

values only

For open-ended distributions the right-hand side B can take on any value be-

tween −∞ and +∞, which means that there cannot be a feasible solution. If

the distribution is not open-ended, suppose for instance that Bmin ≤ B ≤ Bmax,

then the substitution of Bmin for B results in a deterministic model. In most

74 Chapter 6. Linear Programming Tricks

practical applications, it does not make sense for the above constraint to hold

for all values of B.

A probabilistic

constraint

Specifying that the constraint
∑
j∈J ajxj ≤ B must hold for all values of B

is equivalent to stating that this constraint must hold with probability 1. In

practical applications it is natural to allow for a small margin of failure. Such

failure can be reflected by replacing the above constraint by an inequality of

the form

Pr

∑

j∈J
ajxj ≤ B

 ≥ 1−α

which is called a linear probabilistic constraint or a linear chance-constraint.

Here Pr denotes the phrase ”Probability of”, and α is a specified constant frac-

tion (∈ [0,1]), typically denoting the maximum error that is allowed.

Deterministic

equivalent

Consider the density function fB and a particular value of α as displayed in

Figure 6.2.

B̂

B-axis

1−α

Figure 6.2: A density function fB

A solution xj , j ∈ J, is considered feasible for the above probabilistic con-

straint if and only if the term
∑
j∈J ajxj takes a value beneath point B̂. In

this case a fraction (1 − α) or more of all values of B will be larger than the

value of the term
∑
j∈J ajxj . For this reason B̂ is called the critical value. The

probabilistic constraint of the previous paragraph has therefore the following

deterministic equivalent:

∑

j∈J
ajxj ≤ B̂

Computation of

critical value

The critical value B̂ can be determined by integrating the density function from

−∞ until a point where the area underneath the curve becomes equal toα. This

point is then the value of B̂. Note that the determination of B̂ as described in

this paragraph is equivalent to using the inverse cumulative distribution func-

tion of fB evaluated at α. From probability theory, the cumulative distribution

6.6. A probabilistic constraint 75

function FB is defined by FB(x) = Pr[B ≤ x]. The value of FB is the cor-

responding area underneath the curve (probability). Its inverse specifies for

each particular level of probability, the point B̂ for which the integral equals

the probability level. The cumulative distribution function FB and its inverse

are illustrated in Figure 6.3.

B-axis

α-axis

1

1
α-axis

B-axis

Figure 6.3: Cumulative distribution function F and its inverse.

Use

Aimms-supplied

function

As the previous paragraph indicated, the critical B̂ can be determined through

the inverse of the cumulative distribution function. Aimms supplies this func-

tion for a large number of distributions. For instance, when the underlying

distribution is normal with mean 0 and standard deviation 1, then the value of

B̂ can be found as follows:

B̂ = InverseCumulativeDistribution(Normal(0,1) ,α)

ExampleConsider the constraint
∑
j ajxj ≤ B with a stochastic right-hand side. Let

B = N(0,1) and α = 0.05. Then the value of B̂ based on the inverse cumulative

distribution is -1.645. By requiring that
∑
j ajxj ≤ −1.645, you make sure that

the solution xj is feasible for 95% of all instances of the random variable B.

Overview of

probabilistic

constraints

The following figure presents a graphical overview of the four linear proba-

bilistic constraints with stochastic right-hand sides, together with their deter-

ministic equivalent. The shaded areas correspond to the feasible region of∑
j∈J ajxj .

76 Chapter 6. Linear Programming Tricks

Pr
[∑

j∈J ajxj ≤ B
]
≥ 1− α

∑
j∈J ajxj ≤ B̂

B̂
B-axis

1−α

Pr
[∑

j∈J ajxj ≤ B
]
≤ α

∑
j∈J ajxj ≥ B̂

B̂
B-axis

1−α

Pr
[∑

j∈J ajxj ≥ B
]
≥ 1− α

∑
j∈J ajxj ≥ B̂

B̂
B-axis

1−α

Pr
[∑

j∈J ajxj ≥ B
]
≤ α

∑
j∈J ajxj ≤ B̂

B̂
B-axis

1−α

Table 6.1: Overview of linear probabilistic constraints

6.7 Summary

This chapter presented a number of techniques to transform some special

models into conventional linear programming models. It was shown that some

curve fitting procedures can be modeled, and solved, as linear programming

models by reformulating the objective. A method to reformulate objectives

which incorporate absolute values was given. In addition, a trick was shown

to make it possible to incorporate a minimax objective in a linear program-

ming model. For the case of a fractional objective with linear constraints, such

as those that occur in financial applications, it was shown that these can be

transformed into linear programming models. A method was demonstrated

to specify a range constraint in a linear programming model. At the end of

this chapter, it was shown how to reformulate constraints with a stochastic

right-hand side to deterministic linear constraints.

Chapter 7

Integer Linear Programming Tricks

This chapterAs in the previous chapter “Linear Programming Tricks”, the emphasis is on

abstract mathematical modeling techniques but this time the focus is on inte-

ger programming tricks. These are not discussed in any particular reference,

but are scattered throughout the literature. Several tricks can be found in

[Wi90]. Other tricks are referenced directly.

Limitation to

linear integer

programs

Only linear integer programming models are considered because of the avail-

ability of computer codes for this class of problems. It is interesting to note

that several practical problems can be transformed into linear integer pro-

grams. For example, integer variables can be introduced so that a nonlinear

function can be approximated by a “piecewise linear” function. This and other

examples are explained in this chapter.

7.1 A variable taking discontinuous values

A jump in the

bound

This section considers an example of a simple situation that cannot be formu-

lated as a linear programming model. The value of a variable must be either

zero or between particular positive bounds (see Figure 7.1). In algebraic nota-

tion:

x = 0 or l ≤ x ≤ u
This can be interpreted as two constraints that cannot both hold simultane-

ously. In linear programming only simultaneous constraints can be modeled.

0 l u
x

Figure 7.1: A discontinuous variable

ApplicationsThis situation occurs when a supplier of some item requires that if an item

is ordered, then its batch size must be between a particular minimum and

maximum value. Another possibility is that there is a set-up cost associated

with the manufacture of an item.

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-

continuous

variables

To model discontinuous variables, it is helpful to introduce the concept of an

indicator variable. An indicator variable is a binary variable (0 or 1) that indi-

cates a certain state in a model. In the above example, the indicator variable y

is linked to x in the following way:

y =

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added

so that two mutually exclusive situations can be modeled. An example is

provided using a single-variable. Consider the following linear programming

model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function

is not linear and is not continuous. There is a jump at x = 0, as illustrated in

Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such

a function might equally well occur in a constraint. An example of such a

fixed-cost problem occurs in the manufacturing industry when set-up costs

are charged for new machinery.

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed

costs

A sufficiently large upper bound, u, must be specified for x. An indicator

variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original

cost function, except for the case when x > 0 and y = 0. Therefore, one

constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent

mixed integer

program

Now the model can be stated as a mixed integer programming model. The

formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-

mulated in a linear programming model, because in a linear program all con-

straints must hold. Again, a binary variable can be used to express the prob-

lem. An example of such a situation is a manufacturing process, where two

modes of operation are possible.

Modeling

either-or

constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,

which are upper bounds on the activity of the constraints. The bounds are

chosen such that they are as tight as possible, while still guaranteeing that the

left-hand side of constraint i is always smaller than bi +Mi. The constraints

can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases

one of the constraints is imposed, and the other constraint may also hold. The

problem then becomes:

The equivalent

mixed integer

program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one

that contains conditional constraints. The mathematical presentation is lim-

ited to a case, involving two constraints, on which the following condition is

imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical

equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”

is true, and similarly, let B denote the statement that the logical expression

“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case

of the corresponding logical expressions being false. The above conditional

constraint can be restated as: A implies B. This is logically equivalent to writing

(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A

and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.

It is this last equivalence that allows one to translate the above conditional

constraint into an either-or constraint.

Modeling

conditional

constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict

inequality “not (1)” needs to be modeled as an inequality. This can be achieved

by specifying a small tolerance value beyond which the constraint is regarded

as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ǫ

This results in:

∑

j∈J
a1jxj ≥ b1 + ǫ, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-

vious section. This can be modeled in a similar way by introducing a binary

82 Chapter 7. Integer Linear Programming Tricks

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower

bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ǫ− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression

correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This section There are particular types of restrictions in integer programming formulations

that are quite common, and that can be treated in an efficient manner by

solvers. Two of them are treated in this section, and are referred to as Spe-

cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and

Tomlin ([Be69]).

SOS1

constraints

A common restriction is that out of a set of yes-no decisions, at most one

decision variable can be yes. You can model this as follows. Let yi denote

zero-one variables, then ∑

i

yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering

variables 0 ≤ xi ≤ ui, then the constraint

∑

i

aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most

one of the xi can be nonzero. In Aimms there is a constraint attribute named

Property in which you can indicate whether this constraint is a SOS1 constraint.

Note that in the general case, the variables are no longer restricted to be zero-

one variables.

SOS1 and

performance

A general SOS1 constraint can be classified as a logical constraint and as such it

can always be translated into a formulation with binary variables. Under these

conditions the underlying branch and bound process will follow the standard

binary tree search, in which the number of nodes is an exponential function

of the number of binary variables. Alternatively, if the solver recognizes it as

a SOS1 constraint, then the number of nodes to be searched can be reduced.

However, you are advised to only use SOS sets if there exists an natural order

relationship among the variables in the set. If your model contains multiple

SOS sets, you could consider specifying priorities for some of these SOS sets.

7.6. Piecewise linear formulations 83

SOS1 branchingTo illustrate how the SOS order information is used to create new nodes during

the branch and bound process, consider a model in which a decision has to

be made about the size of a warehouse. The size of the warehouse should

be either 10000, 20000, 40000, or 50000 square feet. To model this, four

binary variables x1, x2, x3 and x4 are introduced that together make up a

SOS1 set. The order among these variables is naturally specified through the

sizes. During the branch and bound process, the split point in the SOS1 set

is determined by the weighted average of the solution of the relaxed problem.

For example, if the solution of the relaxed problem is given by x1 = 0.1 and

x4 = 0.9, then the corresponding weighted average is 0.1·10000+0.9·50000 =
46000. This computation results in the SOS set being split up between variable

x3 and x4. The corresponding new nodes in the search tree are specified by

(1) the nonzero element is the set {x1, x2, x3} (i.e. x4 = 0) and (2) x4 = 1 (and

x1 = x2 = x3 = 0).

SOS2

constraints

Another common restriction, is that out of a set of nonnegative variables, at

most two variables can be nonzero. In addition, the two variables must be

adjacent to each other in a fixed order list. This class of constraint is referred

to as a type SOS2 in Aimms. A typical application occurs when a non-linear

function is approximated by a piecewise linear function. Such an example is

given in the next section.

7.6 Piecewise linear formulations

The modelConsider the following model with a separable objective function:

Minimize:
∑

j∈J
fj(xj)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Separable

function

In the above general model statement, the objective is a separable function,

which is defined as the sum of functions of scalar variables. Such a func-

tion has the advantage that nonlinear terms can be approximated by piecewise

linear ones. Using this technique, it may be possible to generate an integer pro-

gramming model, or sometimes even a linear programming model (see [Wi90]).

This possibility also exists when a constraint is separable.

Examples of

separable

functions

Some examples of separable functions are:

x2
1 + 1/x2 − 2x3 = f1(x1)+ f2(x2)+ f3(x3)

x2
1 + 5x1 − x2 = g1(x1)+ g2(x2)

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation

of a nonlinear

function

Consider a simple example with only one nonlinear term to be approximated,

namely f(x) = 1
2x

2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise

linear. The points where the slope of the piecewise linear function changes (or

its domain ends) are referred to as breakpoints. This approximation can be ex-

pressed mathematically in several ways. A method known as the λ-formulation

is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,

and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-

ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values

are 0,
1
2 , 2 and 8. Any point in between two breakpoints is a weighted sum of

these two breakpoints. For instance, x = 3 = 1
2 · 2 + 1

2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2
· 2+ 1

2
· 8.

λ-Formulation Let λ1, λ2, λ3, λ4 denote four nonnegative weights such that their sum is 1.

Then the piecewise linear approximation of f(x) in Figure 7.3 can be written

as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than

zero. This requirement together with the last constraint form the SOS2 con-

7.7. Elimination of products of variables 85

straint referred to at the end of the previous section. The SOS2 constraints for

all separable functions in the objective function together guarantee that the

points (x, f̃ (x)) always lie on the approximating line segments.

Adjacency

requirements

sometimes

redundant

The added requirement that at most two adjacent λ’s are greater than zero

can be modeled using additional binary variables. This places any model with

SOS2 constraints in the realm of integer (binary) programming. For this reason,

it is worthwhile to investigate when the added adjacency requirements are

redundant. Redundancy is implied by the following conditions.

1. The objective is to minimize a separable function in which all terms

fj(xj) are convex functions.

2. The objective is to maximize a separable function in which all terms

fj(xj) are concave functions.

Convexity and

concavity

A function is convex when the successive slopes of the piecewise linear approx-

imation are nondecreasing, and concave if these slopes are non-increasing. A

concave cost curve can represent an activity with economies of scale. The unit

costs decrease as the number of units increases. An example is where quantity

discounts are obtained.

The case of a

non-convex

function

The adjacency requirements are no longer redundant when the function to be

approximated is non-convex. In this case, these adjacency requirements must

be formulated explicitly in mathematical terms.

SOS2 in AimmsIn Aimms you do not need to formulate the adjacency requirements explicitly.

Instead you need to specify sos2 in the property attribute of the constraint in

which the λ’s are summed to 1. In this case, the solver in Aimms guarantees

that there will be at most two adjacent nonzero λ’s in the optimal solution.

If the underlying minimization model is convex, then the linear programming

solution will satisfy the adjacency requirements. If the model is not convex,

the solver will continue with a mixed integer programming run.

7.7 Elimination of products of variables

This sectionThis section explains a method for linearizing constraints and objective func-

tions in which the products of variables are incorporated. There are numerous

applications that give rise to nonlinear constraints and the use of integer vari-

ables. These problems become very difficult, if not impossible, to solve.

86 Chapter 7. Integer Linear Programming Tricks

Replacing

product term

In general, a product of two variables can be replaced by one new variable, on

which a number of constraints is imposed. The extension to products of more

than two variables is straightforward. Three cases are distinguished. In the

third case, a separable function results (instead of a linear one) that can then

be approximated by using the methods described in the previous section.

Two binary

variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be

replaced by an additional binary variable y . The following constraints force y

to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and

one continuous

variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which

0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the

product y = x1x2. The following constraints must be added to force y to take

the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)

y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in

which all possible situations are listed.

x1 x2 x1x2 constraints imply

0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w
y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2

7.8. Summary 87

Two continuous

variables

Thirdly, the product of two continuous variables can be converted into a sep-

arable form. Suppose the product x1x2 must be transformed. First, two (con-

tinuous) variables y1 and y2 are introduced. These are defined as:

y1 =
1

2
(x1 + x2)

y2 =
1

2
(x1 − x2)

Now the term x1x2 can be replaced by the separable function

y2
1 −y2

2

which can be approximated by using the technique of the preceding section.

Note that in this case the non-linear term can be eliminated at the cost of

having to approximate the objective. If l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2, then

the bounds on y1 and y2 are:

1

2
(l1 + l2) ≤ y1 ≤

1

2
(u1 +u2) and

1

2
(l1 −u2) ≤ y2 ≤

1

2
(u1 − l2)

Special caseThe product x1x2 can be replaced by a single variable z whenever

� the lower bounds l1 and l2 are nonnegative, and

� one of the variables is not referenced in any other term except in prod-

ucts of the above form.

Assume, that x1 is such a variable. Then substituting for z and adding the

constraint

l1x2 ≤ z ≤ u1x2

is all that is required to eliminate the nonlinear term x1x2. Once the model is

solved in terms of z and x2, then x1 = z/x2 when x2 > 0 an x1 is undeter-

mined when x2 = 0. The extra constraints on z guarantee that l1 ≤ x1 ≤ u1

whenever x2 > 0.

7.8 Summary

In practical applications, integer linear programming models often arise when

discontinuous restrictions are added to linear programs. In this chapter, some

typical examples have been shown, along with methods to reformulate them

as integer programs. The binary “indicator variable” plays an important role.

With the aid of binary variables it is possible to model discontinuities in vari-

ables or objectives, as well as either-or constraints and conditional constraints.

By conducting a piecewise linear approximation of a nonlinear program, con-

taining a separable nonlinear objective function, it may be possible to gener-

ate a linear programming model or perhaps an integer programming model.

At the end of the chapter, methods for eliminating products of variables are

described.

88 Chapter 7. Integer Linear Programming Tricks

Part III

Basic Optimization Modeling

Applications

Chapter 8

An Employee Training Problem

This chapterThis chapter introduces a personnel planning problem and its corresponding

multi-period model. The model includes a (stock) balance constraint which is

typical in multi-period models involving state and control type decision vari-

ables. A time lag notation is introduced for the backward referencing of time

periods. Initially, a simplified formulation of the model is solved and it is

shown that rounding a fractional linear programming solution can be a good

alternative to using an integer programming solver. Finally, the full model

complete with random variables is considered, and an approach based on the

use of probabilistic constraints is presented.

ReferencesProblems of this type can be found in, for instance, [Wa75], [Ep87], and [Ch83].

KeywordsLinear Program, Integer Program, Control-State Variables, Rounding Heuristic,

Probabilistic Constraint, Worked Example.

8.1 Hiring and training of flight attendants

Hiring and

training

Consider the following personnel planning problem. The personnel manager

of an airline company must decide how many new flight attendants to hire and

train over the next six months. Employment contracts start at the beginning

of each month. Due to regulations each flight attendant can only work up to

150 hours a month. Trainees require two months of training before they can

be put on a flight as regular flight attendants. During this time a trainee is

effectively available for 25 hours a month. Due to limited training capacity,

the maximum number of new trainees each month is 5.

Job notificationThroughout the year, flight attendants quit their jobs for a variety of reasons.

When they do, they need to notify the personnel manager one month in ad-

vance. The uncertainty in the number of flight attendants leaving the company

in future months, makes it difficult for the personnel manager to make long

term plans. In the first part of this chapter, it is assumed that all the leave

notifications for the next six months are known. This assumption is relaxed at

the end of the chapter.

92 Chapter 8. An Employee Training Problem

Example data The airline problem is studied using the following data. At the beginning of

December, 60 flight attendants are available for work and no resignations were

received. Two trainees were hired at the beginning of November and none in

December. The cost of a flight attendant is $5100 a month while the cost of

a trainee is $3600 a month. The flight attendant requirements in terms of

flight hours are given in Table 8.1 for the months January to June. The table

also includes the (known) number of flight attendants who will hand in their

resignation, taking effect one month thereafter.

months required hours resignations

January 8,000 2

February 9,000

March 9,800 2

April 9,900

May 10,050 1

June 10,500

Table 8.1: Flight attendant requirements and resignations

8.2 Model formulation

Control and

state variables

The main decision to be made by the personnel manager is the number of

trainees to be hired at the beginning of each month. Prior to this decision, both

the number of trainees and the number of flight attendants are unknown, and

these represent two types of decision variables. An important observation is

that once the decision regarding the trainees has been made then the number

of available flight attendants is determined. This leads to the distinction be-

tween control variables and state variables. Control variables are independent

decision variables while state variables are directly dependent on the control

variables. In mathematical models both are considered as decision variables.

Balance

constraints

The distinction between control and state variables often leads to the use of

so-called balance constraints. These are often equalities defining the state

variable in terms of the control variables. Such constraints typically occur

in multi-period models in which state variables such as stocks of some sort

are recorded over time.

Verbal model

statement

A verbal model statement of the problem is based on the notion of a balance

constraint for the number of attendants plus a constraint reflecting the per-

sonnel requirement in terms of flight hours.

8.2. Model formulation 93

Minimize: total personnel costs,

Subject to:

� for all months: the number of flight attendants equals the

number of flight attendants of the previous month minus the

number of flight attendants that resigned the previous month

plus the number of trainees that have become flight attendants,

� for all months: the number of attendant flight hours plus the

number of trainee hours must be greater than or equal to the

monthly required flight attendant hours.

NotationThe verbal model statement of the personnel planning problem can be speci-

fied as a mathematic model using the following notation.

Index:

t time periods (months) in the planning interval

Parameters:

c monthly cost of one flight attendant

d monthly cost of one trainee

u monthly number of hours of one flight attendant

v monthly number of hours of one trainee

m maximum number of new trainees each month

rt required flight attendant hours in t

lt number of flight attendants resigning in t

Variables:

xt number of flight attendants available in t

yt number of trainees hired in t

Time

specification

It is important to explicitly specify the precise time that you assume the de-

cisions take place. It makes a difference to your model constraints whether

something takes place at the beginning or at the end of a period. A good rule

is to be consistent for all parameters and variables in your model. Throughout

this section it is assumed that all events take place at the beginning of each

monthly period.

Attendant

balance

The flight attendant balance constraint is a straightforward book keeping iden-

tity describing how the number of flight attendants varies over time.

xt = xt−1 − lt−1 + yt−2 ∀t

Lag and lead

notation . . .

The index t refers to periods in the planning period. The time-lag references

t − 1 and t − 2 refer to one and two periods prior to the current period t,

respectively. When the current period happens to be the first period, then the

references xt−1 and yt−2 refer to the past. They do not represent decision

variables but instead they define the initial conditions of the problem. When

94 Chapter 8. An Employee Training Problem

using the balance equation, care must be taken to ensure that it is only used

for time periods within the planning interval. In this chapter the planning

interval is specified by the months January through June.

. . . in Aimms In Aimms there is a special type of set called horizon, which is especially

designed for time periods. In each horizon, there is a past, a planning interval

and a beyond. Any variable that refers to a time period outside the planning

interval (i.e. past and beyond) is automatically assumed to be data (fixed). This

feature simplifies the representation of balance constraints in Aimms.

Requirement

constraint

The personnel requirement constraint is not stated in terms of persons but in

term of hours. This requires the translation from persons to hours.

uxt + v(yt +yt−1) ≥ rt ∀t

Note that the trainees who started their training at the beginning of the cur-

rent month or the previous month only contribute v < u hours to the total

availability of flight attendant hours.

Objective

function

The objective function is to minimize total personnel cost.

Minimize: ∑

t

cxt + d(yt +yt−1)

Model summary The following mathematical statement summarizes the model.

Minimize:
∑

t

cxt + d(yt +yt−1)

Subject to:
xt = xt−1 − lt−1 + yt−2 ∀t
uxt + v(yt + yt−1) ≥ rt ∀t

xt ≥ 0, integer ∀t
0 ≤ yt ≤m, integer ∀t

8.3 Solutions from conventional solvers

Integer

requirement

The above model is an integer programming model since all decision variables

must assume integer values. You may relax this requirement for the variable

xt (the number of flight attendants) because in the balance constraint defining

xt in terms of yt (the number of new trainees), this value of xt is automatically

integer when yt is integer.

8.3. Solutions from conventional solvers 95

Optimal integer

solution

The model, when instantiated with the small data set, can easily be solved

with any integer programming solver. The solution found by such a solver is

displayed in Table 8.2 and its corresponding optimal objective function value

is $2,077,500.

flight trainees

attendants

November 2

December 60

January 62 5

February 60 2

March 65 2

April 65 4

May 67

June 70

Table 8.2: The optimal integer solution

Suboptimal

integer solution

As the sizes of the underlying data sets are increased, it may become imprac-

tical to find an optimal integer solution using a conventional integer program-

ming solver. Under these conditions, it is not atypical that the conventional

solver finds one or more suboptimal solutions in a reasonable amount of com-

puting time, but subsequently spends a lot of time trying to find a solution

which is better than the currently best solution. In practical applications, this

last best solution may very well be good enough. One way to obtain such

suboptimal solutions is to specify optimality tolerances.

Setting

optimality

criteria

Whenever you are solving large-scale integer programming models, you are

advised to use solution tolerance settings in an effort to avoid long com-

putational times. In Aimms you can specify both a relative optimality tol-

erance and an absolute optimality tolerance. The relative optimality toler-

ance MIP_relative_optimality_tolerance is a fraction indicating to the

solver that it should stop as soon as an integer solution within 100 times

MIP_relative_optimality_tolerance percent of the global optimum has

been found. Similarly to the relative optimality tolerance, the absolute opti-

mality tolerance MIP_absolute_optimality_tolerance is a number indicat-

ing that the solver should terminate as soon as an integer solution is within

MIP_absolute_optimality_tolerance of the global optimum.

Setting prioritiesAnother feature available in Aimms that can be used to reduce the solving time

for large integer programs is priority setting. By assigning priority values to

integer variables, you directly influence the order in which variables are fixed

during the search by a solver. For instance, by setting low positive priority

values for the yf variables (the number of new trainees to be hired), and let-

96 Chapter 8. An Employee Training Problem

ting these values increase as time progresses, the branch and bound solution

method will decide on the number of trainees to be hired in the same order as

in the set of months. Experience has demonstrated that setting integer priori-

ties to mimic a natural order of decisions, is likely to decrease computational

time. This is particularly true when the size of the data set grows.

8.4 Solutions from rounding heuristics

Examining

relaxed solution

By relaxing (i.e. neglecting) the integer requirement on the variables xt and

yt , the personnel planning model becomes a linear program. In general, lin-

ear programs are easier to solve than integer programs and this is particularly

true with large data instances. However, the optimal solution is not necessarily

integer-valued. The question then arises whether a simple rounding of the lin-

ear programming solution leads to a good quality suboptimal integer solution.

This question is investigated using the optimal linear programming solution

presented in Table 8.3.

flight trainees

attendants

November 2

December 60

January 62.00 4.76

February 60.00 2.24

March 64.76 1.20

April 65.00 4.80

May 66.20

June 70.00

Table 8.3: The optimal LP solution

Rounding up Rounding the values of both xt (the flight attendants) and yt (the trainees) in

the relaxed solution violates the balance constraint. Simply rounding the yt
variables upwards and re-calculating the xt variables does result in a feasible

solution for this data set.

Rounding with

reserves

A tighter variant of the heuristic of the previous paragraph is to round down-

wards as long as there is a reserve of at least one trainee, and to round upwards

when there is no such a reserve. The solution obtained from both rounding

variants are contained in Table 8.4. Note that none of the two rounded solu-

tions are as good as the optimal integer solution. A skeleton algorithm for the

second variant can be written as

8.5. Introducing probabilistic constraints 97

FOR (t) DO

IF reserve < 1

THEN y(t) := ceil[y(t)]

ELSE y(t) := floor[y(t)]

ENDIF

Update reserve

ENDFOR

This skeleton algorithm can form the basis for an implementation in Aimms.

Of course, the above heuristic is only one of many possible rounding proce-

dures. A more robust heuristic should register not only the reserve created by

rounding, but also the number of extra training hours required. However, this

refinement is trickier than you might think at first!

LP Rounded up Rounded with

reserves

xt yt xt yt xt yt

November 2 2 2

December 60 60 60

January 62.00 4.76 62 5 62 5

February 60.00 2.24 60 3 60 3

March 64.76 1.20 65 2 65 1

April 65.00 4.80 66 5 66 5

May 66.20 68 67

June 70.00 72 71

Total costs 2,072,196 2,112,300 2,094,900

Table 8.4: The rounded solutions

8.5 Introducing probabilistic constraints

Uncertain

resignations

Until now, it was assumed that the number of resignations was known in ad-

vance for each month in the planning interval. Without this assumption, the

number of resignations each month is not a parameter but instead a random

variable with its own distribution. To obtain an insight into the distribution, it

is necessary to statistically analyse the resignation data. The analysis should

be based on both historic records and information about personnel volatility

in the current market place.

Observed

distributions

Assume that such a statistical data analysis concludes that resignation data

is independently normally distributed with means and variances as presented

in Table 8.5. This table also contains critical resignation levels used in the

following probabilistic analysis.

98 Chapter 8. An Employee Training Problem

mean variance α = 0.01 α = 0.02 α = 0.05

January 1.15 0.57 2.48 2.32 2.09

February 0.80 0.58 2.15 1.99 1.75

March 1.30 0.73 3.00 2.80 2.50

April 1.45 0.75 3.19 2.99 2.68

May 0.85 0.50 2.01 1.88 1.67

June 1.40 0.79 3.24 3.02 2.70

Table 8.5: Normally distributed resignation data and critical values

Unlikely

scenarios

In light of the uncertainty in the resignation data, the personnel manager needs

to hire enough extra trainees to make sure that there are enough flight atten-

dants under most circumstances. It is not economical to cover the unlikely

extreme scenario’s in which the number of resignations is far beyond the aver-

age. Eliminating the extreme scenario’s can be accomplished through the use

of probabilistic constraints.

Probabilistic

constraints

Consider a slightly modified version of the flight attendant balance constraint,

in which the expression on the left can be interpreted as the exact number of

flight attendants that can leave without causing a shortage or surplus.

xt−1 −yt−2 − xt = lt−1 ∀t

By aiming for a surplus, it is possible to avoid a shortage under most resigna-

tion scenarios. The flight attendant balance constraint can be altered into any

of the following two equivalent probabilistic constraints:

Pr
[
xt−1 − yt−2 − xt >= lt−1

]
≥ 1−α ∀t

Pr
[
xt−1 − yt−2 − xt <= lt−1

]
≤ α ∀t

The value of α is assumed to be small, indicating there is frequently a surplus

(the first form) or there is infrequently a shortage (the second form).

Deterministic

equivalence

As explained in Section 6.6, both probabilistic constraints have the same de-

terministic equivalent, namely

xt−1 −yt−2 − xt ≥ l̄t−1 ∀t

where l̄t could be one of the critical values from Table 8.5 depending on the

level of α selected by management.

Summary of

new model

The new model with the deterministic equivalent of the probabilistic con-

straints can now be summarized as follows.

8.6. Summary 99

Minimize:
∑

t

cxt + d(yt +yt−1)

Subject to:
xt ≤ xt−1 − l̄t−1 +yt−2 ∀t
uxt + v(yt +yt−1) ≥ rt ∀t

xt, yt ≥ 0, integer ∀t

Integer

requirement

This new model strongly resembles the model in Section 8.2. Note that the

parameter values of l̄t are likely to be fractional in the above version. This

implies that the integer requirement on both xt and yt are necessary, and that

the above balance constraints for flight attendants are likely not to be tight in

the optimal solution.

8.6 Summary

In this chapter, a multi-period planning model was developed to determine the

hiring and training requirements for an airline company. Since the number of

new flight attendants must be integer, the resulting model is an integer pro-

gramming model. For large data sets, one option to obtain an integer solution

is to round an LP solution. If you understand the model, it is possible to de-

velop a sensible rounding procedure. Such a procedure might be considerably

more efficient than using an integer programming solver. Towards the end of

the chapter, the uncertainty in the number of flight attendants resigning dur-

ing the planning interval was modeled. By modifying the resulting probabilis-

tic constraints to deterministic constraints, an ordinary integer optimization

model was found.

Exercises

8.1 Implement the mathematical program described at the end of Sec-

tion 8.2 using the example data provided in Section 8.1 . Verify that

the optimal integer solution produced with Aimms is the same as the

solution provided in Table 8.2.

8.2 Solve the mathematical program as a linear program (by using rmip as

the mathematical program type), and implement the rounding heuris-

tic described in Section 8.4. Verify that your findings coincide with

the numbers displayed in Table 8.4.

8.3 Extend the mathematical program to include probabilistic constraints

using the observed distribution data as described in Section 8.5 and

compare the results for the different α-values as presented in Ta-

ble 8.5.

Chapter 9

A Media Selection Problem

This chapter This chapter introduces a simplified media selection problem and formulates

it as a binary programming model. An initial model is extended to include var-

ious strategic preference specifications and these are implemented by adding

logical constraints. The problem is illustrated using a worked example and

its integer solutions are reported. At the end of the chapter the problem is

described as a set covering problem. The two related binary models of set

partitioning and set packing models are also discussed in general terms.

References Examples of media selection problems are found in the marketing and adver-

tising literature. Two references are [Ba66] and [Ch68a].

Keywords Integer Program, Logical Constraint, Worked Example.

9.1 The scheduling of advertising media

Media selection

problems

Optimization is used in the field of marketing to optimally allocate advertising

budgets between possible advertising outlets. These problems are known as

media selection problems.

Problem

description

Consider a company which wants to set up an advertising campaign in prepa-

ration for the introduction of a new product. Several types of audiences have

been identified as target audiences for the new product. In addition, there is a

selection of media available to reach the various targets. However, there is no

medium that will reach all audiences. Consequently, several media need to be

selected at the same time in order to cover all targets. The company wants to

investigate various strategic advertising choices. The goal is not to stay within

an a priori fixed budget, but to minimize the total cost of selecting media for

each of the strategic choices.

Example This chapter illustrates the problem using a small data set involving six target

audiences (labeled type 1 through type 6) and eight potential medias. The

data is contained in Table 9.1. The media descriptions are self-explanatory.

The crosses in the table indicate which target audiences can be reached by

9.2. Model formulation 101

each particular medium. Note that a cross does not say anything about the

effectiveness of the medium. The right hand column gives the cost to use a

particular medium. The table is deliberately small for simplicity reasons. In

practical applications both the data set and the reality behind the scheduling

problem is more extensive.

audience

media type type type type type type costs

1 2 3 4 5 6 [$]

Glossy magazine × × 20,000

TV late night × × 50,000

TV prime time × × 60,000

Billboard train × × 45,000

Billboard bus × 30,000

National paper × × 55,000

Financial paper × × 60,000

Regional paper × × 52,500

Table 9.1: Reachability of audiences by media

9.2 Model formulation

Verbal modelThe aim is to construct a model to determine which media should be selected

so that all audiences are reached. It does not matter if an audience is covered

more than once, as long as it is covered at least once. Moreover, the company

does not wish to spend more money on the campaign than necessary. The

objective function and constraints are expressed in the following qualitative

model formulation:

Minimize: total campaign costs,

Subject to:

for all audience types: the number of times an audience type is

covered must be greater than or equal to one.

NotationThe above verbal model statement can be specified as a mathematical model

using the following notation.

Indices:

t target audiences

m advertising media

Parameters:

Ntm incidence: audience t is covered by medium m

cm cost of selecting advertising medium m

102 Chapter 9. A Media Selection Problem

Variables:

xm binary, indicating whether advertising medium m is

selected

Covering

constraint

Advertising media should be selected to ensure that all audiences are reached

at least once. This is guaranteed by the following covering constraint.

∑

m

Ntmxm ≥ 1 ∀t

Objective

function

The objective function is to minimize the cost of covering all target audiences

at least once.

Minimize: ∑

m

cmxm

Model summary The following mathematical statement summarizes the model.

Minimize: ∑

m

cmxm

Subject to: ∑

m

Ntmxm ≥ 1 ∀t

xm ∈ {0,1} ∀m

The problem is a binary programming model since all decision variables are

binary. Using the terminology introduced in Chapter 2.2, it is also a zero-one

programming problem.

Model results The small model instance provided in this chapter can easily be solved us-

ing conventional integer programming code. Table 9.2 provides the solution

values for both the integer program and the linear program. In the case of

the latter solution, unlike in Chapter 8, it does not make sense to round up

or down. The cost of the campaign amounts to $155,000 for the integer solu-

tion, and $150,000 for the (unrealistic) linear programming solution. Note that

the audience of type 1 is covered twice in the integer solution, while all other

audiences are reached once.

9.3. Adding logical conditions 103

Advertising media xIP xLP

Glossy magazine 1 0.5

TV late night

TV prime time

Billboard train 1 0.5

Billboard bus 1 1.0

National paper 0.5

Financial paper 1 1.0

Regional paper

Table 9.2: Optimal solution values for integer and linear program

9.3 Adding logical conditions

Logical

constraints

Logical relationships between different decisions or states in a model can be

expressed through logical constraints. In the media selection problem, logical

constraints can be imposed relatively simply because the decision variables

are already binary. Some modeling tricks for integer and binary programming

model were introduced in Chapter 7. This section provides some additional

examples of modeling with logical conditions.

Must include

television

commercials

Suppose the marketing manager of the company decides that the campaign

should, in all cases, incorporate some TV commercials. You can model this

condition as follows.

xTV late night + xTV prime time ≥ 1

This constraint excludes the situation where both xTV late night and xTV prime time

are zero. When this constraint is added to the model, the optimal solution in-

cludes late night TV commercials as well as advertisements in national and re-

gional newspapers for the advertising campaign. The campaign costs increase

to $157,500.

If billboard then

television

Suppose that if a billboard media is selected, then a television media should

also be selected. Perhaps the effects of these media reinforce each other. A

precise statement of this condition in words is:

� If at least one of the billboard possibilities is selected, then at

least one of the possibilities for TV commercials must be selected.

The following Aimms constraint can be used to enforce this condition.

xTV late night + xTV prime time ≥ xBillboard train

xTV late night + xTV prime time ≥ xBillboard bus

104 Chapter 9. A Media Selection Problem

Note that these inequalities still allow the inclusion of TV commercials even if

no billboard medias are selected.

Billboard if

and only if

television

Next, consider the following condition which imposes a one-to-one relation-

ship between billboards and television.

� If at least one of the billboard possibilities is selected, then at

least one of the possibilities for TV commercials must be selected,

and if at least one of the possibilities for TV commercials is

selected, then at least one of the billboard possibilities must be

selected.

As this condition consists of the condition from the previous section plus its

converse, its formulation is as follows.

xTV late night + xTV prime time ≥ xBillboard train

xTV late night + xTV prime time ≥ xBillboard bus

xBillboard train + xBillboard bus ≥ xTV late night

xBillboard train + xBillboard bus ≥ xTV prime time

After solving the model with these inequalities, the glossy magazine, TV com-

mercials at prime time, billboards at bus-stops, and advertisements in regional

newspapers are selected for the campaign. The campaign cost has increased

to $162,500. Just like the initial integer solution, the audience of type 1 has

been covered twice.

If television

prime time then

no billboards

Consider a condition that prevents the selection of any billboard media if

prime time TV commercials are selected. A verbal formulation of this con-

dition is:

� If TV commercials at prime time are selected then no billboards

should be selected for the campaign.

Note that, where the previous inequalities implied the selection of particular

media, this condition excludes the selection of particular media. The above

statement can be modeled by adding a single logical constraint.

xBillboard train + xBillboard bus ≤ 2(1− xTV prime time)

Note that if xTV prime time is equal to 1, then both xBillboard train and xBillboard bus

must be 0. Adding this constraint to the media selection model and solv-

ing the model yields an optimal integer solution in which the glossy magazine,

late night TV commercials, billboards at railway-stations, and advertisement in

regional newspapers are selected for the campaign. The corresponding cam-

paign cost increase to $167,500.

9.3. Adding logical conditions 105

If late night

television and

magazine then

financial paper

Suppose that the marketing manager wants the financial paper to be included

in the campaign whenever both late night TV commercials and the glossy mag-

azine are selected. The condition can be stated as follows.

� If late night TV commercials and the glossy magazine are

selected then the financial paper should be selected for the

campaign.

This condition can be incorporated into the model by adding the following

logical constraint.

xFinancial paper ≥ xTV late night + xGlossy magazine − 1

Note that this constraint becomes xFinancial paper ≥ 1 if both xTV late night and

xGlossy magazine are set to 1. After adding this constraint to the model, the ad-

vertisements in regional newspapers from the previous solution are exchanged

for advertisements in the financial paper, and the corresponding campaign

cost increases to $175,000. Now, audiences of type 1 and 2 are covered twice.

At least three

audiences

should be

covered more

than once

The final extension to the model is to add a constraint on the audiences. In

the last solution, the number of audiences that are covered twice is equal to

two. The marketing manager has expressed his doubts on the reliability of

the reachability information, and he wants a number of audience types to be

covered more than once. Specifically, he wants the following.

� At least three audience types should be covered more than once.

To formulate the above logical requirement in mathematical terms an addi-

tional binary variable yt is introduced for every audience type t. This variable

can only be one when its associated audience t is covered more than once. The

sum of all yt variables must then be greater than or equal to three. Thus, the

model is extended with the following variables and constraints.

2yt ≤ ∑
mNtmxm ∀t∑

t yt ≥ 3

yt ∈ {0,1}

Note that the expression
∑
mNtmxm denotes the number of times the audi-

ence of type t is covered, and must be at least two for yt to become one.

When solving the media selection model with this extension, all media except

prime time TV commercials and advertisements in the national paper and the

regional papers are selected. The audiences of type 1, 2 and 3 are covered

twice, and the total campaign cost is $205,000.

106 Chapter 9. A Media Selection Problem

9.4 Set covering and related models

Set covering The media selection problem can be considered to be a set covering problem.

A general statement of a set covering problem follows. Consider a set S =
{s1, s2, . . . , sn} and a set of sets U which consists of a number of subsets of S.

An example would be

S = {s1, s2, s3, s4, s5, s6} and

U = {u1, u2, u3, u4} =
{
{s1, s2}, {s3, s4, s6}, {s2, s3, s5}, {s5, s6}

}

Let each of these subsets of S have an associated cost, and consider the ob-

jective to determine the least-cost combination of elements of U such that

each element of S is contained in this combination at least once. Every com-

bination which contains each element of S is called a cover. In this example,

{u1, u2, u4}, {u1, u2, u3} and {u1, u2, u3, u4} represent the only covers. It is

not difficult to determine the least expensive one. However, when the sets S

and U are large, solving an integer program becomes a useful approach.

Notation In order to specify an appropriate model, the binary decision variable yu must

be defined.

yu =

1 if u ∈ U is part of the cover

0 otherwise

Furthermore coefficients asu must be introduced.

asu =

1 if s ∈ S is contained in u ∈ U
0 otherwise

The integer

program

When the costs are defined to be cu for u ∈ U , the model statement becomes:

Minimize: ∑

u∈U
cuyu (combination costs)

Subject to: ∑

u∈U
asuyu ≥ 1 ∀s ∈ S

yu binary ∀u ∈ U

Note that all constraint coefficients and decision variables have a value of zero

or one. Only the cost coefficients can take arbitrary values. For the special case

of uniform cost coefficients, the objective becomes to minimize the number of

members of U used in the cover.

9.5. Summary 107

The set

partitioning

problem

When all elements of S must be covered exactly once, the associated problem

is termed a set partitioning problem. As the name suggests, the set S must

now be partitioned at minimum cost. The corresponding integer programming

model is similar to the above model, except for the signs of the constraints.

These are “=” rather than “≥”.

The set packing

problem

When all elements of S can be covered at most once, the associated problem is

termed a set packing problem. The corresponding integer programming model

is similar to the model stated previously, except for two changes. The signs of

the constraints are “≤” rather than “≥”, and the direction of optimization is

“maximize” instead of “minimize”.

ApplicationsThere are several applications which can be essentially classified as covering,

partitioning or packing models.

1. If audience types are considered to be members of the set S, and ad-

vertising media members of the class U , you obtain the media selection

problem which is an example of set covering.

2. Consider an airline crew scheduling problem where flights are members

of S, and “tours” (combinations of flights which can be handled by a

single crew) are members of the set U . Then, depending on whether

crews are allowed to travel as passengers on a flight, either a set covering

or a set partitioning model arises.

3. Let the set S contain tasks, and let the set U contain all combinations of

tasks that can be performed during a certain period. Then, if each task

needs to be performed only once, a set partitioning problem arise.

4. Finally, if the set S contains cities, and the class U contains those com-

binations of cities that can be served by, for instance a hospital (or other

services such as a fire department or a university), then a set covering

model can determine the least cost locations such that each city is served

by this hospital.

9.5 Summary

In this chapter a media selection problem was introduced and formulated as a

binary programming model. An initial model was extended by including a vari-

ety of logical constraints to represent various advertising strategies. The opti-

mal objective function value and corresponding integer solution were reported

for each subsequent model. At the end of the chapter, the media selection

problem was described as a set covering problem. The related set partitioning

and set packing problems were discussed in general terms.

108 Chapter 9. A Media Selection Problem

Exercises

9.1 Implement the initial mathematical program described in Section 9.2

using the example data of Table 9.1. Solve the model as a linear pro-

gram and as an integer program, and verify that the optimal solutions

produced with Aimms are the same as the two optimal solutions pre-

sented in Table 9.2.

9.2 Extend the mathematical program to include the logical constraints

described in Section 9.3, and verify that the objective function values

(the total campaign cost figures) produced with Aimms are the same

as the ones mentioned in the corresponding paragraphs.

9.3 Formulate the following requirements as constraints in Aimms.

� If at least one of the billboard possibilities is selected, then both

of the possibilities for TV commercials must be selected.

� At least five of the six audience types need to be covered.

� Again, at least five of the six audience types need to be covered.

If, however, not all six audience types are covered, then either

the regional paper or the national paper should be selected.

Develop for each requirement a separate experiment in which you ei-

ther modify or extend the initial mathematical program described in

Section 9.2. Verify for yourself that the integer solution correctly re-

flects the particular requirement.

Chapter 10

A Diet Problem

This chapterThis chapter introduces a simplified diet problem with an example small data

set. The problem is transformed into an integer programming model with

range constraints. The main purpose of the chapter is to illustrate the use

of measurement units to achieve data consistency and to improve data com-

munication. Reference is made to the special features in Aimms that support

unit analysis. One feature is the availability of unit-valued parameters. These

parameters are useful when indexed identifiers contain individual entries mea-

sured in different units. Another feature is the availability of unit conventions

that allow users with different backgrounds to view and enter data in their own

choice of measurement units without having to change either the model or its

data.

ReferencesThe example in this chapter is based on two articles that appeared in OR/MS

Today ([Bo93, Er94]). Problems of this type can also be found in, for instance,

[Ch83] and [Wa75].

KeywordsInteger Program, Measurement Units, Worked Example.

10.1 Example of a diet problem

Diet problems in

general

The example discussed in this chapter is a McDonald’s diet problem. It belongs

to the class of blending problems in which various feed items (for animals) or

food items (for humans) are put together to form a diet. In most applications

there are weight, nutrition, and taste requirements, and clearly cost minimiza-

tion is an objective.

McDonald’sThe McDonald’s diet problem has been used in popular literature as an exam-

ple for building an introductory optimization model. The McDonald’s situation

is familiar, and the problem structure is simple enough for translation into a

mathematical model. In addition, McDonald’s provides a brochure with de-

tailed nutritional information for every item on the menu.

110 Chapter 10. A Diet Problem

Example The example considers a small data set, which includes 9 different food types

and 4 different nutrients. The 9 food types form a small but representative

selection of the McDonald’s menu. The 4 nutrients are calories, protein, fat,

and carbohydrates. The goal is to determine a daily diet to cover the afternoon

and the evening meals. Table 10.1 contains the nutritional values for each food

type, nutritional requirements, food prices, and bounds on individual servings.

Calo- Pro- Fat Carbo- max. Price

ries tein hydrates ser-

[kcal] [gram] [gram] [gram] vings [Hfl]

Big Mac 479 25 22 44 2 5.45

Quarter Pounder 517 32.4 25 40.4 2 4.95

Vegetable Burger 341 11.7 10.6 50 2 3.95

French Fries 425 5 21 54 2 1.95

Salad 54 4 2 5 2 3.95

Lowfat Milk 120 9 4 12 2 1.75

Coca Cola 184 − − 46 2 2.75

Big Mac Menu 1202.4 31.3 48.7 158.5 2 8.95

Quarter Pounder Menu 1240.4 38.7 51.7 154.9 2 8.95

Minimum Requirement 3000 65 375

Maximum Allowance 117

Table 10.1: Data for different food types

10.2 Model formulation

This section In this section the diet problem is translated into an integer program with a

single symbolic range constraint.

Verbal model

statement

A verbal model statement of the problem is as follows.

Minimize: the total cost of the menu,

Subject to:

� for all nutrients: the quantity of nutrient in the menu satisfies

the minimum and maximum requirements,

� for all food types: an upper bound on the number of servings.

Notation The verbal model statement of the diet problem can be specified as a mathe-

matical model using the following notation.

Indices:

f food types

n nutrients

Parameters:

10.2. Model formulation 111

vfn value of nutrient n in one unit of food f

uf upper bound on number of servings of food f

mn maximum allowance of nutrient n in the menu

mn minimum requirement of nutrient n in the menu

pf price of one unit of food f

Variable:

xf number of servings of food f in menu

Objective

function

The objective is to minimize the cost of the menu measured in Dutch guilders

(Hfl).

Minimize:
∑

f

pfxf

Nutrient

requirements

The following equation expresses the range constraints using symbolic no-

tation. For the McDonald’s problem, inspection of the last two lines of Table

10.1 shows that the amounts of calories, protein and carbohydrates must meet

minimum requirements, while the amount of fat in the diet is limited by a max-

imum allowance.

mn ≤
∑

f

vfnxf ≤mn ∀n

Syntax versus

semantics

From a syntactical point of view the above range constraint indicates the ex-

istence of both a lower and an upper bound on the amount of each nutrient

in the diet. However, it is not clear what values should be used to represent

the blank entries for the parameters mn and mn in Table 10.1. Should they

to be interpreted as zero, infinity, or minus infinity? In the Aimms modeling

language are there several ways to specify the semantics of symbolic range

constraints. By restricting the domain of definition of the above nutrient re-

quirement constraint you can avoid the generation of particular individual in-

stances of this range constraint. By setting the default ofmn to minus infinity

and the default of mn to plus infinity, all blank entries have a meaningful in-

terpretation. The corresponding inequalities are of course non-binding, and

Aimms will not pass these redundant inequalities to the underlying solver.

Modeling

bounds on

variables

Simple upper bounds on the amount of each food type f to be consumed can

be expressed in the form of symbolic inequality constraints. Such translation

of simple bounds into inequalities is not generally recommended as it leads

to the explicit introduction (and subsequent generation) of extra constraints

which are likely to be eliminated again by the underlying solution algorithm.

In Aimms you can avoid these extra symbolic constraints by specifying upper

bounds as part of the declaration of the corresponding variables. In general,

you should avoid formulating simple bounds on variables as explicit symbolic

constraints in your model.

112 Chapter 10. A Diet Problem

Model summary The following mathematical statement summarizes the model developed in

this section.

Minimize:

∑

f

pfxf

Subject to:

mn ≤
∑

f

vfnxf ≤mn ∀n

xf ∈ {0 . . . uf }, integer ∀f

Integer values Note that the amount of food xf is bounded from above and restricted to

integer values. In the McDonald’s diet problem it does not make sense to allow

fractional values. In other diet applications, such as animal feed problems

with bulk food items, the integer requirement can be dropped as fractional

amounts of feed have a meaningful interpretation.

10.3 Quantities and units

This section In this section the role and importance of measurement units is highlighted.

Some special features in Aimms, such as unit-valued parameters and unit con-

ventions, are explained. The diet model is used for illustrative purposes. A

more extensive discussion of quantities and units can be found in [Bi99].

Quantities Measurement plays a central role in observations of the real world. Measure-

ments give quantity information that is expressed in terms of units. A unit is

a predefined amount of a quantity. Quantity information describes what is be-

ing measured, such as time, mass or length. For a given quantity it is possible

to define various units for it. Take time as an example. A time period can be

expressed equivalently in terms of minutes, hours or days. Table 10.2 shows

some of the quantities used in the diet model.

quantity application in diet model

mass to measure the amount of protein, fat and carbohydrates,

and the weight of the food types

energy to measure the amount of calories

currency to measure the cost

Table 10.2: Quantities used in the diet model

10.3. Quantities and units 113

Units . . .To provide a meaningful description of a quantity, it is necessary to express its

measurement in terms of a well defined unit. For each quantity it is possible

to define a base unit. For instance, in the International System of Units, the

quantity ‘length’ has the base unit of ‘meter’ (denoted by [m]). From each base

unit, it is also possible to define derived units, which are expressed in terms

of the base unit by means of a linear relationship. The base units and derived

units for the diet model are provided in Table 10.3.

quantity base unit derived units

mass [kg] [gram]

energy [J] [kJ], [kcal]

currency [$] [Hfl]

unitless [-]

Table 10.3: Units used in the diet model

. . . for

consistency

When all parameters are specified in terms of their units, Aimms can check

the expressions and constraints for unit consistency. For example, Aimms

will not allow two parameters, one in kilograms and the other in joules, to

be added together. More generally, Aimms will report an error when terms in

an expression result in unit inconsistency. Therefore, if you specify the units

for each parameter, variable, and constraint in the diet model, Aimms will carry

out this extra check on the correctness of your model.

. . . for proper

communication

Apart from unit consistency, expressing your model formulation with com-

plete unit information will help to ensure proper communication with external

data sources and other users. That is, when you want to link with other models

or databases which may use different units, or, when you need to communicate

with other users who may use other definitions.

Feed units and

food units

Quantities used in animal feed blending problems are typically expressed in

‘mass’ units such as [ton] or [kg]. Therefore, a nutrient such as calories is

often measured in [kcal/ton] or [kcal/kg]. This convention is not as natural

for the McDonald’s problem. Instead, nutrient values are specified per indi-

vidual item (e.g. per Big Mac or per Coca Cola). Expressing the calories for a

’Big Mac Menu’ in [kcal/gram] is not immediately useful since the weight of

the Menu is generally not known. For the McDonald’s problem, [kcal/item] or

[kcal/BigMac] or just [kcal] is a more meaningful expression, and one could

argue the plausibility of each of these choices.

114 Chapter 10. A Diet Problem

Choice of food

units

Throughout the remainder of this section, the last option of expressing quan-

tities of food in terms of items will be used. This is a typical choice when

dealing with discrete quantities that can be expressed in terms of the natural

numbers. For instance, it is sufficient to state that the number of calories in a

Big Mac is 479 [kcal], and that the number of Big Macs in the diet is at most 2.

Unit conversions The relationship between base units and the derived units in Table 10.3 must

be clearly defined. In the Aimms modeling language, the following syntax is

used to specify unit conversions.

[gram] -> [kg] : # -> # / 1000

[kJ] -> [J] : # -> # * 1000

[kcal] -> [J] : # -> # * 4.1868E+03

[Hfl] -> [$] : # -> # * exchange_rate

The interpretation of these conversions (indicated with an ->) is straightfor-

ward. For instance, [gram] is converted to [kg] by considering any number #

measured in [gram], and dividing this number by 1000. Note that the unit

conversion from [Hfl] to [$] associated with the quantity ‘currency’ is parame-

terized with an identifier ‘exchange rate’. This identifier needs to be declared

as an ordinary parameter in the model.

Unit-valued

parameters

When specifying a model using the symbolic indexed format, it is possible that

not every element of an indexed identifier is measured in the same unit. For

instance, in the diet model, the parameter vfn , the value of nutrient n of food

f is measured in both [gram] and [cal] as shown below. In such a situation

there is a need for an indexed unit-valued parameter to complement the use of

symbolic indexed identifiers in your model. In the diet model, the unit-valued

parameter Un provides this key role, and it is specified in the following table.

Nutrient Un

Calories [cal]

Protein [gram]

Fat [gram]

Carbohydrates [gram]

Table 10.4: Values for the unit-valued parameter Un

With the nutrient units specified, unit consistency can be enforced by attaching

units in Table 10.5 to all (symbolic) model identifiers introduced thusfar.

Total weight of

diet

In order to determine the total weight of the optimal diet, the following addi-

tional parameters are declared.

Parameters:

wf weight for food type f

W total weight of the optimal diet

10.3. Quantities and units 115

Model Identifier Unit

xf [-]

uf [-]

pf [Hfl]

mn Un

mn Un

vfn Un

Table 10.5: Model identifiers and their associated units

where

W =
∑

f

wfxf

Note that the variable xf represents the number of items (a unitless quantity)

and consequently, the units of W are the same as the units of wf (namely

[gram]).

Food Type wf Food Type wf

[gram] [gram]

Big Mac 200 Lowfat Milk 250

Quarter Pounder 200 Coca Cola 400

Vegetable Burger 133 Big Mac Menu 730

French Fries 130 Quarter Pounder Menu 730

Salad 127

Table 10.6: Weight for each food type

SolutionThe optimal diet satisfying the nutrient requirements for the afternoon and

the evening meal costs 24.60 [Hfl] and contains one ‘Vegetable Burger’, one

‘Coca Cola’ and two ‘Quarter Pounder Menus’ (which include drinks). This diet

contains 3006 [kcal] of energy, 89 [gram] of protein, 114 [gram] of fat, and 406

[gram] of carbohydrates. The formulation in this chapter has not included any

requirements reflecting taste or minimum quantities of foods to be consumed.

By adding such requirements, you can study the increase in cost and the effect

on nutrient consumption.

Unit

conventions

There are model-based applications which may be used by end-users from

around the world. In that case, it is important that all users can work with

their particular unit convention, and view the model data in the units associ-

ated with that convention. In the Aimms modeling language it is possible to

define one or more unit conventions, and all data transfer from and to an ex-

ternal medium is interpreted according to the units that are specified in the

convention. By switching between unit conventions, different end-users can

use their own choice of units.

116 Chapter 10. A Diet Problem

Conventions

applied

To illustrate the use of conventions, consider the following two convention def-

initions. The ‘DutchUnits’ convention specified by attaching the unit [Hfl] to

the ‘Currency’ quantity and the unit [kJ] to the ‘Energy’ quantity. The ‘America-

nUnits’ convention specified by attaching the unit [$] to the ‘Currency’ quantity

and the unit [kcal] to the ‘Energy’ quantity. When the ‘AmericanUnits’ conven-

tion is selected by a user, and given the exchange rate of 0.50, Aimms will

report the optimal cost as 12.3 [$]. In the ‘DutchUnits’ convention, the total

amount of energy in the optimal diet will be reported as 12,586 [kJ].

10.4 Summary

In this chapter a simplified diet problem was introduced together with a small

data set. The problem was transformed into an integer programming model

with symbolic range constraints. The role of measurement units to obtain data

consistency and proper data communication was highlighted. Special refer-

ence was made to the use of the unit-valued parameters and unit conventions

available in Aimms.

Exercises

10.1 Implement the mathematical program summarized at the end of Sec-

tion 10.2 using the example data provided in Section 10.1. Verify that

the solution coincides with the one presented in Section 10.3.

10.2 Introduce quantities, units and a unit parameter into your Aimms

model as suggested in Section 10.3, and include them in the graph-

ical display of your model results.

10.3 Introduce the two unit conventions into your Aimms model as sug-

gested at the end of Section 10.3. Design a page in Aimms, so that the

user can select the convention of his choice and the input-output data

adjusts itself accordingly.

Chapter 11

A Farm Planning Problem

This chapterIn this chapter you will find a worked example of a simplified farm planning

problem in a developing country. Every year a farmer must decide what crops

to grow, thereby taking into account such limiting resources as land, labor

and water. His objective is to maximize farm revenue. This simplified farm

planning problem can be translated into a linear optimization model. Such

a model is typically found as a submodel in larger models which focus on

agricultural questions concerning an entire region. Even though the model

developed here is relatively small in terms of symbolic constraints, the number

of identifiers is relatively large.

ReferencesThe material of this chapter has been adapted from “Modeling for Agricul-

tural Policy and Project Analysis” by G.P. Kutcher, A. Meeraus, and G.T. O’Mara

[Ku88]. A text book on agricultural modeling is [Ha86].

KeywordsLinear Program, Measurement Units, Sensitivity Analysis, What-If Analysis,

Worked Example.

11.1 Problem description

Three main

inputs

The three main inputs to agricultural production are land, labor and water.

Their requirements vary throughout the year for different crop activities. In

this chapter all requirements will be specified on a monthly basis, and are

assumed to be known with certainty.

LandCrop rotation is the practice of growing different crops, in sequence, on the

same land. The specification of all relevant crop rotations and time shifts

in real-world applications is a non-trivial task, and requires the aid of an

agronomist. In this chapter, a monthly calendar is maintained. The periods

in which crops can be grown, are given in Table 11.1. An entry in this table

denotes the fraction of a month that land will be occupied by a particular crop.

The total amount of land available is assumed to be 10 hectares.

118 Chapter 11. A Farm Planning Problem

wheat beans onions cotton maize tomatoes

Jan 1 1 1

Feb 1 1 1

Mar 1 1 1 .5

Apr 1 1 1 1

May 1 .25 1 .25

Jun 1 1

Jul 1 1 .75

Aug 1 1 1

Sep 1 1 1

Oct 1 .5 1

Nov .5 .25 .5 .75 .75

Dec 1 1 1

Table 11.1: Land occupation [-]

Labor

requirements

Labor is one of the major requirements for crop activities, and is supplied by

the farmer’s family as well as outside workers. The use of labor is disaggre-

gated over the year, because labor is employed for different activities (land

preparation, planting, maintenance and harvesting) requiring different inten-

sities. For each crop pattern there will be a set of labor requirements that vary

each month. Table 11.2 gives the labor requirements in the same pattern as

land use seen in Table 11.1. Each number in the table represents the amount

of labor [hr] required that month for growing one hectare of the corresponding

crop.

wheat beans onions cotton maize tomatoes hours

Jan 14 6 41 160

Feb 4 6 40 160

Mar 8 6 40 40 184

Apr 8 128 155 40 176

May 137 19 72 34 168

Jun 16 40 176

Jul 12 57 136 176

Aug 16 64 120 176

Sep 8 35 96 176

Oct 46 9 56 168

Nov 19 60 89 34 48 176

Dec 11 6 37 176

Table 11.2: Crop labor requirements [hr/ha] and monthly hours [hr/man]

Workers In addition to the already available family labor, outside workers can be hired

as permanent workers or temporary workers. Permanent family labor consists

of 1.5 person, and costs $ 4,144 per man for an entire year. Permanent outside

11.1. Problem description 119

labor costs $ 5,180 per man for a year, while temporary labor costs is $ 4 per

hour. The number of working hours differs per month and is listed in the last

column of Table 11.2. Note that the fractional value of 1.5 for family labor

can be viewed as an average over several similar farms or as an indication of

parttime labor activity.

WaterWater is another major requirement for agricultural production, and can be

supplied from surface water distribution or from groundwater. In this chapter

it is assumed that the total amount of water available to the farmer each month

is restricted to 5 kcub. Furthermore, there is an overall annual limit on the use

of water equal to 50 kcub. The price of water is fixed for the entire year, and

amounts to $ 10 per kcub. The crop water requirements for the farm are given

in Table 11.3.

wheat beans onions cotton maize tomatoes

Jan 0.535 0.438 0.452

Feb 0.802 0.479 0.507

Mar 0.556 0.505 0.640 0.197

Apr 0.059 0.142 0.453 0.494

May 1.047 0.303

Jun 1.064 0.896

Jul 1.236 1.318 0.120

Aug 0.722 0.953 0.241

Sep 0.089 0.205 0.525

Oct 0.881

Nov 0.373 0.272 0.865

Dec 0.456 0.335 0.305

Table 11.3: Crop water requirements [kcub/ha])

Family

consumption

Most farms in developing countries place an emphasis on the production of

their own food, since it makes them self-sufficient. Rather than fixing certain

crops for family consumption, a slightly more general treatment is to allow

a choice from a set of a priori constructed consumption bundles. Each such

bundle is composed of different crops, and is by itself sufficient to feed the

family. A menu of balanced meals can be derived from it. By considering a

combination of alternative bundles, a farmer can take his overall revenue into

account while deciding on his own consumption.

Consumption

data

Consider three alternative consumption bundles (in tons per year) that the

farmer can choose from. The first bundle contains 1.20 tons of beans, 0.15

tons of maize, and 0.25 tons of tomatoes. The second bundle contains 0.73

tons of beans, 1.50 tons of maize, and 0.25 tons of tomatoes. The third bundle

contains 0.70 tons of beans, 1.00 ton of maize, and 0.75 tons of tomatoes. It is

120 Chapter 11. A Farm Planning Problem

assumed that any combination of these three bundles may be selected by the

farmer.

Yields and

revenues

Based on previous years the expected yield for each crop can be estimated in

advance. For instance, the yield of growing cotton on one hectare of land will

be 1.5 tons of cotton. Similar figures exist for the yield of the other crops.

Furthermore, the price of crops determines the farm revenue, and price indi-

cations are also assumed to be known. In table 11.4 the relevant yields and

prices are presented.

yield price

[ton/ha] [$/ton]

wheat 1.50 1000

beans 1.00 2000

onions 6.00 750

cotton 1.50 3500

maize 1.75 700

tomatoes 6.00 800

Table 11.4: Crop yields and prices

11.2 Model formulation

This section In this section the above description is translated into an optimization model.

First, an informal verbal presentation of the model is provided, followed by the

extensive notation needed to describe all aspects of the model. The objective

function and each constraint is developed separately. A model summary is

listed at the end.

Verbal model

statement

By considering the basic choices of the farmer and his limited resources, it is

fairly straightforward to describe his objective and constraints in a compact

verbal manner.

Maximize: total net farm revenue which is the revenue from sales

minus the costs associated with labor and water.

Subject to:

� for all months: the land used for cropping activities must be less

than or equal to the land available,

� for all months: the labor needed for cropping activities must be

less than or equal to available family labor plus hired

permanent labor plus hired temporary labor,

� for all months: water needed for cropping activities must be less

than or equal to the monthly water limit,

11.2. Model formulation 121

� the annual amount of water needed must be less than or equal

to the annual water limit, and

� for all crops: the amount produced must be equal to the amount

to be consumed plus the amount to be sold.

NotationThe following notation is based as much as possible on the use of a single

letter for each identifier for reasons of compactness. Such compact notation

is not recommended for practical models built with a system such as Aimms,

because short names do not contribute to the readability and maintainability

of computerized models.

Indices:

c crops

t months

b consumption bundles

Parameters (crop related):

yc yield of crop c [ton/ha]

pc price of crop c [$/ton]

dcb amount of crop c in bundle b [ton]

Parameters (land related):

L land available [ha]

ltc fraction of month t that crop c occupies land [-]

Parameters (labor related):

vtc labor required of crop c during month t [hr/ha]

r F annual wage rate family labor [$/man]

r P annual wage rate permanent labor [$/man]

rT hourly wage rate temporary labor [$/hr]

ht working hours in month t [hr/man]

V F family labor available [man]

Parameters (water related):

W annual amount of water available [kcub]

wt limit on use of water in month t [kcub]

Rtc water requirement for crop c in month t [kcub/ha]

pW price of water [$/kcub]

Variables:

xc amount of crop c planted [ha]

V P permanent labor hired [man]

VTt temporary labor hired in t [hr]

sc sales of crop c [ton]

zb fraction of bundle b consumed [-]

122 Chapter 11. A Farm Planning Problem

Land limitation Land use for crops is described in Table 11.1, in which an entry denotes the

fraction of a month that land will be occupied by a particular crop. It may

take you a while to get used to the definition of this table, but it represents

a compact manner to describe both the timing and the use of land for the

production of crops. A fraction of 1 means that land is to be occupied during

the entire month for the corresponding crop. A fraction of less than 1 indicates

that land is used either during the last portion of a month when the crop is

sown, or during the first portion of a month when the crop is harvested and

the land is cleared for another crop. With the use of Table 11.1, the resulting

land limitation constraint assumes a simple format.

∑

c

ltcxc ≤ L ∀t [ha]

xc ≥ 0

Labor

requirements

Labor requirements for growing a particular crop on one hectare of land can

be found in Table 11.2. In addition to the available family labor, both perma-

nent and/or temporary labor may need to be hired. Note that permanent and

temporary labor is not expressed in the same unit. That is why the conver-

sion factor ht [hr/man] is used to express the following constraint on labor in

terms of hours.

∑

c

vtcxc ≤ ht(V F + V P)+ VTt ∀t [hr]

V P ≥ 0, VTt ≥ 0 ∀t

Water

requirements

There is a monthly and an annual restriction on the use of water. The mathe-

matical form of both constraints is similar to the constraints on land and labor

discussed previously.

∑

c

Rtcxc ≤ wt ∀t [kcub]

∑

tc

Rtcxc ≤ W [kcub]

Family

consumption

The amount of each crop produced during the year is meant to be sold, with

the exception of those amounts that are to be used for family consumption.

As indicated before, a combination of consumption bundles is to be selected

to satisfy the family needs. Such a combination can be formulated as a convex

combination, and is implemented by attaching a nonnegative weight to each

bundle, and letting the sum of the weights be equal to one. This approach

makes sure that there is enough food for the family, but allows for variation

11.2. Model formulation 123

in the weights to obtain maximal farm revenue from sales.

ycxc =
∑

b

dcbzb + sc ∀c [ton]

∑

b

zb = 1

sc ≥ 0 ∀c
zb ≥ 0 ∀b

Objective

function

The objective is to maximize farm profit over the year, which is equal to rev-

enue from sales minus the costs associated with labor and water. Note that in

this simplified model, the cost of seedlings is ignored.

∑

c

pcsc − r FV F − r PV P − rT
∑

t

VTt − pW
∑

tc

Rtcxc

Mathematical

model summary

The mathematical description of the model can now be summarized as follows.

Maximize:

∑

c

pcsc − r FV F − r PV P − rT
∑

t

VTt − pW
∑

tc

Rtcxc

Subject to: ∑

c

ltcxc ≤ L ∀t
∑

c

vtcxc ≤ ht(V F + V P)+ VTt ∀t
∑

c

Rtcxc ≤ wt ∀t
∑

tc

Rtcxc ≤ W

ycxc =
∑

b

dcbzb + sc ∀c
∑

b

zb = 1

xc ≥ 0 ∀c
V P ≥ 0

VTt ≥ 0 ∀t
sc ≥ 0 ∀c
zb ≥ 0 ∀b

124 Chapter 11. A Farm Planning Problem

11.3 Model results

This section In this section you will find a summary of the optimal solution that you your-

self should observe after having implemented the model in Aimms. In addition,

there are some comments regarding experiments that you could carry out to

investigate the effect of parameter changes on the value of the optimal solu-

tion.

Optimal

solution

The optimal cropping pattern and the use of crop returns are summarized

in Table 11.5. As expected, the crops that are not sold, are used for family

consumption. The optimal combination of bundles was found to be bundle 1

(7%) and bundle 3 (93%). Note that beans and maize are only grown to meet

family consumption. The optimal yearly net revenue turns out to be $ 49,950.

crop yield sales consumption

xc ycxc sc
∑
b dcbzb

[ha] [ton] [ton] [ton]

wheat

beans 0.74 0.74 0.74

onions 6.33 37.96 37.96

cotton 2.94 4.40 4.40

maize 0.54 0.94 0.94

tomatoes 5.55 33.29 32.58 0.71

Table 11.5: Optimal crop-related solution

Use of labor Besides the fixed amount of permanent family labor of 1.5 man, the optimal

solution also indicates a need for permanent hired labor of 0.54 man. As

stated before, these fractional numbers could be interpreted as an average

over several similar farms, or as indication of permanent parttime work. The

optimal amount of temporary labor hired is expressed in Table 11.6.

V Tt V Tt
[hr] [hr]

Jan Jul 461.72

Feb Aug 388.43

Mar Sep 216.25

Apr 833.86 Oct 108.24

May 7.45 Nov 614.86

Jun Dec

Table 11.6: Optimal temporary labor hired

11.3. Model results 125

Shadow price of

labor

In Aimms you can turn on the property ShadowPrice for each individual sym-

bolic constraint. If you do so for the labor requirement constraint, you will ob-

serve that the shadow prices for January, February, June and December are all

zero. This indicates an overcapacity of permanent labor during these months.

In March the amount of available permanent labor is exactly enough to meet

labor requirements. In all other months, temporary labor is hired to meet labor

requirements.

Use of waterThe water requirement constraints are only binding during the months March,

July and November. The corresponding shadow prices for these constraints

are nonzero and reflect the binding use of water. The annual use of water

amounts to 47.32 kcub, which is less than the total annual limit.

Changing the

water limit

If the annual supply of water is not entirely known a priori, the farmer may

want to look how the optimal solution changes as a result of different values.

You can implement such an experiment in Aimms by creating a parametric

curve with annual water supply along the x-axis and crop assignments along

the y-axis. Figure 11.1 represents such a curve with the annual water limit

between 40 and 50 kcub. The observed sensitivity is not so strong, so that the

farmer can make a decision even if the annual water limit varies within the

above range.

40.0 42.5 45.0 47.5 50.0

0

2

4

6

8

10
Wheat

Beans

Onions

Cotton

Maize

Tomatoes

W [kcub]

xc [ha]

Figure 11.1: Optimal crops as function of annual water limit

Changing the

land availability

A similar experiment can be made when the farmer has the opportunity to use

additional land. The parametric curve in Figure 11.2 shows the sensitivity of

optimal cropping patterns with respect to land. As more land becomes avail-

able, the amount of cotton increases while the amount of onions and maize

decreases. You may verify for yourself that total net revenue increases by

more than 20 % as the amount of available land doubles.

126 Chapter 11. A Farm Planning Problem

8 9 10 11 12

0

2

4

6

8

10
Wheat

Beans

Onions

Cotton

Maize

Tomatoes

L [ha]

xc [ha]

Figure 11.2: Optimal crops as function of available land

11.4 Summary

In this chapter a simplified farming problem was introduced together with a

small data set for computational purposes. The corresponding model turned

out to be a straightforward linear program with constraints on land, labor,

water and family consumption. What-if experiments were performed to deter-

mine the sensitivity of selected parameters on the optimal solution.

Exercises

11.1 Implement the mathematical program described at the end of Sec-

tion 11.2 using the example data provided in Section 11.1. Verify that

the optimal solution produced with Aimms is the same as the solution

provided in Tables 11.5 and 11.6.

11.2 Add all quantity and unit information to your model in Aimms, and

check whether the units are consistent throughout the model.

11.3 Use the parametric curve object in Aimms to reproduce the sensitivity

experiments described in Section 11.3.

Chapter 12

A Pooling Problem

This chapterIn this chapter you will encounter a simplified example of a refinery pool-

ing problem. Intermediate product streams, each with their own particular

properties, are fed into a limited number of available tanks. These tanks are

referred to as pool tanks. Through pooling, the input products no longer ex-

ist in their original form, but are mixed to form new pooled products with

new property values. These new products are subsequently used to blend final

products. These final blends must satisfy specific quality requirements, which

means that their property values must be between a priori specified ranges.

The pooling problem can be translated into a nonlinear programming model.

This model has the nasty property that there are likely to exist multiple lo-

cally optimal solutions. Good starting values are then required to steer the

algorithm away from poor local optima. An instance of the pooling problem is

provided for illustrative purposes.

ReferencesPooling problems have received some attention in the informal literature of the

sixties and seventies. A typical reference is [Ha78] which describes a heuristic

approach based on recursive programming techniques. In later years, global

optimization techniques have been proposed by [Fl89], but these have found

limited application in large-scale practical applications.

KeywordsNonlinear Program, Multiple Optima, Worked Example.

12.1 Problem description

This sectionIn this section a simplified version of the pooling problem is discussed and

illustrated. The paragraphs aim to give you a basic feel for the problem at

hand. Despite its simplifications, the problem is still of interest, because it

captures the difficulties associated with pooling problems in general.

Refinery

operations

summarized

In a refinery, crude oils of different types are first distilled in one or more

crude distillers. This process results in the production of several intermediate

product streams that are immediately pooled in dedicated pool tanks. Any

further processing consists of blending pooled products into final products.

This three-step process is illustrated in Figure 12.1. In this chapter the time-

128 Chapter 12. A Pooling Problem

phasing of product flows is completely ignored in order to prevent the problem

and the resulting model from becoming too complicated.

LS2

LS1

HS2

HS1

Crudes

Distiller

Distiller

LS2-VGO

LS2-HGO

LS1-CR

LS1-SR

HS2-VGO

HS2-HGO

HS1-CR

HS1-SR

Intermediates

Tank 2

Tank 1

LSFO

HSFO

Final products

}
Distillation

}

Pooling

}

Blending

Figure 12.1: A simplified refinery

Product

properties . . .

Crude oils are by no means identical. Their composition strongly depends on

their location of origin. In Figure 12.1 there are four crudes: two of them

are high-sulphur (HS) crudes and two of them low-sulphur (LS) crudes. Their

sulphur content is referred to as a product property. Product properties are

to a certain extent retained during the distillation phase. That is why the

labels HS and LS are also attached to the intermediate product streams for

each originating crude 1 and 2.

. . . and their

measurement

Product properties cannot be measured in a uniform manner. There are prop-

erties, such as sulphur content, that are naturally expressed as a percentage

of total volume or total mass. Other properties, such as viscosity and pour

point, are not naturally measured in these terms. For instance, pour point is

the lowest temperature, expressed as a multiple of 3 degrees Celsius, at which

oil is observed to flow when cooled and examined under prescribed condi-

tions. Special care is then required to compute such a property for a mixture

of products.

12.1. Problem description 129

Mixing

properties

causes dilution

When two or more intermediate products are pooled in a single tank, a new

product will result. The properties of this new product will be related to the

properties of the originating products, but there will always be some form of

dilution of each property. When there are multiple pool tanks, it is desirable

to minimize the dilution effect across pool tanks. The resulting variability in

pool properties is needed to meet the property requirements of the final prod-

ucts. For instance, in Figure 12.1 all high-sulphur intermediates are not pooled

with any low-sulphur intermediates in order to maintain sufficient variability

in sulphur property values across the two pool tanks.

Intermediate

and final

products

In Figure 12.1, each of the two crude distillers produces four intermediate

products, namely, a short residue (SR), a cracked residue (CR), a heavy gas oil

(HGO) and a visbroken gas oil (VGO). In order to track the properties of the

originating four crude oils, the name of each intermediate is prefixed with the

name of the crude. In this case, such a naming convention results in sixteen

different product names. Only one final product, namely fuel oil (FO), is pro-

duced in two qualities, resulting in two final product names. You can imagine

how the number of possible product names can explode in large real-world

applications where there are more products and several additional properties.

The number of product names becomes even larger when the entire refinery

process is considered over several discrete time periods, and properties are

tracked over time.

Pooled productsTheoretically, it is attractive to store all intermediate products in their own

intermediate product tanks. This delays any dilution of product properties

until final products have to be blended to specification. In practice, however,

the unique intermediate product streams outnumber the available tanks, and

product pooling is required. For the sake of keeping the problem fairly simple,

it is assumed that the flow of intermediate products into the pool tanks equals

the flow required to blend the final products, and that each pool tank has

limited capacity.

Limitation on

intermediates

In the example of this chapter it is assumed that the volume of each intermedi-

ate product to be used must stay within specified bounds. This is a slight sim-

plification, because in actuality, intermediate products are produced in fixed

relative proportions, and their absolute volume is related to the volume of the

emanating crude. However, the distillation phase is not part of the problem in

this chapter, which justifies the assumption of fixed bounds on inputs.

Maximizing

sales value

The price of a final product is not entirely constant, but is assumed to be

dependent on its associated property values. This implies that price becomes

an unknown in the pooling model to be build. The objective function is to

maximize the total sales value of final products to be made.

130 Chapter 12. A Pooling Problem

Pooling problem

summarized

The pooling problem considered in this chapter is to maximize the sales value

of end products by deciding how much of each intermediate stream, within

limits, is to be placed in each of the pool tanks. The extra restrictions are that

the new pool mixtures are sufficient to produce the required amount of final

products, and that the properties of the new mixtures are sufficient to satisfy

final product requirements.

12.2 Model description

This section In this section the basic rules for blending on volume and blending on weight

are developed before stating the mathematical formulation of the underlying

pooling problem.

Proportional

blending . . .

For the sake of simplicity, consider two intermediate products (1 and 2) to be

mixed into a new pooled product (3). Let the symbol x denote the amount of

product, and let the symbol p denote a particular property. The following two

equalities express proportional blending.

x3 = x1 + x2

p3x3 = p1x1 + p2x2

The first identity is the product balance equation, which is linear. The second

identity is the property determination equation, and is nonlinear when both

x3 and p3 are considered to be unknown.

. . . requires

consistent

measurements

Proportional blending is properly defined when the units of measurement are

consistent. Consistency is obtained, for instance, when product amounts are

measured in terms of mass, and the product property is measured as a per-

centage of mass. Similarly, consistency is also obtained when product amounts

are measured in terms of volume, and the product property is measured as a

percentage of volume. If required, it is always possible to transform volume

into mass or vice versa using product densities.

If this is not the

case . . .

As has been mentioned in the previous section, there are several product prop-

erties, such as viscosity and pour point, that are not measured as a percent-

age of mass or volume. These properties play a vital role in determining the

quality of a blend. In practice, a nonlinear function of such properties is con-

structed such that the resulting transformed property values can be viewed

as a percentage of either volume or mass. The determination of such special-

ized nonlinear functions is based on laboratory experiments and curve fitting

techniques.

12.2. Model description 131

. . . then use

transformed

measurements

Let f(p) denote a nonlinear function of one of the properties discussed in

the previous paragraph. Assume that x is expressed in terms of mass, and

that f(p) is measured as a percentage of mass. Then the following identities

express proportional blending.

x3 = x1 + x2

f(p3)x3 = f(p1)x1 + f(p2)x2

You could of course use a variable for f(p) and apply the inverse of f to

obtain p after you have found the solution of the underlying model. This is

what is typically done in practice.

Verbal model

statement

By considering the basic pooling problem described in this chapter, it is fairly

straightforward to describe the objective and constraints in a compact verbal

manner.

Maximize: total sales value of final products

Subject to:

� for all pool tanks: the bounded flow entering a pool tank must be

equal to the flow leaving a pool tank,

� for all properties and pool tanks: the property values of pooled

product are determined by the property values of the products

entering the pool tank,

� for all properties and final products: the property values of final

product are determined by the property values of the products

coming from the pool tanks,

� for all final products: the quantities of final product must be

between specified bounds,

� for all properties and final products: the property values of final

product must be between specified bounds,

NotationThe following notation is based as much as possible on the use of a single

letter for each identifier for reasons of compactness. Such compact notation

is not recommended for practical models built with a system such as Aimms,

because short names do not contribute to the readability and maintainability

of computerized models.

Indices:

p properties

i intermediates

t pool tanks

f final products

Parameters:

vpi value of property p in intermediate i

r i minimal amount of intermediate i to be used

r i maximal amount of intermediate i to be used

132 Chapter 12. A Pooling Problem

r f minimal required amount of final product f

r f maximal required amount of final product f

wpf minimal value of property p in final product f

wpf maximal value of property p in final product f

ct capacity of pool tank t

Variables:

vpt value of property p in pool tank t

vpf value of property p in final product f

xit flow of intermediate i to pool tank t

xtf flow of pool tank t to final product f

st total stock of pooled product in pool tank t

πf sales price of final product f

Flow constraints As discussed in the previous section, the amount of each intermediate prod-

uct to be pooled is restricted from above and below. Instead of writing a single

flow balance constraint for each pool tank, there are separate equations for

both inflow and outflow using the same stock variable. It is then straight-

forward to specify a simple bound on the stock level in each pool tank. The

following five constraints capture these limitations on flow from and to the

pool tanks.

∑

t

xit ≥ r i ∀i
∑

t

xit ≤ r i ∀i

st =
∑

i

xit ∀t

st =
∑

f

xtf ∀t

st ≤ ct ∀t

Property value

determination

constraints

The property value determination constraints are essentially the proportional

blending equalities explained at the beginning of this section. These con-

straints are only specified for pooled and final products, because the property

values of all intermediate products are assumed to be known.

vpt
∑

i

xit =
∑

i

vpixit ∀(p, t)

vpf
∑

t

xtf =
∑

t

vptxtf ∀(p, f)

12.3. A worked example 133

Final product

requirement

constraints

Due to market requirements with respect to quantity and quality, both the

amount of final product and the associated property values must be between

a priori specified bounds.

∑

t

xtf ≥ r f ∀f
∑

t

xtf ≤ r f ∀f

vpf ≥ wpf ∀(p, f)
vpf ≤ wpf ∀(p, f)

Objective

function

As has been indicated in the previous section, the price of a final product is not

entirely constant, but is assumed to be dependent on its associated property

values. In the specification below, only an abstract functional reference F to

property dependence is indicated. In the worked example of the next section a

particular function is used for numerical computations. The objective function

to be maximized can then be written as follows.

∑

f

πf
∑

t

xtf

πf = F(vpf)

12.3 A worked example

This sectionIn this section you will find a description of model input data that is consistent

with the entities in Figure 12.1. In addition, you will find some comments

based on running a few computational experiments with Aimms.

Domain

restrictions on x

The variable xit denotes the flow of intermediate i to pool tank t. In Fig-

ure 12.1, these intermediate flows are restricted such that all high and low sul-

phur products are pooled into separate pool tanks. In Aimms, you can model

this by simply specifying an index domain as part of the declaration of the

variable x. Such a domain is then a parameter with nonzero entries for the

allowed combinations of i and t.

Variable status

of v

The symbol v is used both as a parameter and a variable depending on the

index references. In Aimms, you can implement this dual status by declaring

the symbol to be a variable, and then changing its status to non-variable for

selected index combinations. You can accomplish this change by writing an

assignment statement inside a procedure using the NonVar suffix. A typical

assignment is

v(p,i).NonVar := 1;

134 Chapter 12. A Pooling Problem

Intermediate

product data

Both the lower and upper bound on the amount in [kton] of each intermedi-

ate product to be pooled are displayed in Table 12.1. In this table you also

find the property values associated with the properties sulphur and V50, both

measured as a percentage of mass. The property V50 is a derived measure of

viscosity for which the proportional blending rule is appropriate.

r i r i vpi

Sulphur V50

[kton] [kton] [%] [%]

HS1-SR 1 3 5.84 43.7

HS1-CR 3 5.40 36.8

HS1-HGO 3 0.24 12.8

HS1-VGO 3 2.01 15.4

HS2-SR 1 3 5.85 47.3

HS2-CR 3 5.38 39.2

HS2-HGO 3 0.26 13.1

HS2-VGO 3 2.04 15.9

LS1-SR 1 3 0.64 39.9

LS1-CR 3 0.57 38.2

LS1-HGO 3 0.02 13.5

LS1-VGO 3 0.14 16.3

LS2-SR 1 3 0.93 38.1

LS2-CR 3 0.85 34.1

LS2-HGO 3 0.03 13.2

LS2-VGO 3 0.26 15.5

Table 12.1: Intermediate product data

Pool tank data The only data solely linked to pool tanks is their capacity. In this simplified

example it is assumed that the capacity of each pool tank is 15 [kton].

Final product

requirements

In Table 12.1 you will find the upper and lower bounds on both the quantities

and property values of the final products to be blended.

r f r f wpf wpf wpf wpf

Sulphur V50

Min Max Min Max Min Max

[kton] [kton] [%] [%] [%] [%]

LSFO 10 11 1.5 30.0 34.0

HSFO 11 17 3.5 32.0 40.0

Table 12.2: Final product requirements

12.3. A worked example 135

Price of final

product

In this particular example, the unit sales price of each final product is made

dependent on its sulphur content, with low sulphur levels worth more than

high sulphur levels. The base price of one [ton] of low sulphur fuel oil with the

highest level of permitted sulphur is equal to 150 dollars. Similarly, the base

price of one [ton] of high sulphur fuel oil with the highest level of permitted

sulphur is equal to 100 dollars. These base prices can only increase as the

relative level of sulphur decreases. The following formula for πf in terms of

the base price π If is used.

πf = π If (2−
vSulphur,f

wSulphur,f
)

Initial model

run

Once you have implemented the model of the previous section in Aimms, you

are likely to obtain an error indicating that ”all Jacobian elements in the row

are very small”. This message comes directly from the solver, and is most

likely a reflection of some initial variable values at their default value of zero.

The algorithm uses a matrix with derivative values for all constraints in terms

of all variables. Several of these derivative values correspond with the product

of two variables. From basic calculus you know that the term xy has zero

partial derivatives with respect to both x and y when these are at their default

value of zero.

Initialize flow

values

The remedy to fix the problem mentioned in the previous paragraph is straight-

forward. By initializing the flow variables x away from their lower bound of

zero, the error message will disappear. In this example you could consider

random flow values for the intermediate products between their bounds, and

distribute the corresponding content of the pool tanks equally over the final

products. As a result, the flow balance constraint are already satisfied. As

it turns out, specifying initial values for variables in nonlinear mathematical

programs is just one of the ways to make the solution process more robust.

Setting bounds on variables, and scaling your data such that solution values

become of similar magnitude, are all useful ways to improve the likelihood

that a solver will find a correct solution.

Derive initial

property values

As you start to experiment with initial values for the x variables, you might

find that the solver still has difficulties finding a feasible solution in some of

the cases that you try. As it turns out, you can reduce the number of times

the solver is unable to find a feasible solution by also computing the initial

values of the v variables using both the values of x and the property value

determination equalities.

136 Chapter 12. A Pooling Problem

Multiple

solutions exist

If you have not found different optimal solution values after experimenting

with various initial values for x and v , you may want to write an experiment in

which you let the system generate random initial values for the x variables and

compute the corresponding values of v . It is easy to write such a procedure

in Aimms, and make a page to display the various objective function values in

a table. In this example, two distinct local optimal objective function values

were found. They are 3624.0 and 4714.4.

12.4 Summary

In this chapter a simplified pooling problem was introduced together with a

small data set for computational experiments. The problem was transformed

into a nonlinear programming model with proportional blending constraints

to determine new product property values. Initial values of the solution vari-

ables were needed not only to support the solution finding process, but also

to determine different locally optimal solutions.

Exercises

12.1 Implement the mathematical program described in Section 12.2 using

the example data provided in Section 12.3.

12.2 Experiment with several initial values by writing a procedure in Aimms

as described in Section 12.3. Try to find at least two different local

optima.

12.3 Investigate the effect of removing all pool tanks on the objective func-

tion value. Without pool tanks, final products are blended on the basis

of intermediate product streams only.

Part IV

Intermediate Optimization

Modeling Applications

Chapter 13

A Performance Assessment Problem

This chapterIn this chapter, you will encounter the problem of determining the perfor-

mance of a set of comparable organizations. Such evaluation problems are

nontrivial. The basic concept of relative efficiency of one organizational unit

in relation to the other units is introduced. Based on this concept, the underly-

ing problem can be translated into a collection of linear programming models

using relative efficiency as an optimization criterion. Efficient organizations

can then be identified, and form a reference for the other organizations. An

example with seven input-output categories and 30 related organizations is

provided for illustrative purposes.

ReferencesThe term Data Envelopment Analysis (DEA) is the general heading under which

many papers on the assessment of comparable organizations have been writ-

ten. The term was introduced [Ch78]. Since that time, several books on the

topic have been written. One such references is [No91]. Unfortunately, nei-

ther the term Data Envelopment Analysis nor its abbreviation DEA creates an

immediate mental picture when considering performance assessment of com-

parable organizations. For that reason, the term is not used any further in this

chapter.

KeywordsLinear Program, Mathematical Reformulation, What-If Analysis, Worked Exam-

ple.

13.1 Introduction and terminology

Decision making

units (DMU’s)

In large distributed organizations, senior management routinely wants to eval-

uate the relative performance of similar decision making units (DMU’s) under

their control. One example of such a distributed organization in the private

sector is a bank with branch offices operating as autonomous DMU’s. Another

example is a retail chain with similar outlets as DMU’s. In the public sector you

may think of a Board of Education overseeing many schools, a health program

governing several hospitals, or a state prison system managing their prisons.

140 Chapter 13. A Performance Assessment Problem

Management

issues

Senior management has specific objectives in mind when evaluating the orga-

nization’s DMU’s. Typical issues of concern in the private sector are increasing

sales, reducing costs, identifying good performers, etc. Typical issues in the

public sector are improving service levels, staff utilization and the manage-

ment of large expenditures. Through performance evaluations, senior man-

agement gains insight into the operation of the individual DMU’s under its

control. For the case where the overall organization has to shrink in terms of

the number of DMU’s, these evaluations can be used as a basis for eliminating

the truly poor performers.

Outputs and

inputs

When measuring the performance of its DMU’s, management should not limit

the analysis to a few isolated measures such as profit or cost. Instead, a wide

range of input and output factors should be considered in order to get a com-

prehensive insight into how well an organization is really performing in com-

parison to others.

Performance

measures . . .

For every type of application there are both specific and generic performance

measures. Some of them are easy to measure, while others may be difficult to

capture in quantitative terms.

. . . in the

private sector

Performance measures encountered in private sector applications are often

financial in nature. Typical examples are total revenue, revenue growth, un-

controllable cost, controllable costs, total liabilities, net capital employed, etc.

Examples of non-financial performance measures are competition, age of unit,

catchment population, customer service, pitch, etc.

. . . and in the

public sector

Examples of performance measures in the public sector are staff utilization,

productivity, throughput, accuracy, customer satisfaction, number of publica-

tions, client/staff ratio’s, etc.

Absolute and

relative

efficiency

Efficiency can be described as the use made of resources (inputs) in the at-

tainment of outputs. A DMU is 100% absolute efficient if none of its outputs

can be increased without either increasing other input(s) or decreasing other

output(s). A 100% relative efficiency is attained by a particular DMU once any

comparison with other relevant DMU’s does not provide evidence of ineffi-

ciency in the use of any input or output. In the sequel this concept of relative

efficiency will be translated into a workable mathematical formulation.

13.2 Relative efficiency optimization

A ratio measure

. . .

In this chapter, the above relative efficiency measure of a DMU is defined math-

ematically by the ratio of a weighted sum of outputs to a weighted sum of

inputs. This ratio can be maximized by allowing the best possible selection of

13.2. Relative efficiency optimization 141

nonnegative weights for each DMU separately. This implies the existence of as

many optimization models as there are DMU’s. Of course, the weights cannot

be arbitrarily large, and thus have to be restricted as explained in this section.

. . . expresses

relative

efficiency

A DMU is said to be efficient relative to other DMU’s if the value of its ratio

efficiency measure is at least as large as those of the other DMU’s using the

same weights.

Verbal modelThe following verbal model description expresses an optimization model for

each DMU separately.

Maximize: relative efficiency measure for a particular DMU,

Subject to:

� for all DMU’s the corresponding relative efficiency measure is

restricted to be less than or equal to 1.

In the above formulation, the restriction of each ratio measure to be less than

or equal to 1 is meant to indicate that both the numerator and the denominator

are equally important in determining the relative efficiency.

NotationThe following symbols will be used.

Indices:

d decision making units

i observed input categories

j observed output categories

Parameters:

aid observed input level (> 0) of input i for DMU d

bjd observed output level (> 0) of output j for DMU d

p element parameter with specific DMU as its value

Variables:

xid weight to be given to input i for DMU d

yjd weight to be given to output j for DMU d

The objective

for each DMU

separately

The relative efficiency ratio measure is defined for each DMU separately. For

this reason, the element parameter p (a standard concept in Aimms) is used in

the second index position of each identifier. As stated previously, the objective

is to maximize the ratio of a weighted sum of outputs to a weighted sum of

inputs. This can be written as follows.

(∑

j∈J
bjpyjp

) / (∑

i∈I
aipxip

)

142 Chapter 13. A Performance Assessment Problem

Ratio constraint The optimal selection of the nonnegative weights xip and yjp are used to

compare the performance of the other DMU’s based on their values of the

various input and output factors. By restricting the corresponding ratio to 1

for all DMU’s (including DMU p), relative efficiency can be at most 1 (which can

be interpreted as 100%). ∑

j∈J
bjdyjp

∑

i∈I
aidxip

≤ 1

Summary of

first formulation

A first mathematical formulation of the model can be stated as follows.

Maximize:

(∑

j∈J
bjpyjp

) / (∑

i∈I
aipxip

)

Subject to: ∑

j∈J
bjdyjp

∑

i∈I
aidxip

≤ 1 ∀d ∈ D

xip ≥ 0 ∀i ∈ I
yjp ≥ 0 ∀j ∈ J

Some simple

manipulations

In the previous formulation you may alter any optimal solution by multiplying

the weight variables with a constant. Such multiplication does not alter the

input-output ratio’s. By forcing the weighted sum of inputs (i.e. the denom-

inator) in the objective function to be equal to 1 you essentially remove this

degree of freedom. In addition, the nonlinear ratio constraints can be trans-

formed into linear constraints by multiplying both sides of the inequalities

with their positive denominator. The denominator is always positive, because

(a) all input and output levels are assumed to be positive, and (b) the nonneg-

ative input weights cannot all be 0 when the weighted sum of inputs in the

objective function is equal to 1.

Resulting linear

program

The resulting linear programming formulation is now as follows.

Maximize:

∑

j∈J
bjpyjp

13.3. A worked example 143

Subject to: ∑

j∈J
bjdyjp ≤

∑

i∈I
aidxip ∀d ∈ D

∑

i∈I
aipxip = 1

xip ≥ 0 ∀i ∈ I
yjp ≥ 0 ∀j ∈ J

Concept of

reference set

The optimal value of the objective function for the particular DMU referenced

through p is either 1 or less than 1. In the latter case, there must be one or

more other DMU’s which have a relative efficiency equal to 1 based on these

same weights. If this were not the case, all output weights could be multiplied

with a scalar greater than 1. This increases the optimal value of the objective

function, which is a contradiction in terms. The subset of other DMU’s with

relative efficiency equal to 1 is referred to as the reference set of p.

13.3 A worked example

BackgroundConsider a chain of 30 stores with total revenue of roughly US$ 72 million

and total cost of roughly US$ 68 million. The overall profit-before-tax slightly

exceeds 5.5%, and senior management considers this too low for their type of

business. As a result, they decide to initiate a study to assess the performance

of their stores. In particular, they would like to make an initial selection of

those stores that are relatively poor performers. These stores can then be

investigated further prior to making any decisions regarding selling, closing or

improving one or more of these poor performers.

Available dataIn Table 13.1 you will find the input and output factors for a total of 30 DMU’s

numbered (for simplicity) from 1 to 30. The number of factors is kept small

in this example, but in real applications you may encounter several additional

factors not mentioned here. The two main factors determining profit are ‘Rev-

enue’ and ‘Total Cost’, measured in 1000’s of dollars. The total cost figures

have been split into ‘Staff Cost’ (variable cost) and ‘Non-staff Cost’ (fixed cost).

The three non-financial performance measures are ‘Customer Service’, ‘Com-

petition’ and ‘Age of Store’. Customer service is expressed as a rating between

1 (lowest) and 10 (highest). Competition is a count of the number of competi-

tors within a fixed driving distance. The age of a store is expressed in terms of

months.

Management

versus DMU’s

The study is initiated by senior management, and they control the way that

the assessment is performed by choosing the input and output factors to be

considered. As will be illustrated, such a choice will have a definite impact on

the results and their conclusions. On the other hand, the weights associated

with each of the factors are chosen to optimize the relative efficiency of each

144 Chapter 13. A Performance Assessment Problem

Input-Output Factors

Total Staff Non-staff Age of Competition Customer Revenue

Cost Cost Cost Store Service

[103$/yr] [103$/yr] [103$/yr] [month] [-] [-] [103$/yr]

DMU-01 1310 238 1072 18 11 8 1419

DMU-02 2091 459 1632 46 12 8 3064

DMU-03 930 154 776 36 9 5 987

DMU-04 3591 795 2796 34 9 7 3603

DMU-05 2729 571 2158 35 13 9 2742

DMU-06 2030 497 1533 57 7 6 2536

DMU-07 3247 558 2689 36 5 9 4320

DMU-08 2501 571 1930 40 12 7 3495

DMU-09 2299 407 1892 17 8 8 2461

DMU-10 2413 306 2107 23 16 5 1851

DMU-11 1450 458 992 49 18 10 1935

DMU-12 2758 494 2264 35 9 8 3558

DMU-13 1857 360 1497 59 25 5 2088

DMU-14 3195 618 2577 51 9 8 3963

DMU-15 3505 759 2746 38 12 9 3918

DMU-16 1408 313 1095 24 9 8 1693

DMU-17 1127 253 874 17 5 7 1196

DMU-18 1637 340 1297 21 13 7 1945

DMU-19 2305 551 1754 27 7 6 3207

DMU-20 1781 303 1478 34 29 4 1622

DMU-21 3122 642 2480 26 5 10 2334

DMU-22 2597 465 2132 20 11 6 1387

DMU-23 1817 335 1482 28 4 9 1969

DMU-24 3483 825 2658 53 11 6 3422

DMU-25 1954 424 1530 11 15 3 1189

DMU-26 1120 159 961 4 5 6 810

DMU-27 1408 248 1160 36 7 3 1081

DMU-28 3420 672 2748 44 7 9 3088

DMU-29 2242 364 1878 18 11 5 1796

DMU-30 2643 490 2153 27 6 7 3243

Table 13.1: Observed values per factor

particular DMU separately. It is thus possible that a particular weight can be

zero, thereby eliminating the effect of the corresponding factor relative to the

other factors. If a DMU with its own optimal weights cannot be 100% relative

efficient, then it is not part of the reference set and thus subject to further

scrutiny.

Output versus

input

In each application a decision must be made as to which factors are output

and which factors are input. In general, an output factor is a factor that refers

to aspects of achievement, while an input factor is a factor that aids or hin-

ders the production of the outputs. In this example, ‘Revenue’ and ‘Customer

13.3. A worked example 145

Service’ are achievement factors, while all other categories are considered as

input factors. A priori, the category ‘Age of Store’ cannot be seen as always

hindering or always aiding any of the achievement factors. As was indicated in

the previous paragraph, it is senior management who decides on the particular

assessment experiments, and they will only consider those inputs and outputs

that are meaningful to them and their decisions.

Correlated dataIn practical applications the number of input and output factors can be quite

large. In order to make meaningful choices for assessment, it is customary to

examine the correlations between the factors. The reasons to exclude a cer-

tain factor from consideration may be the fact that another factor is already

considered between which there exists a high correlation. Consider the corre-

lations in Table 13.2. As it turns out, there is a high correlation between ‘Total

Cost’, ‘Staff Cost’ and ‘Non-staff Cost’. In addition, there is a dependency be-

tween these cost categories, because the latter two add up to the first. This

dependency shows up in the third experiment where all factors are considered

and the optimal weight associated with ‘Total Cost’ is zero for each DMU.

Total Staff Non-staff Age of Competition Customer Revenue

Cost Cost Cost Store Service

Total Cost 1.000 0.916 0.994 0.331 −0.134 0.355 0.826

Staff Cost 1.000 0.865 0.466 −0.110 0.410 0.822

Non-staff Cost 1.000 0.283 −0.137 0.329 0.802

Age of Store 1.000 0.265 0.156 0.511

Competition 1.000 −0.343 −0.162

Customer Service 1.000 0.484

Revenue 1.000

Table 13.2: Correlations between the factors

First experimentIn this example only three experiments are discussed. In practice, a large num-

ber of experiments will be performed. The first experiment uses the factor

‘Revenue’ as output and the factor ‘Total Cost’ as input. All other factors are

ignored. In this experiment, the objective function is therefore a simple ratio,

and you would expect only the most profitable DMU to be 100% relative effi-

cient. This is indeed the case, and the reference set consists of DMU-02. The

seven poor performers (starting from the worst) are DMU-22, DMU-25, DMU-

26, DMU-21, DMU-10, DMU-27, and DMU-29.

Second

experiment

The second experiment does not focus exclusively on ‘Revenue’ as output, but

also considers ‘Customer Service’ as output. After all, high customer service

may lead to improved sales in the future. ‘Total Cost’ remains the only input.

In this experiment, DMU-11 joins DMU-02 as 100% relative efficient. Note that

when factors are added to an experiment and no factors are deleted, then no

DMU’s leave the reference set and only new ones can enter. One of the seven

146 Chapter 13. A Performance Assessment Problem

poor performers, namely DMU-26, has improved its position relative to other

DMU’s. The order of the poor performers has also changed. The seven poor

performers (starting from the worst) are now DMU-22, DMU-25, DMU-10, DMU-

27, DMU-21, DMU-29, and DMU-20.

Third

experiment

In the third and last experiment, both ‘Revenue’ and ‘Customer Service’ are

considered as output, while all other factors are used as input. Such an exper-

iment offers each DMU plenty of opportunity to improve its relative efficiency.

As a result, twelve DMU’s have become 100% relative efficient and form the

reference set illustrated in Table 13.3. There is also some movement in the

set of poor performers. Starting from the worst, they are DMU-22, DMU-27,

DMU-25, DMU-24, DMU-20, DMU-28, and DMU-29.

Relative Relative Relative

efficiency efficiency efficiency

DMU-01 1.0000 DMU-23 1.0000 DMU-10 0.8204

DMU-02 1.0000 DMU-26 1.0000 DMU-13 0.8106

DMU-03 1.0000 DMU-08 0.9841 DMU-05 0.7999

DMU-07 1.0000 DMU-30 0.9657 DMU-29 0.7360

DMU-09 1.0000 DMU-18 0.9652 DMU-28 0.7342

DMU-11 1.0000 DMU-12 0.9612 DMU-20 0.7099

DMU-16 1.0000 DMU-06 0.9339 DMU-24 0.7046

DMU-17 1.0000 DMU-14 0.9032 DMU-25 0.6876

DMU-19 1.0000 DMU-15 0.8560 DMU-27 0.5990

DMU-21 1.0000 DMU-04 0.8372 DMU-22 0.5271

Table 13.3: Optimal relative efficiencies with all factors considered

Conclusions On the basis of these few experiments, senior management can only make

some preliminary conclusions. It is certainly true that DMU-22 has been con-

sistently the worst performer of all. In addition, the three poorest performers

have been so in all three experiments, and DMU-29 has always been on the

edge of being a poor performer. However, the extent to which any of these

results can be interpreted in a context which is relevant to managing the or-

ganization, is not clear at this point. In practice, assessment questions can be

analyzed through the type of mathematical and statistical analysis described

in this chapter, but extensive and detailed subsequent analysis of selected

DMU’s is required before any sound decision by senior management regarding

closure, investment, target setting, etc. can be made.

13.4. Computational issues 147

13.4 Computational issues

This sectionIn this section you will find some observations regarding the quality of the

numerical solution for the type of assessment model discussed in this chapter.

Numerical

difficulties

Computational characteristics of the mathematical performance assessment

model described in this chapter have been studied in the literature ([Ch96]).

Numerical difficulties have been observed when

� there are many DMU’s,

� the number of inputs and outputs is large,

� the inputs and outputs are of different orders of magnitude, and

� the data sets for some DMU’s are nearly identical.

It is not within the scope of this book to explain why these difficulties occur.

Fortunately, there are some simple precautions you can take to reduce the

likelihood of any numerical difficulties. Why these precautions may have a

positive effect on the numerical quality of your solution is again outside the

scope of this book.

Precautionary

measures

If you want to be on the safe side, follow the two precautionary measures

recommended in this paragraph. Their implementation will never lead to a

deterioration of solution quality. The first precautionary measure is to scale

your data such that the values of each factor center around the same constant

value, say 1. The effect of this measure is that the weights will tend to assume

the same relative order of magnitude. The second measure is to change the

right-hand side of the constraint limiting the weighted input. Instead of using

the value 1, you may want to use the total number of input factors used in

the experiment. This will cause the absolute size of the weights to be of order

1. In this case the relative efficiency of each DMU is no longer measured as

a fraction but as a multiple thereof. It is straightforward to implement these

precautionary measures in Aimms using the Unit attribute associated with pa-

rameters.

13.5 Summary

In this chapter a general framework for assessing the relative performance

of multiple decision making units has been presented. The analysis uses the

concept of relative efficiency. The approach is balanced in that senior manage-

ment is allowed to construct the various assessment experiments, while each

particular decision making unit gets its own optimal weights for each of the

input-output factors selected for the experiments. The corresponding model is

a linear program to be solved for each decision making unit. Some suggestions

to improve numerical performance were made. A worked example with seven

148 Chapter 13. A Performance Assessment Problem

input-output categories and thirty related decision making units was provided

for illustrative purposes.

Exercises

13.1 Implement the mathematical program described at the end of Sec-

tion 13.2 using the example data provided in Section 13.3. Repeat

the three experiments described in Section 13.3, and observe the effi-

ciency associated with the DMU’s.

13.2 Implement the precautionary measures described in Section 13.4 as

part of your model in Aimms. Write a procedure that will work for any

data set related to the input-output categories used in Section 13.3.

13.3 Can you explain for yourself why the optimal weight associated with

the category ‘Total Cost’ in the third experiment is zero for each DMU?

Chapter 14

A Two-Level Decision Problem

This chapterThis chapter studies a two-level decision problem. There is a government at

the policy making level wanting to influence the behavior of several companies

at the policy receiving level. The government intends to attain its objectives

by implementing tax and subsidy policies. The individual companies make

their own optimal decisions given the tax and subsidy rates announced by the

government. A two-level model of the problem is presented, and subsequently

solved using two alternative solution approaches. The first is intuitive and

general, but requires extensive computations. The second approach is theo-

retical and less general, but is computationally efficient. Both approaches are

described in detail, and can easily be implemented in Aimms. A data set and

some basic data manipulations are included for illustrative purposes.

ReferenceA two-level program similar to the one discussed in this chapter can be found

in [Bi82].

KeywordsNonlinear Program, Auxiliary Model, Customized Algorithm, Mathematical

Derivation, What-If Analysis, Worked Example.

14.1 Problem description

Waste waterConsider a set of manufacturing companies situated on a river, producing sim-

ilar products. The demand for these products is such that each company op-

erates at maximum capacity for maximum profitability. Unfortunately, these

manufacturing plants all produce waste water, which is dumped into the river.

This practice has caused the water quality to deteriorate.

Waste treatmentThrough public and governmental pressure all the companies have installed

waste treatment plants. These plants use filters for waste removal. The ex-

act amount of waste removed is controlled by varying the number of filters

and their cleaning frequency. The cost of removing waste from waste water

becomes increasingly expensive as the waste is more dilute.

150 Chapter 14. A Two-Level Decision Problem

Government

monitoring

The government monitors both the production of waste water and the amount

of waste removed at each manufacturing site. The resulting data forms the

basis of ecological water studies from which recommendations for maintaining

river water quality are made.

Taxes and

subsidies

The government has various options to control the amount of waste dumped

into the river. One option is to specify an annual quota for each manufacturer.

However, this requires extensive negotiations with each manufacturer and may

lead to court actions and resistance. A second and more workable option is

to introduce a tax incentive scheme using its legislative power. The idea is to

introduce a tax on waste and a corresponding subsidy on waste removal such

that the total tax revenue covers not only the total subsidy expenditure, but

also the cost of monitoring the plants. The effect of such a scheme, assuming

a cost minimizing response from the manufacturing companies, is a reduction

in the amount of waste dumped into the river.

Two-level

decision

problem

The above proposed tax incentive scheme results in a two-level decision prob-

lem. At the higher policy making level, the government must decide a joint tax

and subsidy policy to steer the waste removal decisions by the manufacturing

companies at the lower policy receiving level. At this lower level, decisions

are only made on the basis of cost minimization and are independent of any

government objectives.

Different

knowledge

levels

It is assumed that the government has complete knowledge of the problem,

while the manufacturing companies have only limited knowledge. The gov-

ernment has access to all waste production and removal data, and has insight

into the cost associated with operating waste treatment plants. The individual

manufacturing companies operate independently. They have no insight into

the manufacturing operations of their competitors, nor are they aware of the

precise objectives of the government.

Example Consider an example consisting of four manufacturing companies with Ta-

ble 14.1 representing the total amount of waste produced, the waste concen-

tration per unit of waste water, and an operating efficiency coefficient for each

waste treatment plant.

waste water waste concentration efficiency coef.

[103m3] [kg/m3] [$·kg/m6]

Company 1 2,000 1.50 1.0

Company 2 2,500 1.00 0.8

Company 3 1,500 2.50 1.3

Company 4 3,000 2.00 1.0

Table 14.1: Waste production by the manufacturing companies

14.2. Model formulation 151

If none of the companies removed waste, then the total annual amount of

waste dumped is 15,250 [103 kg]. It will be assumed that the government has

set its target level to 11,000 [103 kg], and that the total monitoring cost is

estimated to be 1,000 [103 $].

14.2 Model formulation

Verbal ModelFollowing is a verbal model statement of the problem. The two-level relation-

ship is reflected by the fact that the policy receiving submodels are nothing

more than constraints in the policy making model.

Goal: the government wants to find a tax and subsidy rate

Subject to:

� total revenue from taxation equals total subsidy expenditure plus

an amount covering the waste monitoring activities,

� the total amount of waste dumped by all companies is less than

or equal to a fixed target level, and

� for each company the amount of waste dumped by that

company is the result of individual cost minimization reflecting

waste removal cost, taxes and subsidies.

In the above formulation, the government decides on the tax and subsidy rates,

while the individual companies decide on the level of waste removal given the

government decision. As stated previously, these companies are not aware of

any of the financial or environmental targets set by the government.

Notation . . .The verbal model statement of the two-level waste removal problem can be

specified as a mathematical model using the following notation.

. . . at the policy

making level

Parameters:

L target level of waste to be dumped annually [103kg]

K total annual cost of government monitoring [103$]

Variables:

T tax rate for waste produced [$/kg]

S subsidy rate for waste removed [$/kg]

. . . at the policy

receiving level

Index:

j manufacturing companies

Parameters:

dj waste concentration observed at j [kg/m3]

qj waste water produced annually by j [103m3]

cj efficiency coefficient of company j [$·kg/m6]

152 Chapter 14. A Two-Level Decision Problem

Variable:

xj removal of waste water by j [kg/m3]

Tax-subsidy

balance

The tax-subsidy balance states that total annual government receipts from tax-

ation must equal the total cost of government monitoring plus its total subsidy

expenditure.

T
∑

j

qj(dj − xj) = K + S
∑

j

qjxj

Total waste

limitation

The total waste limitation constraint requires that the annual amount of waste

dumped into the river is less than or equal to the target level.

∑

j

qj(dj − xj) ≤ L

Policy receiving

submodels

The cost minimization model for each company j concerns the choice of xj
given T and S. The objective function can be written as

Minimize:
0≤xj≤dj|T,S

qj

[(cj

dj − xj
− cj

dj

)
+ T(dj − xj)− Sxj

]
∀j

Waste removal

cost term

The term
cj

dj−xj −
cj
dj

denotes the cost associated with the removal of waste from

each unit of waste water by manufacturing company j and it is non-linear. The

functional form of this term is based on the filtering technology used in the

waste treatment plants. Filtering cost becomes essentially infinite if all waste

has to be removed from waste water. The coefficient cj reflects the operating

efficiency of each waste treatment plant, and its numeric value is based on

historic data.

Tax incentive

cost terms

The term T(dj − xj) denotes the company’s tax expenditure associated with

the left-over concentration of waste. The term Sxj denotes the subsidy for

waste removal per unit of waste water.

Strict convexity Note that the policy receiving models are unconstrained minimization models.

The cost functions are strictly convex for all values of S and T. This implies the

existence of a unique minimum and thus a unique response from the compa-

nies to the government. The curves in Figure 14.1 represent convex function

contours, and illustrate the total cost of manufacturing company 1 as a func-

tion of the waste removal variable x1 for several combined values of T and

S.

14.3. Algorithmic approach 153

1.50

1500

T = 0.10, S = 0.02

T = 0.25, S = 0.41

T = 0.50, S = 1.06

Waste Removal

[kg/m3]

Total Cost

[103 $]

Figure 14.1: Cost function for company 1 for several T and S combinations

Model summaryThe following mathematical statement summarizes the model.

Find: T , S

Subject to:
T
∑

j

qj(dj − xj) = K + S
∑

j

qjxj

∑

j

qj(dj − xj) ≤ L

Minimize:
0≤xj≤dj|T,S

qj

[(cj

dj − xj
− cj

dj

)
+ T(dj − xj) − Sxj

]
∀j

14.3 Algorithmic approach

This sectionThis section describes an algorithm to compute the government tax and sub-

sidy rates. The algorithm is an iterative scheme in which the government tax

rate is adjusted each iteration. The process continues until the response from

all companies is such that the total amount of annual waste dumped roughly

equals the target level of total waste. It is straightforward to implement this

algorithm in the Aimms modeling language.

Waste equalityThe government realizes that any form of waste removal is costly, and that

extra removal cost negatively impacts on the competitive position of the in-

dividual companies. Therefore, the waste limitation inequality (restricting the

total amount of waste to be dumped into the river to be at most L) can be

viewed as an equality.

154 Chapter 14. A Two-Level Decision Problem

Derive subsidy

from tax

Let G = ∑
j qjdj denote the total amount of waste that would be dumped

into the river without any removal activities. As indicated in the previous

paragraph, L is the exact amount of waste that the government wants to be

dumped. Under this assumption the tax-subsidy balance becomes TL = K +
S(G − L). Once the government decides on a value of T , the corresponding

value of S is then computed using the formula S = (TL− K)/(G − L).

Iterate on tax The above observations, coupled with the unique cost minimizing response

from the manufacturing companies, forms the basis of the following simple

computational scheme for the government.

1. Decide on an initial tax rate T .

2. Compute the corresponding subsidy rate S.

3. Announce these rates to the companies at the policy making level.

4. Let them respond with their waste removal decisions.

5. Compute the total amount of waste going to be dumped.

6. If approximately equal to L, then stop.

7. If less than L, then decrease T and go to step 2.

8. If greater than L, then increase T and go to step 2.

Proper response Note that if the amount of dumped waste is too high, the tax rate should

go up. This increases the corresponding subsidy rate, thereby providing the

companies with a higher incentive to remove more waste. If the amount of

dumped waste is less than L, then the tax rate should be decreased. This

lowers the subsidy rate and indirectly also the level of waste removal.

Convergence

bisection search

The cost minimizing response from the manufacturing companies is a contin-

uous function of the parameters T and S. This means that a small change in

T (and thus in S) will result in a small change in the value of the correspond-

ing removal variables xj . In addition, the corresponding waste removal cost

function value for each manufacturing company increases monotonically with

an increase in the value of T . As a result, a straightforward bisection search

over the tax rate T will lead to a combined tax and subsidy rate for which the

amount of waste to be dumped is approximately equal to L. For these rates,

the tax-subsidy balance is satisfied by construction.

Hunt phase In a bisection search algorithm both a lower bound LB and an upper bound UB

on the tax rate T are required. An initial lower bound on T is the value for

which the corresponding S becomes exactly zero. An initial upper bound on

the value of T is not easily determined which is why there is an initial hunt

phase. In the hunt phase, both a good upper bound and an improved lower

bound are found. The computational procedure (in pseudo code) is summa-

rized next.

14.4. Optimal solution 155

LB := K / L ;

REPEAT

T := 2 * LB ;

S := (T * L - K) / (G - L) ;

Solve for x_j given T and S ;

Compute total waste (to be dumped) ;

BREAK WHEN total waste < target level ;

LB := T ;

ENDREPEAT ;

UB := T ;

Note that the current value of LB is adjusted upwards each iteration until a

proper upper bound UB has been determined. At the end of the hunt phase

UB = T and LB = T/2.

Bisection phaseThe interval found during the hunt phase is used as the starting interval for

the bisection phase. In this phase either the lower or upper bound is set equal

to the midpoint of the current interval until the final value of T has been

determined. A small positive tolerance level TOL is introduced to assist with

proper termination of this phase.

TOL := 1.0E-3 ;

REPEAT

T := (LB + UB) / 2 ;

S := (T * L - K) / (G - L) ;

Solve for x_j given T and S ;

Compute total waste (to be dumped) ;

BREAK WHEN abs(total waste - target level) < TOL ;

If total waste < target level, then UB := T ;

If total waste > target level, then LB := T ;

ENDREPEAT ;

14.4 Optimal solution

This sectionThis section reports on the results of solving the two-level decision example

using Aimms and with the above algorithm implemented. In addition to the

initial optimal solution, several sensitivity graphs with respect to the target

level L are included.

Initial solver

failure

When applying the above algorithmic procedure to the example, the cost min-

imization models need to be solved for given values of T and S. However,

during the solution process, the nonlinear solver reported ‘Derivative evalua-

tion error . . . Division by zero’. This error occurred during the evaluation of

the term (
cj

dj−xj −
cj
dj

) because the solver had made too large a step while in-

creasing the value of xj , causing the value of xj to get too close to value of

dj .

156 Chapter 14. A Two-Level Decision Problem

Add extra

bounds

When building nonlinear programming models, it is a good strategy to bound

variables away from values for which the functions are not well-defined. The

solver takes these bounds into account at all times during the solution pro-

cess, thereby avoiding the occurrence of extremely large or small values of the

decision variables. For the example, limiting xj to dj − ǫ with ǫ = 0.001 was

sufficient.

Subsequent

solver failure

After adding the extra bound on xj, another computational problem occurred.

The nonlinear solver reported ‘Solver found error . . . Jacobian element too

large = 1.0E+06’. This error occurred during the evaluation of the derivative

of the term (
cj

dj−xj −
cj
dj

) during the solution process. This type of error often

occurs when the underlying model is badly scaled. Under these conditions,

the problem can usually be avoided by adjusting the measurement unit asso-

ciated with parameters, variables and constraints so that the values of these

identifiers become comparable in size.

Provide starting

solution

However, in the case of the example now under investigation, it turned out that

the error was not due to bad scaling. Instead, the derivative of the first term

(
cj

dj−xj −
cj
dj

) grows too fast when xj approaches dj . One option is to bound xj
even further away from dj . Another option is to provide a starting value from

which the algorithm does not search for new values near dj . The last option

was tried, and the xj variables were initialized to dj/2. With these starting val-

ues, the nonlinear solver solved the cost minimizing models to optimality, and

the iterative procedure to compute the optimal tax value converged properly.

Optimal

solution

The iterative procedure to determine the optimal tax rate consisted of 2 steps

to complete the hunt phase and 10 steps to complete the bisection phase.

During the hunt phase, the initial lower bound LB increased from K/L =
0.0909 (1,000/11,000) to 0.1820 with a final upper bound twice that size.

The optimal value of T was computed to be about $0.239 per unit waste with

a corresponding tax rate S of $0.384 per unit waste removed. The solution

values are summarized in Table 14.2. The total tax income for the government

is 2,632 [103$] and the total subsidy expense is 1,632 [103$].

xj qjxj Cleaning Cost Tax - Subsidy Total Cost

[kg/m3] [103kg] [103$] [103$] [103$]

Company 1 0.233 466.567 245.552 427.000 672.552

Company 2 – – – 598.145 598.145

Company 3 1.056 1,583.582 570.155 −89.702 480.453

Company 4 0.733 2,199.851 868.328 64.557 932.885

Table 14.2: Optimal removal levels and corresponding costs

14.4. Optimal solution 157

The effect of

target levels . . .

Once a model is operational, it is quite natural to investigate its properties

further by running some experiments. For instance, the government might

want to investigate the effect of different target levels on the behavior of the

individual manufacturing companies. The experiments reported in this section

are based on letting the target pollution level L vary from a restricting value of

5,000 [103 kg] to the non-restricting value of 17,500 [103 kg]. The results are

described in the next several paragraphs.

. . . on waste

removal

The waste removal curves in Figure 14.2 indicate that under the tax incentive

scheme of the government, the largest waste producer will remove most of the

waste. Company 2 is the second largest manufacturing company, but with the

cleanest overall production process. The tax incentive program is no longer

applicable for this company once the target level L set by the government is

10,000 [103 kg] or more. Note that the order in which companies no longer

remove waste is the same as the order of waste concentrations dj .

5000 10000 15000

0

1000

2000

3000

4000

5000

Company 1
Company 2
Company 3
Company 4

L = 15250

Target Level

[103 kg]

Total Removal
[103m3]

Figure 14.2: The amount of waste removed (qjxj) per company

. . . on total cost

per unit waste

Figure 14.3 shows that the total cost curve for each manufacturing company

decreases as the value of L increases. This is to be expected as both the re-

moval cost and the tax cost (due to a lower tax rate) will decrease as L in-

creases. It is interesting to note that the companies with the lowest total waste

(i.e. companies 1 and 2) have the highest total cost per unit waste when the

target level L is low, and have the lowest total cost per unit waste when the

target level L is no longer restricting.

158 Chapter 14. A Two-Level Decision Problem

5000 10000 15000

0

1

2

Company 1
Company 2
Company 3
Company 4

L = 15250

Target Level

[103 kg]

Total Cost per

Unit Waste [$/m3]

Figure 14.3: The total cost per unit waste

(i.e.
cj

dj−xj −
cj
dj
+ T(dj − xj)− Sxj)

. . . on tax &

subsidy rates

The two curves in Figure 14.4 compare the tax and subsidy rates as a function

of the target level L. Note that the tax rate is the highest when the target level

is the lowest. This is necessary to induce the companies to remove a significant

amount of their waste in order to reach that target level.

5000 10000 15000

0

1

2

3 Tax
Subsidy

L = 15250

Target Level

[103 kg]

Tax & Subsidy
Rates [$/kg]

Figure 14.4: Optimal tax and subsidy rates

14.5. Alternative solution approach 159

. . . on payments

to/from the

government

The curves in Figure 14.5 indicate that the companies with the lowest initial

waste concentrations (i.e. companies 1 and 2) have a net expenditure to the

government, while the companies with the highest initial waste concentrations

(i.e. companies 3 and 4) have a net income from the government. It seems

unfair that largest contributors to the overall waste dumped into the river

receive the largest subsidies to remove it. On the other hand, their actions have

the strongest effect on the amount of waste to be removed through filtering.

As shown in the next section, given the status quo, the tax incentive program

seems to lead to the most efficient solution for society as a whole.

10000 15000

0

1000

2000

−1000

Company 1
Company 2
Company 3
Company 4

L = 15250

Target Level

[103 kg]

Total Tax minus
Subsidy [103$]

Figure 14.5: The total tax - subsidy per company

(i.e. qj
(
T(dj − xj)− Sxj

)
)

Observe that for each fixed value of the target level L, the sum of the four

function values equals the total annual cost K of government monitoring. For

the case when L ≥ 15,250[103kg], the subsidy is zero and the aggregated tax

paid covers the monitoring cost.

14.5 Alternative solution approach

This sectionThe solution approach described in Section 14.3 is an intuitive and correct

way to solve the two-level model. In this section an alternative single-step

solution method is presented. This alternative method is not as general as the

previous algorithmic approach, but turns out to be very efficient in this case.

The method consists of solving a single auxiliary model, followed by a simple

computation to determine the corresponding values of T and S. The proof of

correctness is based on examining the underlying optimality conditions.

160 Chapter 14. A Two-Level Decision Problem

Optimality

policy receiving

models

The cost minimization model for each individual manufacturing company j,

from Section 14.2, is as follows.

Minimize:
xj|T,S

qj

[(cj

dj − xj
− cj

dj

)
+T(dj − xj)− Sxj

]
∀j

As previously stated, these optimization models are strictly convex. This im-

plies the existence of a necessary and sufficient optimality condition for each

company j. This condition results from setting the first derivative with respect

to the variable xj equal to zero.

qj

[
cj

(dj − xj)2
− (T + S)

]
= 0 ∀j

There is a unique solution value xj for each unique value of T + S.

An auxiliary

model

Consider the following model in which there is no tax incentive scheme, and

all companies work together to attain the goal set out by the government. The

total cost of removing waste for all companies combined is minimized subject

to the restriction that the overall waste production must equal the target level

L. This situation is not fully realistic since the companies do not actually

collaborate. However, such a model will produce the target waste level at the

lowest overall cost.

Minimize:

∑

j

qj

(
cj

dj − xj
− cj

dj

)

Subject to: ∑

j

qj(dj − xj) = L

Optimality

auxiliary model

This model is a constrained convex minimization model with a unique solu-

tion. The necessary and sufficient conditions for optimality are derived from

the associated Lagrangian function

L(. . . , xj , . . . , λ) =
∑

j

qj

(
cj

dj − xj
− cj

dj

)
− λ

[∑

j

qj(dj − xj)− L
]

By setting the first derivatives with respect to the variables xj (for each j) and

λ equal to zero, the following conditions result.

qj

[
cj

(dj − xj)2
+ λ

]
= 0 ∀j

∑

j

qj(dj − xj) = L

14.6. Summary 161

Similarity in

optimality

conditions

Note that the optimal value of λ is such that all equations are satisfied. In

addition, observe that the optimality condition for the policy receiving models

and the first set of optimality conditions for the above auxiliary model are

similar in structure. By equating the quantities−(T+S) and λ, these optimality

conditions become identical.

Optimal tax

setting

By solving the auxiliary model and using the value of λ (the shadow price of

the waste equality constraint) produced by the nonlinear solution algorithm,

the optimal value of T + S is determined. This, together with the known re-

lationship between the values of T and S, give rise to two equations in two

unknowns.

−(T + S) = λ

S = (TL− K)/(G − L)

The solution for T and S can be obtained after simple manipulations.

T = (K − λ(G − L))/G
S = (−K − λL)/G

Verifying the

results

The value of λ obtained from solving the auxiliary model for the example data

provided in Section 14.1 is -0.6232. The resulting value of T is 0.239 [$/kg]

and the corresponding value of S is 0.384 [$/kg]. These values, when provided

as input to the individual minimizing manufacturing companies, produce the

same response xj as the values of xj obtained by solving the auxiliary model.

14.6 Summary

This chapter presented a worked example of a two-level decision problem. The

example was of a government wanting to control the annual amount of waste

dumped into a river by setting a tax for waste production and a subsidy for

waste removal. The manufacturing companies select their own waste removal

level based on cost minimization considerations. A two-level model was devel-

oped in detail and two distinct solution procedures were proposed. The first

procedure is a bisection algorithm to determine the optimal tax rate for the

government. This approach consists of a hunt phase to determine a search

interval, followed by a bisection phase to determine the optimal solution. The

second solution procedure is based on solving an auxiliary model in which all

individual companies collaborate to meet collectively the target waste level set

by the government. It was demonstrated that the shadow price on the waste

limitation constraint provided enough information to determine the optimal

tax rate. Both the optimal solution and the results of sensitivity experiments

were reported in detail.

162 Chapter 14. A Two-Level Decision Problem

Exercises

14.1 Implement the policy receiving submodel of Section 14.2 using the

data provided in Section 14.1, together with a fixed tax rate of 0.25 and

a fixed subsidy rate of 0.41. Verify that the solution produced with

Aimms coincides with a point along the curve presented in Figure 14.1.

14.2 Implement the algorithm approach described in Section 14.3, and per-

form the experiments explained in Section 14.4 to study the effects of

changing target levels.

14.3 Implement the alternative solution approach described in Section 14.5,

and verify whether the results of the two algorithmic approaches co-

incide.

Chapter 15

A Bandwidth Allocation Problem

This chapterThis chapter introduces a bandwidth allocation problem and presents two dif-

ferent ways to formulate a binary programming model of it. The incentive to

develop the second model formulation arose when the implementation of the

first model became unwieldy. For both models, techniques for reducing the

complexity of the constraint matrix are demonstrated. Both representations

can easily be implemented using the Aimms modeling language.

KeywordsInteger Program, Mathematical Reformulation, Worked Example.

15.1 Problem description

Bandwidth

planning

problems

As a result of the growing number of mobile communication systems, there

is an increasing need to allocate and re-allocate bandwidth for point-to-point

communications. Bandwidth allocations typically remain operational for sec-

onds/minutes (in cellular communications), days/weeks (in military communi-

cation systems) or months/years (in television and radio communication sys-

tems). During these operational periods the volume of traffic usually changes

significantly, which causes point-to-point capacity and interference problems.

Consequently, bandwidth allocation is a recurring process in practice. In this

chapter a specific bandwidth allocation problem is examined.

Figure 15.1: A satellite communication system

164 Chapter 15. A Bandwidth Allocation Problem

Basic

terminology

Consider a satellite communication system, as shown in Figure 15.1, where the

ground stations either transmit or receive messages via the satellite. A link in

such a communication system is any pair of communicating ground stations.

The bandwidth domain is the specific range of channels available for alloca-

tion. Such a range can be divided up into fixed-width portions, referred to as

channels. Any specific link requires a pre-specified number of adjacent chan-

nels, which is referred to as a bandwidth interval. The concepts of “channel”

and “bandwidth interval” are illustrated in Figure 15.2. Link interference rep-

resents a combined measure of the transmitter and receiver interference as

caused by other existing communications systems.

1 8Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 etc

Bandwidth Interval Bandwidth Interval

Bandwidth Interval

Figure 15.2: Channels and intervals in a bandwidth domain

The problem

summarized

A bandwidth allocation is the assignment of a bandwidth interval to at most

one link in the communication system. An optimal bandwidth allocation is one

in which some measure of total interference is minimized.

Constructing

link interference

For a given link, the overall level of transmitter and receiver interference is

dependent on the interference over its entire bandwidth interval. The model

formulation in this chapter assumes that interference data is available on a per

channel basis for each link. Furthermore, for each interval-link combination it

is assumed that the overall interference experienced by the link is equal to the

value of the maximum channel interference that is found in the interval.

Running

example

This chapter illustrates the bandwidth allocation problem using a small ex-

ample data set consisting of three communication links with seven adjacent

channels available for transmission. The first link requires one channel for

transmission, while both the remaining two links must be allocated a band-

width interval containing three channels. Table 15.1 presents the interference

level for each link on a per channel basis. Using this data, the overall interfer-

ence of each interval-link is found by identifying the maximum channel inter-

ference in the corresponding bandwidth interval. These values are presented

in Table 15.1.

Model

formulation

Based on the simple verbal description of the problem, there is the initial ex-

pectation that it should be straightforward to formulate a model of the prob-

lem . However, for large instances of the problem this is not the case. This

chapter presents two model formulations. The first formulation relies on enu-

merating all possible intervals and can have implementation difficulties. The

second formulation presents a better symbolic representation which improves

implementation.

15.2. Formulation I: enumerating bandwidth intervals 165

Channel-link interference Interval-link interference

Link 1 Link 2 Link 3 Link 1 Link 2 Link 3

Channel 1 4 5 6 4 8 8

Channel 2 8 8 1 8 8 8

Channel 3 7 1 8 7 2 8

Channel 4 9 2 7 9 8 7

Channel 5 1 1 1 1 8 3

Channel 6 5 8 2 5 - -

Channel 7 4 5 3 4 - -

Table 15.1: Channel and interval interference data

15.2 Formulation I: enumerating bandwidth intervals

All bandwidth

intervals

This formulation relies on first enumerating all possible intervals of a fixed

size. Next, binary variables (yes/no choices) are defined to assign them to

communication links of the same size. With seven channels, three links, and

two different interval widths, there are twelve possible positioned intervals

(seven of width one, and five of width three) numbered from 1-12 as shown

in Figure 15.3. These positioned interval numbers are used throughout this

section. It should be noted that these numbers have the disadvantage that

they do not show any relationship to either the size or the channel numbers

contained in the interval.

c1 c2 c3 c4 c5 c6 c7

[5,7]12

[4,6]11

[3,5]10

[2,4]9

[1,3]8

[7,7]7

[6,6]6

[5,5]5

[4,4]4

[3,3]3

[2,2]2

[1,1]1
}

candidates for

link 1

}
candidates for

links 2 and 3

Figure 15.3: Twelve possible positioned intervals

166 Chapter 15. A Bandwidth Allocation Problem

Notation Together with the positioned interval numbers, the following notation is used.

Indices:

p positioned intervals

l links

Parameter:

dpl

1 if positioned interval p has width required

by link l

0 otherwise

Variable:

xpl

1 if positioned interval p is assigned to link l

0 otherwise

Two apparent

constraints

Using the above notation and a previous introduction to the assignment model

(see Chapter 5), the following two symbolic constraints can be formulated.

∑

p

dplxpl = 1 ∀l
∑

l

dplxpl ≤ 1 ∀p

The first constraint makes sure that a link l uses exactly one of the positioned

intervals, and the second constraint makes sure that each positioned interval

p is allocated at most once.

The constraints

in tabular form

In case you are not (yet) comfortable with the above symbolic notation, Ta-

ble 15.2 presents the constraints for the example problem in tabular format.

The variable names are on top, and the coefficients are written beneath them.

At this point there are 15 individual constraints (3+12) and 17 individual vari-

ables (7+5+5).

What is missing? The formulation developed so far is incomplete. It is missing a mechanism

that will ensure that selected positioned intervals do not overlap. Without

such a mechanism the variables x5,1 and x11,2 can both be equal to 1, while

their corresponding positioned intervals [5,5] and [4,6] overlap.

Two approaches

to avoid overlap

To handle this situation, there are at least two approaches. One approach

is to build constraints that restrict allocations so there is no overlap of their

corresponding bandwidth intervals. The other (less obvious) approach is to

define for each variable which channels are covered, and to add a constraint

for each channel to limit its use to at most once. Even though these approaches

sound distinct, they eventually lead to the same model formulations. This

equivalence is shown in the next two subsections.

15.2. Formulation I: enumerating bandwidth intervals 167

x x x x x x x x x x x x x x x x x x

p 1 2 3 4 5 6 7 8 9 10 11 12 8 9 10 11 12

l 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

1 1 1 1 1 1 1 1 = 1

2 1 1 1 1 1 = 1

3 1 1 1 1 1 = 1

1 1 ≤ 1

2 1 ≤ 1

3 1 ≤ 1

4 1 ≤ 1

5 1 ≤ 1

6 1 ≤ 1

7 1 ≤ 1

8 1 1 ≤ 1

9 1 1 ≤ 1

10 1 1 ≤ 1

11 1 1 ≤ 1

12 1 1 ≤ 1

Table 15.2: The individual assignment constraints

15.2.1 Preventing overlap using pairs of allocations

Consider pairs

of allocations

This approach relies on building constraints that prevent allocations with over-

lap. One way to accomplish this is to first identify all pairs of positioned in-

tervals that overlap, and then to write a constraint for each pair to prevent the

overlap. This approach is a form of enumeration. For our example, there are

at most
(

17
2

)
= (172 − 17)/2 = 136 pairs of associated decision variables must

be considered to form constraints that restrict overlap. An analysis concludes

there are only 63 pairs of overlapping intervals.

Constraint

reduction

Fortunately, the 63 constraints identified to avoid overlap can be combined to

form a much smaller set of equivalent constraints. To illustrate how, consider

the following three restrictions.

x3,1 + x9,2 ≤ 1

x3,1 + x10,3 ≤ 1

x9,2 + x10,3 ≤ 1

The three positioned intervals represented by numbers 3, 9 and 10 correspond

to bandwidth intervals [3,3], [2,4] and [3,5] respectively. Since all three inter-

vals include channel 3, it is possible to add the three constraints together to

obtain the following single constraint.

2x3,1 + 2x9,2 + 2x10,3 ≤ 3

Since all of the variables are either zero or one, this constraint can be rewritten

after dividing by 2 and then rounding the right-hand side downwards.

x3,1 + x9,2 + x10,3 ≤ 1

168 Chapter 15. A Bandwidth Allocation Problem

New constraint

is tighter

This constraint replaces the previous three constraints, and allows for exactly

the same integer solutions. When viewed in terms of continuous variables, this

single constraint represents a much tighter formulation. Consider for instance

the point (0.5, 0.5, 0.5). This is a feasible point for the first three constraints,

but not for the combined constraint. In general, tighter constraints are pre-

ferred, because they help the solution algorithm to converge faster.

Reduced

constraint set

The reduction scheme can be applied to groups of allocations where their

bandwidth intervals have pairwise overlap. The process becomes somewhat

more involved when the size of a group of allocations with pairwise overlap

increases. The step of extracting the 63 overlapping intervals from all possible

intervals takes time, but the subsequent step to reduce the constraint set to

just 7 new constraints takes even longer. The new constraints are numbered

1-7, and listed in tabular format in Table 15.3.

x x x x x x x x x x x x x x x x x x

p 1 2 3 4 5 6 7 8 9 10 11 12 8 9 10 11 12

l 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

1 1 1 1 ≤ 1

2 1 1 1 1 1 ≤ 1

3 1 1 1 1 1 1 1 ≤ 1

4 1 1 1 1 1 1 1 ≤ 1

5 1 1 1 1 1 1 1 ≤ 1

6 1 1 1 1 1 ≤ 1

7 1 1 1 ≤ 1

Table 15.3: The individual constraints on overlap

15.2.2 Preventing overlap using channel constraints

Inspect results

of first

approach

This approach generates the same seven constraints that resulted from the

first approach but they are generated directly. The key observation is that

there are seven channels, and that the seven constraints from the first ap-

proach actually represent a constraint for each of the seven channels.

Overlap with

channels

Let constraint c be associated with the set of channels C (C = {1,2, . . . ,7}).
Then the coefficients in each constraint c correspond exactly to those vari-

ables with positioned intervals that overlap with channel c. Using this new

viewpoint, it is possible to formulate one constraint for each channel directly.

15.3. Formulation II: avoiding bandwidth interval construction 169

The ’cover’

matrix

Let c refer to channels and define the three-dimensional parameter acpl as the

’cover’ matrix (c refers to rows and pl refers to columns). Specifically,

acpl

1 if the (positioned interval, link) pair pl contains

channel c

0 otherwise

The new

constraint

With this notation you can write the following symbolic constraint to ensure

that intervals do not overlap. The individual constraints that make up this

symbolic constraint are exactly the same as those in Table 15.3 from the first

approach. ∑

(pl)

acplxpl ≤ 1 ∀c

15.3 Formulation II: avoiding bandwidth interval construction

This sectionIn this section the model is reformulated using different notation. The new

formulation avoids the process of positioned interval construction used in Sec-

tion 15.2.1.

Revise variable

definition

In the previous formulation all possible bandwidth intervals were enumerated,

which required both a construction process and a matching with links. This

entire process can be avoided by letting the variables refer indirectly to the set

of enumerated intervals. To do this, variables are defined with both channel

and link indices. The channel index represents the channel number where the

link bandwidth interval begins. The end of the interval is calculated from the

known length of the link.

NotationParameter:

aĉcl

1 if the interval for link l starting at channel c also

covers channel ĉ

0 otherwise

Variable:

xcl

1 if the interval for link l starts at channel c

0 otherwise

Model

constraints

The following model constraints can now be written.
∑

c

xcl = 1 ∀l ∈ L
∑

cl

aĉclxcl ≤ 1 ∀ĉ ∈ C

The first constraint makes sure that for each link there is exactly one channel

at which its corresponding bandwidth interval can start. The second constraint

170 Chapter 15. A Bandwidth Allocation Problem

makes sure that for each channel at most one of all overlapping intervals can

be allocated.

Be aware of

domain

restrictions

Note that the variable references in the above symbolic constraints do not

reflect their domain of definition. For instance, the variable x6,2 is not defined,

because a bandwidth interval of length 3 for link 2 cannot start at channel

6. These domain restrictions, while not explicit in the above symbolic model,

must be clearly specified in the actual model formulation. This can be easily

implemented using the Aimms modeling language.

The objective

function

As described at the beginning of this chapter, the objective of the bandwidth

allocation problem is to minimize a specific measure of total communication

interference. To this end, the following notation is defined.

gcl interference for link l whenever channel c is part of the

interval allocated to this link

wcl maximum interference for link l whenever its interval

starts at channel c

Jcl collection of channels that comprise the particular inter-

val for link l beginning at channel c

The interference assigned to a link is the maximum channel interference wcl
that occurs in the bandwidth interval.

wcl =max
ĉ∈Jcl

gĉl ∀(c, l)

The entire

formulation

The model formulation with objective function and constraints is summarized

below.
min

∑
clwclxcl

s.t.
∑
c xcl = 1 ∀l

∑
cl aĉclxcl ≤ 1 ∀ĉ ∈ C

xcl binary

Domain

checking

In the algebraic description of the model, no attention has been paid to restric-

tions on the index domain of any of the identifiers. The domain conditions on

the decision variables, for instance, should make sure that no bandwidth in-

terval extends beyond the last available channel of the bandwidth domain.

15.3. Formulation II: avoiding bandwidth interval construction 171

SolutionIn the optimal solution for the problem instance described in Section 15.1,

link 1 is assigned to channel 1, link 2 is assigned to channels 2 through 4, and

link 3 is assigned to channels 5 through 7. The corresponding total interfer-

ence is 15.

15.3.1 Improving sparsity in overlap constraints

Analyzing the

coefficient

matrix

After analyzing the coefficient matrix associated with the individual overlap

constraints, some simple mathematical manipulations can be performed to ob-

tain a potentially significant reduction in the number of nonzero coefficients.

Add slacks to

overlap

constraints

Before the constraint matrix is manipulated, it is necessary to add a zero-one

slack variable to each overlap constraint. For the worked example case, this is

illustrated in Table 15.4.

x x x x x x x x x x x x x x x x x s s s s s s s

c 1 2 3 4 5 6 7 8 9 10 11 12 8 9 10 11 12 1 2 3 4 5 6 7

l 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

1 1 1 1 1 = 1

2 1 1 1 1 1 1 = 1

3 1 1 1 1 1 1 1 1 = 1

4 1 1 1 1 1 1 1 1 = 1

5 1 1 1 1 1 1 1 1 = 1

6 1 1 1 1 1 1 = 1

7 1 1 1 1 = 1

Table 15.4: Constraints on overlap as equalities

Subtract

previous rows

Consider rows i, i ≥ 2 and subtract from each row its previous row i− 1. This

results is a special matrix, in which each column has at most two coefficients.

This matrix is presented in Table 15.5. Note that a column has either a 1 and

-1 or just a 1.

x x x x x x x x x x x x x x x x x s s s s s s s

c 1 2 3 4 5 6 7 8 9 10 11 12 8 9 10 11 12 1 2 3 4 5 6 7

l 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

1 1 1 1 1 = 1

2 -1 1 1 1 -1 1 = 0

3 -1 1 1 1 -1 1 = 0

4 -1 1 -1 1 -1 1 -1 1 = 0

5 -1 1 -1 1 -1 1 -1 1 = 0

6 -1 1 -1 -1 -1 1 = 0

7 -1 1 -1 -1 -1 1 = 0

Table 15.5: Overlap constraints with a most 2 nonzeros per column

172 Chapter 15. A Bandwidth Allocation Problem

Reduction in

nonzero

elements

Whenever the length of a link is greater than or equal to three, there will be a

reduction in the number of coefficients for that link. The overall savings are

particularly significant in those applications where the average link width is

much larger than three.

15.4 Summary

In this chapter the process of formulating and then reformulating a binary pro-

gramming model was demonstrated. The need to reformulate the model arose

because of difficulties encountered when implementing the first. In both for-

mulations, techniques to reduce the complexity of the constraint matrix were

illustrated. The process of model evolution, as demonstrated in this chap-

ter, is quite common in practical modeling situations. This is especially true

when the underlying model is either a binary or a mixed-integer programming

model. For this class of models it is often worthwhile to consider alternative

formulations which are easier to work with and which may result in strongly

reduced solution times.

Exercises

15.1 Implement the bandwidth allocation model according to Formulation I

as presented in Section 15.2 using the data provided in Section 15.1.

15.2 Implement the bandwidth allocation model according to Formulation

II as presented in Section 15.3, and verify whether the two formula-

tions in Aimms produce the same optimal solution.

15.3 Implement the variant of Formulation II described in Section 15.3.1,

in which there are at most two nonzero elements for each column in

the overlap constraints. Check whether the optimal solution remains

unchanged.

Chapter 16

A Power System Expansion Problem

This chapterIn this chapter you will encounter a simplified power system expansion prob-

lem with uncertain electricity demand covering a single time period. Through

this example you will be introduced to some methods for handling uncertainty

in input data. The first approach to handle uncertainty starts with a determin-

istic model, and examines its sensitivity to changes in the values of uncertain

parameters. This is referred to as what-if analysis, and is essentially a manual

technique to deal with uncertainty. The second approach in this chapter goes

one step further, and captures the input data associated with an entire what-if

analysis into a single model formulation. This second approach is described

in detail, and will be referred to as stochastic programming.

ReferencesThere is a vast literature on stochastic programming, but most of it is only

accessible to mathematically skilled readers. The example in this chapter cap-

tures the essence of stochastic programming, and has been adapted from Mal-

colm and Zenios [Ma92]. Two selected book references on stochastic program-

ming are [In94] and [Ka94].

KeywordsLinear Program, Stochastic Program, Two-Stage, Control-State Variables, What-

If Analysis, Worked Example.

16.1 Introduction to methods for uncertainty

Deterministic

versus

stochastic

models

The mathematical programming models discussed so far have had a common

assumption that all the input information is known with certainty. This is

known as “decision making under certainty.” The main problem was to deter-

mine which decision, from a large number of candidates, yields the best result,

according to some criterium. Models that account for uncertainty are known

as stochastic models—as opposed to deterministic models, which do not.

Event

parameters

Stochastic models contain so-called event parameters which do not have a pri-

ori fixed values. An event is an act of nature which falls outside the control of

a decision maker. A typical example of an event parameter is the demand of

products inside a decision model that determines production levels. The exact

demand values are not known when the production decision has to be made,

174 Chapter 16. A Power System Expansion Problem

but only become known afterwards. Beforehand, it only makes sense to con-

sider various data realizations of the event parameter demand, and somehow

take them into account when making the production decision.

Assume few

scenarios

The number of possible data realizations of event parameters is usually very

large. In theory, it is customary to relate the event parameters to continu-

ous random variables with infinitely many outcomes. In practical applications,

however, it turns out that it is better from a computational point of view to

assume a finite number of data realizations. One complete set of fixed values

for all of the event parameters in a stochastic model is referred to as a sce-

nario. Throughout the sequel, the assumption is made that there are only a

manageable number of scenarios to be considered when solving a stochastic

model. In addition, it is assumed that the likelihood of each scenario occurring

is known in advance.

Control and

state variables

A stochastic model contains two types of variables, namely control and state

variables. Control variables refer to all those decision variables that must be

decided at the beginning of a period prior to the outcome of the uncertain

event parameters. State variables, on the other hand, refer to all those decision

variables that are to be determined at the end of a period after the outcome

of the uncertain event parameters are known. Thus, the variables representing

production decisions are control variables, while variables representing stock

levels are state variables.

What-if

approach

A first approach to uncertainty is to build a deterministic model and assume

fixed values for the uncertain event parameters. You can then perform an

extensive what-if analysis to observe changes in the control variables as the

result of assuming different fixed values for the event parameters. The under-

lying motivation of this manual approach is to discover a single set of values

for the control variables that seem to be a reasonable choice for all possible

scenarios.

Stochastic

programming

approach

A second approach to uncertainty is to formulate an extended model in which

all scenarios are incorporated explicitly. By using the scenario likelihoods, the

objective function can be constructed in such a way as to minimize expected

cost over all possible scenarios. The advantage of this approach is that not

you but the model determines a single set of values for the control variables.

This approach is referred to as stochastic programming.

Two-stage

versus

multi-stage

The term two-stage will be attached to the stochastic programming approach

to indicate that decisions need to be made prior to and after the realization of

the uncertain events during a single time period. In Chapter 17 the general-

ization is made to multiple time periods, where the term multi-stage reflects a

sequence of two-stage decisions.

16.2. A power system expansion problem 175

16.2 A power system expansion problem

This sectionIn this section you will encounter a somewhat simplified but detailed example

to determine new power plant design capacities to meet an increase in elec-

tricity demand. The example forms the basis for illustrating the approaches to

stochastic modeling discussed in the previous section.

Design capacity

. . .

The design capacity of a power plant can be defined as the maximum amount

of energy per second it can produce. It is assumed that energy in the form of

electricity is not stored. This implies that at any moment in time, total avail-

able supply of electricity must exceed the instantaneous electricity demand.

. . . must be

expanded

Assume that new investments in design capacity are under consideration in or-

der to meet an increase in electricity demand. The demand is uncertain since

actual demand will be strongly influenced by actual weather and economic fac-

tors. When the new capacity is installed, it remains available for an extensive

period of time. This makes the design capacity investment decision a nontriv-

ial one. When the design capacity exceeds demand, the overall capital cost is

likely to be too high. Alternatively, when the capacity is insufficient, the plants

can be expected to operate at peak capacity, and extra supply will need to be

imported. Both these events are costly in terms of either purchase cost or

operating cost.

Available plant

types and no

fixed sizes

In this example, electricity will be produced by three types of power plants,

namely coal-fired, nuclear, and hydro plants. Each of these have their own

specific capital and operating costs. In this example it is assumed that design

capacity does not come in fixed sizes, but can be built in any size. Imported

electricity is to be a last resource of supply, and will only be used when the

installed design capacity is insufficient.

Uncertain

demand

Electricity demand varies over days, weeks, seasons, and years. Rather than

model demand over extended periods of time, a conscious choice has been

made to only consider a single time period of one day. This choice simplifies

the model to be built, but still allows for demand scenarios that typify demand

throughout a planning horizon of years. The number of scenarios to be con-

sidered is assumed to be finite. Their number does not need to be large, as

long as there are enough scenarios to form a representative sample of future

demand.

Scenario

selection

Determining a representative sample of daily future demand instances is non-

trivial. When are scenarios sufficiently distinct? Can you keep their number

under control? What is the effect on model solutions when particular scenarios

are left out? How likely is each scenario? These questions need to be dealt with

176 Chapter 16. A Power System Expansion Problem

in practical applications, but are not treated in this chapter. Instead, a limited

number of scenarios and their probabilities are provided without additional

motivation.

0 AM 12 PM 0 AM

MW

Figure 16.1: Daily load duration curve

Daily demand The daily electricity demand is by no means constant. The demand curve is

tightly linked to economic and household activities: more electricity is used at

noon than at midnight. A load duration curve, such as Figure 16.1, reflects the

electricity demand during one day. Rather than storing a continuous curve, it

is more convenient to approximate such a curve by considering fixed-length

time periods consisting of say one or two hours. This is shown in Figure 16.2

where there are twelve different demands, corresponding to one of twelve time

periods.

1 2 3 4 5 6 7 8 9 10 11 12

0 AM 12 PM 0 AM

MW

Figure 16.2: Daily load duration curve approximated by a step function

16.2. A power system expansion problem 177

Two instead of

twelve periods

Twelve time periods could be considered a large number in a study dealing

with the strategic problem of capacity expansion. Lengthening the time period

beyond two hours, however, would cause the approximation errors to grow. A

good compromise is to first rearrange the demand periods in decreasing order

of demand magnitude. In this way you obtain a cumulative load duration curve,

as in Figure 16.3, where the slope of the curve is nearly constant. Reducing the

number of time steps at this point will result in a reduced approximation error

in comparison to the situation without the rearrangement (see Figure 16.4).

Demand can now be realistically modeled with just two rather than twelve

demand periods. In the sequel, the two corresponding demand categories will

be referred to as base load and peak load.

1234 5 678 9 10 11 12

0 24 hrs

MW

Figure 16.3: Cumulative load duration curve

peak

base

0 24 hrs

MW

Figure 16.4: Approximating cumulative load duration curve

178 Chapter 16. A Power System Expansion Problem

16.3 A deterministic expansion model

This section In this section a deterministic version of the power system expansion problem

is presented. This model forms the basis for subsequent sections that discuss

stochastic approaches to deal with the uncertain demand.

Decisions to be

made

The main decision to be made is the new design capacity (in [GW]) of each

type of power plant. It is assumed that all levels of design capacity can be

built, and that there are no decisions to be made about either the number of

power plants or their size. Once capacity has been decided, it can be allo-

cated to satisfy demand. This allocation decision can be supplemented with

the decision to import electricity when available capacity is insufficient. The

underlying objective is to minimize total daily cost consisting of (a fraction of)

capital cost to build new design capacity, operating cost associated with the

allocation decision, and the cost of importing electricity.

Deterministic

daily demand

requirements

In the previous section the distinction has been made between base demand

and peak demand. These two categories represent instantaneous demand in

GW. The duration of base demand is 24 hours, while the duration of peak

demand is 6 hours. On the basis of instantaneous demand and its duration

you can compute the electricity requirement per category in GWh as follows.

The base electricity demand is equal to base demand multiplied by 24 [h].

The peak electricity demand is the difference between peak demand and base

demand multiplied by the proper duration expressed in hours. The formula is

provided at the end of the ‘Notation’ paragraph stated below.

Restricting

nuclear usage

Due to physical plant restrictions, nuclear power can only be used to satisfy

base demand requirements. In Aimms such a restriction can be enforced by

using domain restrictions on the allocation variables introduced in the model

below.

Verbal model

statement

The objective and the constraints that make up the simplified determinis-

tic power expansion model are first summarized in the following qualitative

model formulation.

Minimize: total capital, import and operating costs,

Subject to:

� for all plant types: allocated capacity must be less than or equal

to existing design capacity plus new design capacity, and

� for all modes: utilized capacity plus import must equal electricity

demand.

16.4. What-if approach 179

NotationThe following symbols will be used.

Indices:

p plant types

k demand categories

Parameters:

ep existing capacity of plant type p [GW]

ccp daily fraction of capital cost of plant p [103$/GW]

ocp daily operating cost of plant p [103$/GWh]

ick electricity import cost for category k[103$/GWh]

dk instantaneous electricity demand for category k [GW]

duk duration of demand for category k [h]

rk required electricity for category k [GWh]

Variables:

xp new design capacity of plant type p [GW]

ypk allocation of capacity to demand [GW]

zk import of electricity for category k [GWh]

where the parameter rk is defined as rk = (dk − dk−1)duk.

Mathematical

model

statement

The mathematical description of the model can be stated as follows.

Minimize:
∑

p

ccp(ep + xp) +
∑

k

ickzk + duk

∑

p

ocpypk

Subject to: ∑

k

ypk ≤ ep + xp ∀p

zk + duk
∑

p

ypk = rk ∀k

xp ≥ 0 ∀p
ypk ≥ 0 ∀(p, k)

y nuclear, peak = 0

zk ≥ 0

16.4 What-if approach

This sectionThis section presents a first approach to deal with the uncertainty in electricity

demand. In essence, you consider a set of demand figures, called scenarios and

observe the proposed design capacity for each scenario. The underlying moti-

vation is to discover manually, through trial and error, those design capacity

values that seem to be a good choice when taking into account all possible

scenarios.

180 Chapter 16. A Power System Expansion Problem

Model data Consider a set of four scenarios reflecting different weather and economic

conditions. Estimated figures for both base and peak load per scenario are

presented in Table 16.1.

Demand [GW] Scenario 1 Scenario 2 Scenario 3 Scenario 4

base load 8.25 10.00 7.50 9.00

peak load 10.75 12.00 10.00 10.50

Table 16.1: Estimated demand figures for different scenarios

Initial existing capacity, together with capital and operating cost figures for

each plant type are summarized in Table 16.2. In addition, the cost of im-

porting electricity is set at 200 [103$/GWh] for each demand category, and,

as stated previously, the duration of the base period is 24 hours while the

duration of the peak period is 6 hours.

Plant Type p ep [GW] ccp [103$/GW] ocp [103$/GWh]

coal 1.75 200 30.0

hydro 2.00 500 10.0

nuclear 300 20.0

Table 16.2: Existing capacity and cost figures per plant type

Constructing

plans from

scenarios

A set of design capacities will be referred to as a plan. A plan can be deter-

mined by computing the optimal design capacities for a particular demand

scenario. By repeating the computation for each of the four demand scenar-

ios, the four plans in Table 16.3 are obtained. Note that coal and hydro power

plants seem to be the most attractive options in all four plans. No nuclear

capacity is installed.

Selecting the

cheapest plan

Eventually, only a single plan can be implemented in reality. An obvious first

choice seems to be the cheapest plan from the table above, namely, plan III.

However, what happens when plan III is implemented and a scenario other

than scenario 3 occurs? The answer to this question is illustrated in Table 16.4.

You can see that total cost increases dramatically for the other scenarios. This

increase is due to the relatively expensive cost to import electricity to meet the

increased demand. If all scenarios are equally likely, then the average cost is

8,116.25 [103$].

16.5. Stochastic programming approach 181

Plan Based on Total Capacity [GW] Total

coal hydro nuclear Cost [103$]

I scenario 1 2.50 8.25 7055.0

II scenario 2 2.00 10.00 8160.0

III scenario 3 2.50 7.50 6500.0

IV scenario 4 1.75 8.75 7275.0

Table 16.3: Optimal design capacities for individual scenarios only

Comparing all

plans

As indicated in the previous paragraph, the cheapest plan may not be the best

plan. That is why it is worthwhile to look at all other plans, to see how they

perform under the other scenarios. An overview is provided in Table 16.5. In

this comparison, plan III turns out to be the worst in terms of average cost,

while plan I scores the best.

Is there a better

plan?

Each plan was produced on the basis of one of the selected demand scenarios.

You can always dream up another (artificial) scenario just to produce yet an-

other plan. Such a plan could then be evaluated in terms of the average cost

over the four scenarios, and perhaps turn out to be a better plan. For instance,

an obvious choice of artificial demand figures is the average demand over the

four scenarios. Solving the model for these demand figures results in a plan

with an average cost of 7685.35 [103$], slightly better than plan I. Even though

what-if analysis has provided some insight into the selection of a better plan,

there is a clear need for an approach that provides the best plan without hav-

ing to search over artificial scenarios. Such an approach is explained in the

next section.

16.5 Stochastic programming approach

This sectionThis section presents a second and more sophisticated approach to deal with

uncertainty in electricity demand when compared to the what-if approach of

the previous section. Essentially, all demand scenarios are included in the

model simultaneously, and their average cost is minimized. In this way, the

model solution presents those particular design capacity values that seem to

be a good choice in the light of all scenarios weighted by their probability. The

model results of the worked example are compared to the solutions presented

in the previous section.

Two-stage

model

In the mathematical model of this chapter, the electricity demand covers a sin-

gle time period. Prior to this period, the exact demand values are not known,

but a capacity design decision must be made. This is referred to as the first

stage. As the realization of electricity demand becomes known, the allocation

of the already decided design capacity is made, together with the decision of

182 Chapter 16. A Power System Expansion Problem

Capacity Imported [GW] Total Cost [103$]

scenario 1 0.75 7805.0

scenario 2 2.00 10250.0

scenario 3 6500.0

scenario 4 0.50 7910.0

Table 16.4: The consequences of plan III for all scenarios

how much to import. This is the second stage. Using the terminology intro-

duced in Section 16.1, the capacity design decision variables form the control

variables, while the allocation and import decision variables form the state

variables.

Expected cost Both the allocation and import decision variables form the state variables,

which will assume separate values for each scenario. This implies that there

are also separate values associated with total operating cost and total import

cost. It does not make sense to add all these total cost values in the cost

minimization objective function. A weighted average over scenarios, how-

ever, seems a better choice, because the objective function then reflects the

expected daily cost of the entire power supply system over a planning period.

The weights are then the probabilities associated with the scenarios.

Notation The following symbols will be used. Note that most of them are similar to the

ones already presented in the previous section, except that a scenario index

has been added. As to be expected, the first stage (control) variable x does

not have a scenario index, while all second stage (state) variables are naturally

linked to a scenario.

Indices:

p plant types

k demand categories

s scenarios

Parameters:

ep existing capacity of plant type p [GW]

ccp annualized capital cost of plant p [103$/GW]

ocp operation cost of plant p [103$/GWh]

ick electricity import cost for category k[103$/GWh]

dks instantaneous electricity demand for k and s [GW]

duks duration of demand for category k and scenario s [h]

rks required electricity for k and s [GWh]

prs probability of scenario s [-]

16.5. Stochastic programming approach 183

Total Cost [103$] per Scenario Expected

Plan 1 2 3 4 Cost [103$]

I 7055.0 9500.0 6785.0 7415.0 7688.8

II 7620.0 8160.0 7350.0 7710.0 7710.0

III 7805.0 10250.0 6500.0 7910.0 8116.3

IV 7350.0 9615.0 6825.0 7275.0 7766.3

Table 16.5: Plans compared in terms of cost

Variables:

xp new design capacity of plant type p [GW]

ypks allocation of capacity to each demand realization [GW]

zks electricity import for scenario s and category k [GW]

vs total import and operating cost for scenario s [103$]

where the parameter rks is defined as rks = (dks − dk−1,s)duks .

Mathematical

model

statement

The mathematical description of the stochastic model below resembles the

model description in the previous section. The main difference is the formula-

tion of the objective function. The capital cost determination associated with

existing and new design capacity remains unchanged. All other cost compo-

nents are scenario-dependent, and a separate definition variable vs is intro-

duced to express the expected operating and importing cost in a convenient

manner.

Minimize: ∑

p

ccp(ep + xp) +
∑

s

pr svs

Subject to: ∑

k

ypks ≤ ep + xp ∀(p, s)

zks + duks
∑

p

ypks = rks ∀(k, s)

∑

k

ickzks + duks

∑

p

ocpypks

 = vs ∀s

xp ≥ 0 ∀p
ypks ≥ 0 ∀(p, k, s)

y nuclear, peak, s = 0 ∀s
zks ≥ 0 ∀s
vs ≥ 0 ∀s

184 Chapter 16. A Power System Expansion Problem

Plan Total Capacity [GW] Expected

coal hydro nuclear Cost [103$]

I 2.50 8.25 7688.75

II 2.00 10.00 7710.00

III 2.50 7.50 8116.25

IV 1.75 8.75 7766.25

V 3.00 8.25 0.75 7605.00

Table 16.6: Optimal design capacities and expected cost per plan

Model results The solution of the stochastic expansion model produces an entire new plan,

which will be referred to as plan V. The design capacity values (both exist-

ing and new) and the corresponding expected cost values associated with the

original four plans plus plan V are listed in Table 16.6. By construction, the

expected cost of plan V is the lowest of any plan.

allocation [GW] import surplus deficit total

coal hydro nuclear [GW] capacity [GW] costs [103$]

Scenario 1 1.25 7380.0

base 8.25

peak 2.50

Scenario 2 8370.0

base 1.00 8.25 0.75

peak 2.00

Scenario 3 2.00 7110.0

base 7.50

peak 1.75 0.75

Scenario 4 1.50 7560.0

base 8.25 0.75

peak 1.50

Table 16.7: Optimal allocations for individual scenarios

Nuclear power

plant selected

In Plan V nuclear power is selected as a source of electricity. The reason is

that nuclear power plants have lower capital costs than hydro-electric power

plants. This fact helps to keep the costs down in scenarios other than the most

restrictive one, namely Scenario 2. The optimal allocations corresponding to

Plan V are given in Table 16.7.

16.6 Summary

In this chapter, two methods for dealing with uncertainty were illustrated us-

ing a power plant capacity expansion example. Both methods were based on

16.6. Summary 185

the use of scenarios designed to capture the uncertainty in data. The first

method is referred to as what-if analysis, and essentially computes the con-

sequences for each individual scenario by solving a sequence of deterministic

models. The second method is referred to as stochastic programming, and

considers all scenarios simultaneously while minimizing expected cost. The

resulting model increases in size in proportion to the number of scenarios.

Based on the example, the solution of the stochastic programming formula-

tion was shown to be superior to any of the solutions derived from the manual

what-if analysis.

Exercises

16.1 Implement the deterministic formulation of the Power System Expan-

sion model described in Section 16.3, and perform the what-if experi-

ments described in Section 16.4 using Aimms.

16.2 Implement the stochastic formulation of the Power System Expansion

model described in Section 16.5, and compare the optimal solution

with the solutions of the what-if experiments.

16.3 Set up an experiment in Aimms to investigate the sensitivity of the op-

timal stochastic programming solution to changes in the initial equal

scenario probabilities of .25.

Chapter 17

An Inventory Control Problem

This chapter In this chapter you will encounter a multi-period inventory control problem

with uncertain demand. At the beginning of each period the volume of pro-

duction is decided prior to knowing the exact level of demand. During each

period the demand becomes known, and as a result, the actual inventory can

be determined. The objective in this problem is to minimize overall expected

cost. The problem can be translated into a stochastic multi-stage optimization

model. Such a model is a nontrivial extension of the two-stage model discussed

in Chapter 16, and will be examined in detail. An alternative statement of the

objective function is developed, and an instance of the stochastic inventory

model is provided for illustrative purposes.

References As already stated in Chapter 16, there is a vast literature on stochastic pro-

gramming, but most of it is only accessible to mathematically skilled read-

ers. Two selected book references on stochastic programming are [In94] and

[Ka94].

Keywords Linear Program, Stochastic Program, Multi-Stage, Control-State Variables,

Mathematical Derivation, Worked Example.

17.1 Introduction to multi-stage concepts

This section In this section the extension of two-stage stochastic programming to multi-

stage programming is discussed. Tree-based terminology is used to character-

ize the underlying model structure.

Event

parameters

Stochastic models contain so-called event parameters that do not have a priori

fixed values. An event is an act of nature that falls outside the control of a

decision maker. A typical example of an event parameter is product demand

inside a decision model that determines production levels. The exact demand

values are not known when the production decision has to be made, but they

become known afterwards. Prior to the production decision, it only makes

sense to consider various data realizations of the event parameter demand,

and somehow take these into account when making the production decision.

17.1. Introduction to multi-stage concepts 187

Control and

state variables

A stochastic model contains two types of variables, namely control and state

variables. Control variables refer to all those decision variables that must be

decided at the beginning of a period prior to the outcome of the uncertain

event parameters. State variables, on the other hand, refer to all those decision

variables that are to be determined at the end of a period after the outcome of

the uncertain event parameters are known.

Two-stage

versus

multi-stage

The term two-stage decision making is reserved for the sequence of control de-

cisions (first stage), event realizations, and state determination (second stage)

for a single time period. The term multi-stage decision making refers to se-

quential two-stage decision making, and is illustrated in Figure 17.1.

C1 E1 S1

period 1

C2 E2 S2

period 2

Cn En Sn

period n

Figure 17.1: Multi-stage decision making

Assume few

realizations

The number of possible data realizations of event parameters is usually very

large. In theory, it is customary to relate the event parameters to continuous

random variables with infinitely many outcomes. However, in practical appli-

cations it turns out better from a computational point of view to assume not

only a finite number of data realizations, but also relatively few of them. This

requires careful data modeling, so that the approximation with relatively few

data realizations is still useful for decision making.

Tree with event

probabilities

Whenever the underlying model is a multi-period model, the data realizations

of event parameters can be expressed most conveniently in the form of a tree.

An example is provided in Figure 17.2. Each level in the tree corresponds

to a time slice, and each arc represents a particular realization of the event

parameters. A node in the tree refers to a state of the system. The label

associated with each arc is the event description. The fraction associated with

each arc is the corresponding event probability. Note that the sum over all

probabilities emanating from a single state equals one, reflecting the fact that

all event parameter realizations are incorporated in the tree.

Conditional

probabilities . . .

The event probabilities mentioned in the previous paragraph can be viewed as

conditional probabilities. They describe the probability that a particular event

realization will take place given the state from which this event emanates. In

practical applications, these conditional probabilities form the most natural

input to describe the occurrence of events.

188 Chapter 17. An Inventory Control Problem

period 1 period 2 period 3 period 4

1.00

0.7

O

0.3

P

0.6

O

0.4

P

0.7

O

0.3

P

0.5

O

0.5

P

0.6

O

0.4

P

0.7

O

0.3

P

0.6

O

0.4

P

0.4O

0.6P

0.5O

0.5P

0.2O

0.8P

0.5O

0.5P

0.6O

0.4P

0.6O

0.4P

0.6O

0.4P

0.7O

0.3P

Figure 17.2: Tree with event labels and conditional event probabilities

. . . versus

unconditional

probabilities

By multiplying the event probabilities along the path from the root (the ini-

tial state) until a particular state, the unconditional probability to reach that

particular state is computed. The tree with unconditional state probabilities is

illustrated in Figure 17.3. Note that for all events in a single period, the sum

over all unconditional probabilities add up to one. These probabilities will be

used in the sequel to weight the outcome at each state to compute the overall

expected outcome.

Scenarios A scenario in the multi-stage programming framework is the collection of all

event data instances along a path from the root to a particular leaf node in

the event tree. Thus, the number of leaf nodes determines the number of

scenarios. Note that the concepts of scenario and event coincide when there is

only a single period. By definition, the probabilities associated with scenarios

are the same as the unconditional probabilities associated with the leaf nodes

(i.e. terminal states).

Two related

terminologies

You may have noticed that there are two related terminologies that mingle

naturally in the description of multi-stage stochastic programming models.

One characterizes the concepts typically used in the stochastic programming

literature, while the other one characterizes these same concepts in terms of

tree structures. The tree terminology enables you to visualize concepts from

stochastic programming in a convenient manner, and will be used throughout

17.2. An inventory control problem 189

period 1 period 2 period 3 period 4

1.0000

0.7000

O

0.3000

P

0.4200

O

0.2800

P

0.2100

O

0.0900

P

0.2100

O

0.2100

P

0.1680

O

0.1120

P

0.1470

O

0.0630

P

0.0540

O

0.0360

P

0.0840O

0.1260P

0.1050O

0.1050P

0.0336O

0.1344P

0.0560O

0.0560P

0.0882O

0.0588P

0.0378O

0.0252P

0.0324O

0.0216P

0.0252O

0.0108P

Figure 17.3: Tree with unconditional state probabilities

the chapter. The two related terminologies are summarized in Table 17.1.

stochastic tree-based

terminology terminology

event arc

state node

initial state root node

final state leaf node

scenario path (root-to-leaf)

Table 17.1: Two related terminologies

17.2 An inventory control problem

This sectionIn this section you will encounter a simplified example in which the volume of

beer to be bottled is decided while minimizing bottling, inventory and external

supply costs. This example is used to illustrate the multi-stage approach to

stochastic modeling discussed in the previous section.

190 Chapter 17. An Inventory Control Problem

Bottling of beer Consider the decision of how much beer to bottle during a particular week.

There are different beer types, and the available bottling machines can be used

for all types. There is an overall bottling capacity limitation. Beer bottled in a

particular week is available to satisfy demand of subsequent weeks. Bottling

cost and storage cost are proportional to the amount of beer that is either

bottled or stored. There is a minimum amount of storage required at the end

of the last period.

Decide now and

learn later

Demand is assumed to be uncertain due to major fluctuations in the weather.

The decision variable of how much beer to bottle in a particular week is taken

prior to knowing the demand to be satisfied. Therefore, the decision variable is

a control variable, and demand is the event parameter. Once weekly demand

becomes known, the inventory can be determined. Therefore, the inventory

variable is a state variable. The term ‘decide now and learn later’ is frequently

used in the literature, and reflects the role of the control variables with respect

to the event parameters.

Demand

scenarios

The uncertain demand over time can be characterized in terms of scenarios.

For the sake of simplicity, assume that there are only a few of them. There will

be pessimistic and optimistic events emanating from each state, and their con-

ditional probabilities are known. All input data and model results are provided

in Section 17.5.

17.3 A multi-stage programming model

This section In this section a multi-stage programming model formulation of the inventory

control problem of the previous section is developed in a step-by-step fashion,

and the entire model summary is presented at the end.

Notation based

on states

The model identifiers need to be linked to the scenario tree in some uniform

fashion. By definition, all variables are linked to nodes: state variables are de-

fined for every node, while control variables are defined for emanating nodes.

It is therefore natural to index variables with a state index. Event parameters,

however, are linked to arcs and not to nodes. In order to obtain a uniform

notation for all identifiers, event parameters will also be indexed with a state

index in exactly the same way as state variables. This is a natural choice, as all

arcs correspond to a reachable state.

Bottling

capacity

constraint

The decision to bottle beer of various types during a particular time period

is restricted by the overall available bottling capacity c during that period ex-

pressed in [hl]. Let b denote beer types to be bottled, and s the states to be

considered. In addition, let xbs denote the amount of beer of type b to be

bottled at emanating state s in [hl]. Note that this decision is only defined

for emanating states and thus not for terminating states. To enforce this re-

17.3. A multi-stage programming model 191

striction, consider the element parameter αs , which refers to the previous (or

emanating) state of state s. When s refers to the initial state, the value of αs
is empty. For nonempty elements αs the bottling capacity constraint can then

be written as follows. ∑

b

xbαs ≤ c ∀αs

It is straightforward to implement element parameters, such as αs , in the

Aimms language.

Inventory

determination

constraint

The inventory of each beer type at a particular reachable state, with the excep-

tion of the already known inventory at the initial state, is equal to the inventory

at the emanating state plus the amount to be bottled decided at the emanat-

ing state plus externally supplied beer pertaining to the reachable state minus

the demand pertaining to that reachable state. Note that externally supplied

beer is used immediately to satisfy current demand, and will not exceed the

demand due to cost minimization. Let ybs denote the amount of beer of type

b that is stored at state s in [hl], and let zbs denote the external supply of beer

of type b at state s in [hl]. Then, using dbs to denote the demand of beer of

type b in state s in [hl], the inventory determination constraint can be written

as follows.

ybs = ybαs + xbαs + zbs − dbs ∀(s, b) |αs

Inventory

capacity

constraint

Assume that the space taken up by the different types of bottled beer is pro-

portional to the amount of [hl] bottled, and that total inventory space is lim-

ited. Let ȳ denote the maximum inventory of bottled beer expressed in [hl].

Then the inventory capacity constraint can be written as follows.

∑

b

ybs ≤ ȳ ∀s

Demand

requirement

constraint

In the previous inventory determination constraint there is nothing to prevent

currently bottled beer to be used to satisfy current demand. However, as in-

dicated in the problem description, the amount bottled in a particular period

is only available for use during subsequent periods. That is why an extra con-

straint is needed to make sure that at each reachable state, inventory of each

type of beer at the corresponding emanating state, plus the external supply

of beer pertaining to the reachable state, is greater than or equal to the corre-

sponding demand of beer. This constraint can be written as follows.

ybαs + zbs ≥ dbs ∀(s, b)

192 Chapter 17. An Inventory Control Problem

Profit

determination

constraint

During each period decisions are made to contribute to overall profit. For each

state, the contribution to profit is determined by considering sales revenues at-

tached to this state minus the sum of all costs associated with this state. These

costs cover the corresponding bottling cost, the external supply cost, and the

inventory cost. Let psb denote the selling price of beer of type b in [$/hl],

and let cpb, cib, and ceb denote the variable cost coefficients in [$/hl] asso-

ciated with bottling, inventory and external supply. The entire state-specific

contribution to profit, denoted by vs , can now be written as follows.

vs =
∑

b

psbdbs −
∑

b

(cpbxbαs + cibybs + cebzbs) ∀s

Objective

function

In the presence of uncertain demand it does not make sense to talk about a

deterministic overall profit determination. The approach in this section is to

sum all state-specific profit contributions weighted with their unconditional

probability of occurrence. It turns out that this computation expresses the

expected profit level for the entire planning horizon, the length of which is

equal to the number of time periods covered by the event tree. Such profit

level can then be written as follows.

∑

s

psvs

Alternative

formulation

In the next section it is shown that the above expression coincides with the ex-

pected profit over all scenarios, where scenario-specific contributions to profit

are weighted with their unconditional probability of occurrence. The num-

ber of terms in this alternative formulation of the objective function is then

equal to the number of terminal states (i.e. the number of leaf nodes in the

event tree). The two main ingredients are the scenario probabilities and the

scenario profits. The scenario probabilities are the unconditional probabilities

associated with the leaf nodes, and add up to one. The profit contribution per

scenario is obtained by summing all corresponding state-specific profit contri-

butions.

Verbal model

summary

The above objective and the constraints that make up the stochastic program-

ming formulation of the simplified inventory control problem can now be sum-

marized through the following qualitative model formulation.

Maximize: total expected net profit,

Subject to:

� for all emanating states: total bottling volume must be less than

or equal to overall bottling capacity,

� for all beer types and reachable states: inventory at reachable

state is equal to inventory at emanating state plus bottling

volume at emanating state plus external supply pertaining to

reachable state minus demand pertaining to reachable state,

17.3. A multi-stage programming model 193

� for all reachable states: inventory of bottled beer at reachable

state must be less than or equal to maximum inventory of

bottled beer,

� for all beer types and reachable states: inventory at emanating

state plus external supply pertaining to reachable state must be

greater than or equal to demand pertaining to reachable state,

and

� for all reachable states: total net profit is sales revenue minus

total costs consisting of bottling, inventory and external supply

costs.

NotationThe following symbols have been introduced to describe the objective function

and the constraints.

Indices:

b beer types

s states

Parameters:

psb selling price of beer type b [$/hl]

cpb production cost of bottling beer type b [$/hl]

cib inventory cost of storing beer type b [$/hl]

ceb external supply cost of beer type b [$/hl]

c overall capacity to bottle beer [hl]

ȳ maximum inventory of bottled beer [hl]

dbs demand of beer type b in state s [hl]

ps probability of reaching state s [-]

αs previous state of state s in event tree

Variables:

xbs beer type b bottled at emanating state s [hl]

ybs beer type b stored at state s [hl]

zbs external supply of beer b at state s [hl]

vs state-specific profit contribution at state s [$]

Mathematical

model summary

The mathematical description of the model can now be summarized as follows.

Maximize: ∑

s

psvs

194 Chapter 17. An Inventory Control Problem

Subject to: ∑

b

xbαs ≤ c ∀αs

ybαs + xbαs + zbs − dbs = ybs ∀(s, b) |αs
∑

b

ybs ≤ ȳ ∀s

ybαs + zbs ≥ dbs ∀(s, b)
∑

b

psbdbs −
∑

b

(cpbxbαs + cibybs + cebzbs) = vs ∀s

xbs ≥ 0 ∀(b, s)
ybs ≥ 0 ∀(b, s)
zbs ≥ 0 ∀(b, s)

17.4 Equivalent alternative objective function

This section In this section you will find a proof of the fact that the expected profit function

used in the previous section can be expressed in an alternative but equivalent

form.

Recursive

profits and

probabilities

Consider the following identifiers defined over the set of states.

πs conditional probability of event prior to state s

ps unconditional probability of reaching state s

vs state-specific profit contribution at state s [$]

ws cumulative profit contribution at state s [$]

Then, the recursive relationships between these identifiers are defined for each

node in the tree (starting at the root), and will be used in the sequel.

ps = πspαs

ws = vs +wαs

Initialization The recursive unconditional probabilities emanate from the initial state prob-

ability, which is equal to one. The recursive cumulative profit levels emanate

from the initial state profit level, which is assumed to be zero. These recursive

relationships can be implemented inside Aimms using a FOR statement inside a

procedure.

Alternative

formulation

Let l = {0,1, . . .} denote a level in the event tree, and let L(l) denote the set of

all nodes corresponding to this level. In addition, let l̂ denote the last level of

the tree. Then the objective function expressing expected profit can be written

in two seemingly different but equivalent forms.
∑

s

psvs =
∑

s∈L(l̂)
psws

17.5. A worked example 195

This equality turns out to be a special instance of the following theorem.

TheoremLet the symbol l̄ denote any particular level of the event tree. Then the follow-

ing equality holds for each l̄.

l̄∑

l=0

∑

s∈L(l)
psvs =

∑

s∈L(l̄)
psws

CorollaryNote that when l̄ is equal to l̂, then the term on the left of the equal sign is

nothing else but
∑
s psvs , and the alternative formulation follows directly from

the theorem.

ProofThe proof will be carried out by induction on the number of levels l̄. For l̄ = 0,

the theorem holds trivially. Consider any particular l̄ > 0, and assume that

the theorem holds for l̄ − 1. Then to prove that the theorem also holds for

l̄, you need to rewrite summations, use the above recursive definitions of ps
and ws , use the fact that

∑
k |αk=s πk = 1, and, of course, use the statement

of the theorem for l̄ − 1 during the last step. All this is done in the following

statements.

∑

s∈L(l̄)
psws =

∑

s∈L(l̄)
ps(vs +wαs)

=
∑

s∈L(l̄)
psvs +

∑

s∈L(l̄)
pswαs

=
∑

s∈L(l̄)
psvs +

∑

s∈L(l̄−1)

∑

k |αk=s
πkpαkwαk

=
∑

s∈L(l̄)
psvs +

∑

s∈L(l̄−1)

psws
∑

k |αk=s
πk

=
∑

s∈L(l̄)
psvs +

∑

s∈L(l̄−1)

psws

=
∑

s∈L(l̄)
psvs +

l̄−1∑

l=0

∑

s∈L(l)
psvs

=
l̄∑

l=0

∑

s∈L(l)
psvs

�

17.5 A worked example

This sectionIn this section an input data set is provided together with an overview of the re-

sults based on the multi-stage programming model developed in Section 17.3.

The initial probabilities are the same as in Figures 17.2 and 17.3. The revenues

196 Chapter 17. An Inventory Control Problem

and cost values are presented in Table 17.2 while the demand requirements

for both beer types are listed in Figure 17.4.

b psb cpb cib ceb

[$/hl] [$/hl] [$/hl] [$/hl]

light 300 12.0 5.0 195.0

regular 400 10.0 5.0 200.0

Table 17.2: Revenues and cost values

The overall bottling capacity c is 46.0 [hl] and the maximum inventory of bot-

tled beer ȳ is 52.0 [hl]. Initial stock for light beer is 17 [hl], and initial stock

for regular beer is 35 [hl].

period 1 period 2 period 3 period 4

(20,30)

(23,33))

O

(17,30)

P

(22,33)

O

(18,27)

P

(20,32)

O

(17,27)

P

(24,34)

O

(18,28)

P

(21,31)

O

(18,26)

P

(24,34)

O

(19,29)

P

(20,33)

O

(18,27)

P

(25,35)
O

(24,33)
P

(20,30)
O

(18,26)
P

(23,32)
O

(20,29)
P

(19,29)
O

(16,25)
P

(26,34)
O

(23,32)
P

(21,30)
O

(18,29)
P

(22,34)
O

(19,30)
P

(20,28)
O

(17,25)
P

Figure 17.4: Demand requirements for both beer types (light,regular)

Optimal

solution

The optimal solution of the multi-stage programming model is presented in

Table 17.3 with a total weighted profit of 76482.4 [$]. Notice that the hierarchi-

cal structure of the scenarios is not only reflected in the order and description

of their labels, but also in the zero-nonzero pattern of the control and state

variables. Even though optimal decisions are determined for each period and

all possible scenarios, in most practical applications only the initial decisions

are implemented. The model is usually solved again in each subsequent period

after new scenario information has become available.

17.6. Summary 197

Binding

constraints

Once you have implemented the model yourself, you may want to verify that

the production capacity constraint is binding and has a positive shadow price

for scenarios ’I’, ’O’, ’OO’, ’OP’ and ’PO’. Similarly, the storage capacity con-

straint is binding for scenarios ’PP’ and ’PPP’. This indicates that both types of

capacity play a vital role in the optimal use of the brewery.

b light regular

s xbs ybs zbs dbs xbs ybs zbs dbs vs
I 18.0 17.0 20.0 20.0 28.0 35.0 30.0 30.0 7840.0

O 18.0 18.0 6.0 23.0 28.0 30.0 33.0 18194.0

OO 18.0 18.0 4.0 22.0 28.0 28.0 3.0 33.0 17694.0

OOO 18.0 6.0 24.0 28.0 6.0 34.0 17704.0

OOOO 7.0 25.0 7.0 35.0 18735.0

OOOP 6.0 24.0 5.0 33.0 18230.0

OOP 18.0 18.0 28.0 28.0 15874.0

OOPO 2.0 20.0 2.0 30.0 17210.0

OOPP 18.0 2.0 26.0 15790.0

OP 19.0 18.0 18.0 27.0 31.0 27.0 15459.0

OPO 19.0 3.0 21.0 27.0 31.0 17387.0

OPOO 4.0 23.0 5.0 32.0 17920.0

OPOP 1.0 20.0 2.0 29.0 17005.0

OPP 19.0 18.0 32.0 26.0 15047.0

OPPO 19.0 3.0 29.0 17285.0

OPPP 3.0 16.0 7.0 25.0 14750.0

P 18.0 18.0 17.0 27.0 33.0 30.0 16349.0

PO 17.0 18.0 2.0 20.0 29.0 28.0 32.0 17694.0

POO 17.0 6.0 24.0 29.0 6.0 34.0 17706.0

POOO 9.0 26.0 5.0 34.0 18645.0

POOP 6.0 23.0 3.0 32.0 17930.0

POP 17.0 1.0 19.0 29.0 1.0 29.0 16181.0

POPO 4.0 21.0 1.0 30.0 17320.0

POPP 1.0 18.0 29.0 16805.0

PP 19.0 19.0 17.0 26.0 33.0 27.0 15154.0

PPO 19.0 1.0 20.0 26.0 33.0 18292.0

PPOO 3.0 22.0 8.0 34.0 18015.0

PPOP 19.0 4.0 30.0 16900.0

PPP 20.0 18.0 32.0 27.0 15452.0

PPPO 20.0 4.0 28.0 17180.0

PPPP 3.0 17.0 7.0 25.0 15050.0

Table 17.3: Optimal solution

17.6 Summary

In this chapter a multi-stage stochastic programming model was viewed as a

sequence of two-stage stochastic programming models. A tree-based termi-

nology was used to describe event probabilities and multi-stage scenarios. All

concepts were illustrated on the basis of a simplified inventory control model.

Two alternative and seemingly different objective functions were introduced,

and were shown to be equivalent. A complete input data set was provided,

198 Chapter 17. An Inventory Control Problem

together with an overview of the model results.

Exercises

17.1 Implement the multi-stage mathematical program summarized at the

end of Section 17.3 using the example data provided in Section 17.5.

Verify that the optimal solution found with Aimms coincides with the

one presented in Table 17.3.

17.2 Implement the model with the alternative objective function described

in Section 17.4, and verify whether the optimal solution remains the

same.

17.3 Set up an experiment in Aimms to investigate the sensitivity of the

overall optimal stochastic programming objective function value to

changes in the number of scenario’s.

Part V

Advanced Optimization

Modeling Applications

Chapter 18

A Portfolio Selection Problem

This chapterIn this chapter you will find an extensive introduction to portfolio selection

decision making. Decision making takes place at two distinct levels. At the

strategic level, the total budget to be invested is divided among major invest-

ment categories. At the tactical level, the budget for a particular investment

category is divided among individual securities. Both the strategic and the tac-

tical portfolio selection problems are considered and subsequently translated

into quadratic programming models using the variance of the portfolio as a

measure of risk. The objective function of the relatively small strategic portfo-

lio selection model minimizes added covariances, which are estimated outside

the model. The objective function of the tactical portfolio selection model also

minimizes added covariances, but their values are not explicit in the model. In-

stead, scenario data is used to represent covariances indirectly, thereby avoid-

ing the explicit construction of a large matrix. The required mathematical

derivations for both models are presented in separate sections. In the last

part of the chapter you will find a section on one-sided variance as an im-

proved measure of risk, a section on the introduction of logical constraints,

and a section on the piecewise linear approximation of the quadratic objective

function to keep the model with logical constraints within the framework of

mixed-integer linear programming.

ReferencesThe methodology for portfolio selection problems dates back to the work of

Markowitz [Ma52] and is also discussed in [Re89].

KeywordsInteger Program, Quadratic Program, Mathematical Derivation, Mathematical

Reformulation, Logical Constraint, Piece-Wise Approximation, Worked Exam-

ple.

18.1 Introduction and background

InvestorsThe term investor is used for a person (or institution) who treasures a certain

capital. There are many types of investors, such as private investors, insti-

tutional investors (pension funds, banks, insurance companies), governments,

professional traders, speculators, etc. Each investor has a personal view of

risk and reward. For instance, the point of view of a pension fund’s portfo-

202 Chapter 18. A Portfolio Selection Problem

lio manager will differ from that of a private investor. This is due to several

reasons. The pension fund manager invests for a large group of employees of

a company (or group of companies) who expect to receive their pension pay-

ments in due time. In view of this obligation, the fund manager needs to be

extremely risk averse. In contrast, a private investor is only responsible for

his own actions and has full control over the investment policy. He will decide

on the amount of risk that he is willing to consider on the basis of personal

circumstances such as his age, family situation, future plans, his own peace of

mind, etc.

Investment

categories

There are many types of investment categories. Typical examples are deposits,

saving accounts, bonds, stocks, real estate, commodities (gold, silver, oil, pota-

toes, pigs), foreign currencies, derivatives (options, futures, caps, floors), etc.

Each investment category has its own risk-reward characteristics. For instance,

saving accounts and bonds are examples of low risk investment categories,

whereas stocks and real estate are relatively more risky. A typical example

of an investment category with a high level of risk is the category of finan-

cial derivatives such as options and futures. These derivatives are frequently

used for speculation, since they offer the possibility of a high rate of return in

comparison to most other investment categories.

Discrepancies

within

investment

categories

The above statements need to be understood as general remarks concerning

the average performance of the investment categories. Naturally, within each

category, there are again discrepancies in risk-reward patterns. In the case

of bonds, there are the so-called triple A bonds with a very small chance of

default (for instance government loans of the United States of America). On

the other end of the spectrum there are the high-yield or so-called junk bonds.

These bonds are considered to have a relatively large chance of default. For in-

stance, during the economic crises in South East Asia many of the government

bonds issued by countries from that area are considered to be junk bonds. The

interest paid on these type of bonds can amount to 30 percent. Similarly in the

category of stocks there are many different types of stocks. The so-called blue

chips are the stocks corresponding to the large international companies with

a reliable track record ranging over a long period of time. On the other hand,

stocks of relatively new and small companies with high potential but little or

no profits thus far, often have a high expected return and an associated high

degree of risk.

Securities are

investment

products

The term security is used to denote one particular investment product within

an investment category. For instance, the shares of companies like IBM or

ABN AMRO are examples of securities within the category of stocks. Similarly

a 2002 Oct Future contract on the Dutch Index of the Amsterdam Exchange

(AEX) is an example of a security within the category of derivatives.

18.1. Introduction and background 203

Percentage rate

of return is

widely used

Investing in a portfolio requires funds and thus a budget. Funds are usually

measured in some monetary unit such as dollars, yens or guilders. Using ab-

solute quantities, such as $-returns and $-investments, has the drawback of

currency influences and orders of magnitude. That is why the percentage rate

of return (in the sequel referred to as ‘rate of return’),

100 · new return− previous return

previous return

is a widely accepted measure for the performance of an investment. It is di-

mensionless, and simplifies the weighting of one security against the other.

As will be discussed later, the choice of the time step size between subsequent

returns has its own effect on the particular rate of return values.

Concept of riskNaturally, investors would like to see high rates of return on their investments.

However, holding securities is risky. The value of a security may appreciate or

depreciate in the market, yielding a positive or negative return. In general,

one can describe risk as the uncertainty regarding the actual rate of return

on investment. Since most investors are risk averse, they are only willing to

accept an additional degree of risk if the corresponding expected rate of return

is relatively high.

Portfolio

diversification

Instead of investing in one particular security, most investors will spread their

funds over various investments. A collection of securities is known as a port-

folio. The rationale for investing in a portfolio instead of a single security is

that different securities perform differently over time. Losses on one security

could be offset by gains on another. Hence, the construction of a portfolio en-

ables an investor to reduce his overall risk, while maintaining a desired level of

expected return. The concept of investing in a number of different securities

is called diversification. This concept and its mathematical background was

introduced by H. Markowitz in the early fifties ([Ma52]).

Practical

limitations

Although diversification is a logical strategy to reduce the overall risk of a

portfolio, there will be practical obstacles in realizing a well-diversified portfo-

lio. For instance, the budget limitation of a small private investor will severely

restrict the possibilities of portfolio diversification. This is not the case for the

average pension fund manager, who manages a large amount of funds. He, on

the other hand, may face other restrictions due to liquidity requirements over

time by existing pension holders.

Quantification

through

statistical

concepts

The main focus in this chapter is on how to quantify the risk associated with

a complete portfolio. What is needed, is a quantitative measure to reflect an

investor’s notion of uncertainty with respect to performance of the portfolio.

The approach presented in this chapter is based on tools from statistics, and

is one that is frequently referred to in the literature. Nevertheless, it is just

one of several possible approaches.

204 Chapter 18. A Portfolio Selection Problem

18.2 A strategic investment model

This section In this section a strategic portfolio selection model will be formulated. It mod-

els how top management could spread an overall budget over several invest-

ment categories. Once their budget allocation becomes available, tactical in-

vestment decisions at the next decision level must be made concerning indi-

vidual securities within each investment category. Such a two-phase approach

supports hierarchical decision making which is typical in large financial insti-

tutions.

The strategic

investment

decision

During the last decade there has been an enormous growth in investment pos-

sibilities. There are several logical explanations for this phenomenon. The

globalization of financial markets has opened possibilities of geographical di-

versification. Investments in American, European or Asian stocks and bonds

have completely different risk-reward patterns. The further professionaliza-

tion of financial institutions has led to the introduction of all kinds of new

financial products. In view of these developments, top management needs

to concentrate on the global partitioning of funds into investment categories.

This is referred to as the strategic investment decision.

Decision

variables

The allocation of the total budget over the various investment categories will

be expressed in terms of budget fractions. These fractions need to be deter-

mined, and form the set of decision variables. Each budget fraction is asso-

ciated with a particular investment category, and is defined as the amount

invested in this category divided by the total budget.

Objective

function

The objective is to minimize the portfolio risk. In his paper Markowitz [Ma52]

introduced the idea of using the variance of the total portfolio return as a

measure of portfolio risk. His proposed risk measure has become a standard,

and will also be used in this chapter.

Minimal level of

expected return

Each category has a known level of expected return. These levels, together

with the budget fractions, determine the level of expected return for the entire

portfolio. The investor will demand a minimal level of expected return for the

entire portfolio. This requirement forms the main constraint in the portfolio

model.

Verbal model

statement

The overall approach is to choose budget fractions such that the expected

return of the portfolio is greater than or equal to some desired target, and such

that the level of risk is as small as possible. The model can be summarized as

follows.

18.2. A strategic investment model 205

Minimize: the total risk of the portfolio

Subject to:

� minimal level of desired return: the expected return of the

portfolio must be larger than a given minimal desired level.

� definition of budget fractions: all budget fractions are

nonnegative, and must add to 1.

NotationThe following symbols will be used.

Index:

j investment categories

Parameters:

Rj return of category j (random variable)

mj expected value of random variable Rj
M desired (expected) portfolio return

Variable:

xj fraction of the budget invested in category j

Mathematical

model

statement

The mathematical description of the model can be stated as follows.

Minimize:

Var[
∑

j

Rjxj]

Subject to: ∑

j

mjxj ≥ M
∑

j

xj = 1

xj ≥ 0 ∀j

Deterministic

equivalent of

objective

Note that the objective function makes reference to random variables, and

is therefore not a deterministic expression. To rewrite this expression, you

need some mathematical concepts that are developed in the next section. It

will be shown that the objective function is equivalent to minimizing added

covariances. That is

Var[
∑

j

Rjxj] =
∑

jk

xj Cov[Rj , Rk]xk

Here, the new deterministic equivalent of the objective is a quadratic function

in terms of the unknown x-variables. The coefficients Cov[Rj , Rk] are known

input data.

206 Chapter 18. A Portfolio Selection Problem

18.3 Required mathematical concepts

This section In this section the statistical concepts of expectation and variance are dis-

cussed, together with their role in the portfolio selection model presented in

the previous section. The corresponding statistical functions are available in

Aimms.

The random

variable R

Consider for a moment the investment in one particular investment category,

and define the random variable R that describes the rate of return on this in-

vestment category after one year. For simplicity, assume that R has a finite set

I of values (outcomes), which are denoted by ri with corresponding probabili-

ties pi for all i ∈ I and such that
∑
i pi = 1.

Concept of

expectation

The concept of expectation (or expected value) corresponds to your intuitive

notion of average. The expected value of the random variable R is denoted by

E[R] and is defined as follows.

E[R] =
∑

i

ripi

Note that whenever ri = c (i.e. constant) for all i ∈ I, then the expected value

E[R] =
∑

i

ripi = c
∑

i

pi = c

is also constant. The following result will be used to advantage in various

derivations throughout the remainder of this chapter. Whenever f is a func-

tion of the random variable R, the expected value of the random variable f(R)

is equal to

E[f(R)] =
∑

i

f(ri)pi

Concept of

variance . . .

The concept of variance corresponds to the intuitive notion of variation around

the expected value. The variance of a random variable R is denoted by Var[R]

and is defined as follows.

Var[R] = E[(R − E[R])2]

Using the result of the previous paragraph, this expression can also be written

as

Var[R] =
∑

i

(ri − E[R])2pi

18.3. Required mathematical concepts 207

. . . as measure

of risk

Variance turns out to be a suitable measure of risk. The main reason is that

variance, just like most other risk measures, is always nonnegative and zero

variance is a reflection of no risk. Note that if R has only one possible value

c, then the return is always constant and thus without risk. In that case, the

expected value E[R] is c and

Var[R] =
∑

i

(Ri − c)2pi = 0

Chebyshev

inequality . . .

A well-known inequality which is closely related to the concept of variance is

the Chebyshev inequality:

P(|R − E[R]| > ασ) < 1

α2
∀α > 0

In this inequality the term

σ =
√

Var[R]

is used, and is called the standard deviation of the random variable R.

. . . supports

variance as risk

measure

The Chebyshev inequality states that the probability of an actual rate of return

differing more than α times the standard deviation from its expected value,

is less than 1 over α squared. For instance, the choice α = 5 gives rise to a

probability of at least 96 percent that the actual rate of return will be between

E[R] − 5σ and E[R] + 5σ . The smaller the variance, the smaller the standard

deviation, and hence the smaller the distance between the upper and lower

value of this confidence interval. This property of the Chebyshev inequality

also supports the notion of variance as a measure of risk.

Derivation of

the Chebyshev

inequality

By straightforward use of the definition of variance the following derivation

leads to the Chebyshev inequality

σ 2 = Var[R] = E[(R − E[R])2] =
∑

i

(ri − E[R])2pi

=
∑

i
∣∣|ri−E[R]|≤ασ

(ri − E[R])2pi +
∑

i
∣∣|ri−E[R]|>ασ

(ri − E[R])2pi

≥
∑

i
∣∣|ri−E[R]|>ασ

(ri − E[R])2pi

>
∑

i
∣∣|ri−E[R]|>ασ

(ασ)2pi

= α2σ 2
∑

i
∣∣|ri−E[R]|>ασ

pi

= α2σ 2P(|R − E[R]| > ασ)

Thus, in summary, σ 2 > α2σ 2P(|R−E[R]| > ασ), which immediately leads to

the Chebyshev inequality.

208 Chapter 18. A Portfolio Selection Problem

Expected value

of portfolio

return

Suppose there are a finite number of investment categories j from which an in-

vestor can select. Let Rj be the random variable that denotes the rate of return

on the j-th category with corresponding values (outcomes) rij and probabili-

ties pij such that
∑
i pij = 1∀j. Let xj be the fraction of the budget invested

in category j. The return of the total portfolio is then equal to
∑
j Rjxj , which,

being a function of random variables, is also a random variable. This implies,

using the previously described identity E[f(R)] =
∑
i f(ri)pi , that the ex-

pected value of the portfolio return equals

E[
∑

j

Rjxj] =
∑

i

(
∑

j

rijxjpij)

=
∑

j

xj(
∑

i

rijpij)

=
∑

j

xj E[Rj]

This last expression is just the weighted sum of the expected values associated

with the individual investment categories.

Variance of

portfolio return

The variance of the portfolio return can now be determined as follows.

Var[
∑

j

Rjxj] = E[(
∑

j

Rjxj − E[(
∑

j

Rjxj)])
2]

= E[(
∑

j

Rjxj −
∑

j

xjE[Rj])])
2]

= E[(
∑

j

xj(Rj − E[Rj]))
2]

= E[(
∑

jk

xj(Rj − E[Rj])xk(Rk − E[Rk]))]

=
∑

jk

xjxk E[(Rj − E[Rj])(Rk − E[Rk])]

Here, the term

E[(Rj − E[Rj])(Rk − E[Rk])]

is called the covariance of the random variables Rj and Rk, and will be denoted

by Cov[Rj , Rk]. Note that Cov[Rj , Rj] = Var[Rj] by definition.

Concept of

covariance

The covariance of two random variables is a measure of the relation between

above and below average values of these two random variables. When both

positive and negative deviations tend to occur simultaneously, their covariance

will be positive. When positive deviations of one of them tends to occur often

with negative deviations of the second, their covariance will be negative. Only

when positive and negative deviations occur randomly, their covariance will

tend to be zero.

18.4. Properties of the strategic investment model 209

The objective

minimizes

added

covariances

By using the covariance terms, portfolio risk can be written as

Var[
∑

j

Rjxj] =
∑

jk

xj Cov[Rj , Rk]xk

Thus, the objective of the model can be formulated as the minimization of

weighted covariances summed over all possible random pairs (Rj , Rk).

Diversification

as a logical

strategy

From a mathematical point of view, the model shows that it is advisable to in-

vest in categories with negative covariances. The logical explanation for this is

that below average results of one investment category are likely to be offset by

above average results of the other. Hence, the model formulation using covari-

ances can be seen as the formalization of the intuitive concept of spreading

risk by using various securities.

18.4 Properties of the strategic investment model

This sectionIn this section several mathematical properties of the strategic investment

model are investigated. In summary, it is shown that (a) any optimal solu-

tion of the nonlinear programming model developed in Section 18.2 is also a

global optimum, (b) the risk-reward curve is nondecreasing and convex, and

(c) multiple optimal portfolio returns are perfectly correlated.

Optimum is

global

Any optimal solution of the presented portfolio selection model is globally

optimal. This follows from the theory of optimization. The theory states that,

whenever a model has linear constraints and the objective function f(x) to be

minimized is convex, i.e.

f(αx1 + (1−α)x2) ≤ αf(x1)+ (1−α)f(x2) ∀α ∈ [0,1]

then any optimal solution of the model is also a globally optimal solution. In

the portfolio selection model the objective function

f(x) =
∑

jk

xj Cov[Rj , Rk]xk

is a quadratic function, and is convex if and only if the associated matrix of

second-order derivatives is positive semi-definite.

Required matrix

condition is

satisfied

Note that the matrix with second-order derivatives is precisely the covariance

matrix with elements Cov[Rj , Rk]. Such a matrix is positive semi-definite if

and only if ∑

jk

xj Cov[Rj , Rk]xk ≥ 0 ∀xj , xk ∈ R

This mathematical condition, however, happens to be equivalent to the in-

equality Var[
∑
j Rjxj] ≥ 0, which is true by definition.

210 Chapter 18. A Portfolio Selection Problem

Parametric

risk-reward

curve V(M)

The input parameterM characterizes the individual preference of the investor.

Instead of solving the model for one particular value ofM , it will be interesting

for an investor to see what the changes in optimal risk value will be as the

result of changes in M . The optimal risk value is unique for each value of M

due to the global optimality of the solution. Thus the optimal risk value V can

be considered as a function of the desired minimal level of expected return M .

This defines a parametric curve V(M).

Practical levels

of desired

return

The value V(M) is defined for all values of M for which the model is solvable.

It is straightforward to verify that −∞ ≤ M ≤ maxjmj ≡ Mmax. When M is

set to −∞, V(M) obtains its lowest value. An investor will be interested in the

largest feasible value of M that can be imposed such that V(M) remains at its

lowest level. Let Mmin be this level of M . Then, for all practical purposes, M

can be restricted such that Mmin ≤ M ≤ Mmax. Note that the value of Mmin

can be determined experimentally by solving the following penalized version

of the portfolio selection model

Minimize:

Var[
∑

j

Rjxj]− λ(
∑

j

mjxj)

Subject to: ∑

j

xj = 1

xj ≥ 0 ∀j

for a sufficiently small value of λ > 0.

Properties of

risk-reward

curve V(M)

The optimal value V(M) is nondecreasing in M , because any feasible solution

of the model for a particular value of M will also be a solution for smaller

values of M . In addition, it will be shown in the paragraph below that V(M)

is convex. These two properties (nondecreasing and convex), coupled with the

definition of Mmin from the previous paragraph, imply that V(M) is strictly

increasing on the interval [Mmin,Mmax].

Proof that V(M)

is convex

Let M = αM1 + (1 − α)M2 for α ∈ [0,1], and let Mmin ≤ M1 ≤ M2 ≤ Mmax. In

addition, let xM , x1 and x2 be the optimal solutions corresponding to M , M1

and M2, respectively. Furthermore, let Q denote the covariance matrix. Then,

as explained further below,

V(M) = xTM Q xM

≤ (αx1 + (1− α)x2)
T Q (αx1 + (1−α)x2)

≤ αxT1 Q x1 + (1− α)xT2 Q x2

= αV(M1)+ (1− α)V(M2)

18.4. Properties of the strategic investment model 211

The inequality on the second line of the proof follows from the fact that αx1+
(1 − α)x2 is a feasible but not necessarily optimal solution for M = αM1 +
(1 − α)M2. The third line follows directly from the convexity of the quadratic

objective function, which then establishes the desired result that

V(αM1 + (1−α)M2) ≤ αV(M1)+ (1−α)V(M2)

Thus, V(M) is convex in M .

Multiple optimal

portfolios . . .

Consider a fixed value ofM and two distinct optimal portfolios x∗1 and x∗2 with

equal variance V∗(M). Then any convex combination of these two portfolios

will also be a feasible portfolio due to the linearity of the model constraints.

From the convexity of the quadratic objective function the variance of each

intermediate portfolio return can only be less than or equal to V∗(M). How-

ever, it cannot be strictly less than V∗(M), because this would contradict the

optimality of V∗(M). Hence the variance of the return of each intermediate

portfolio is equal to V∗(M) and thus also optimal.

. . . have

perfectly

correlated

returns

As will be shown next, any two distinct optimal portfolios x∗1 and x∗2 for a

fixed value of M have perfectly correlated returns. Let P1 and P2 be the cor-

responding portfolio returns, and consider the variance of the return of an

intermediate portfolio. This variance can be written as a weighted sum of in-

dividual covariances as follows.

Var[αP1 + (1− α)P2]

= α2 Cov[P1, P1]+ 2α(1 −α)Cov[P1, P2]+ (1−α)2 Cov[P2, P2]

= α2 Var[P1]+ (1−α)2 Var[P2]+ 2α(1 −α)Cov[P1, P2]

From the previous paragraph it is also known that

Var[αP1 + (1−α)P2] = Var[P1] = Var[P2]

Therefore, by substituting the above identities, the term Cov[P1, P2] can be

determined as follows.

Cov[P1, P2] =
1−α2 − (1−α)2

2α(1−α) Var[P1] = Var[P1]

This implies that the correlation coefficient ρ between the portfolio returns P1

and P2, defined as Cov[P1, P2]/(
√

Var[P1]Var[P2]), is equal to 1. Hence, P1 and

P2 are perfectly correlated.

Illustrating

global

optimality

Figure 18.1 gives an example of the feasible region and contours of the objec-

tive function for a portfolio of two securities. Notice that the feasible region

is now restricted to that part of the budget line x1 + x2 = 1 for which the

target return is at least achieved. It is intuitively clear that the optimal combi-

nation of securities is globally optimal, due to the shape of the contours of the

objective.

212 Chapter 18. A Portfolio Selection Problem

x1-axis

x2-axis

0

Contours of

constant risk

x1 + x2 = 1

m1x1 +m2x2 ≥ M

Figure 18.1: The feasible region and two objective function contours

18.5 Example of strategic investment model

This section In this section a small example of the strategic investment approach is pre-

sented. The required input data at this strategic level is usually not directly

obtainable from public sources such as stock exchanges etc. Instead such in-

put data is estimated from statistical data sources in a nontrivial manner, and

is provided in this example without any further explanation.

Data Consider three investment categories: stocks, bonds and real estate. The cor-

responding random variables will be denoted by X1, X2 and X3. The minimal

level of expected returnM will be set equal to 9.0. The expected return values,

together with the covariances between investment categories, are displayed in

Table 18.1.

i mi Cov[Xi, Xj]

j 1 2 3

1 10.800 2.250 −0.120 0.450

2 7.600 −0.120 0.640 0.336

3 9.500 0.450 0.336 1.440

Table 18.1: Expected returns and covariances

The optimal

solution . . .

After solving the portfolio model described in Section 18.2, the optimal port-

folio fractions are x1 = 0.3233, x2 = 0.4844, x3 = 0.1923. Therefore, ap-

proximately 32 percent will be invested in stocks, 48 percent in bonds and 19

percent in real estate. The corresponding optimal portfolio risk is equal to

0.5196.

18.5. Example of strategic investment model 213

. . . supports

diversification

Note that the optimal portfolio risk (approximately 0.52) is even smaller than

the variance of bonds (0.64), which is the lowest variance associated with any

particular investment category. In addition, note that the expected portfolio

return (9.00) is higher than if the entire investment had been in bonds only

(namely 7.6). These results clearly illustrate the benefits of portfolio diversifi-

cation.

Risk-reward

characteristic

It is of interest to an investor to see what the change in optimal value V will

be as a consequence of changing the value of desired return M . Below the

function V(M) is presented on the interval [7.6,10.8].

7.6 8.6 9.6 10.6

0

1

2

Minimal level

of expected

return

Portfolio risk

Figure 18.2: Risk-reward characteristic

The smallest level of expected return that is of interest to the investor is

Mmin = 8.4, which can be derived by solving the model with the penalized

objective function from the previous section. Note that this value is larger

than minimi = 7.6. For values of M greater than Mmin, the curve is strictly

increasing and the constraint regarding the minimal level of expected return

is binding. Based on this curve an investor can make his trade-off between risk

and reward.

Unique optimal

portfolios

As explained in the previous section, optimal portfolios need not be unique.

In this example, however, they are unique, because there are no perfectly cor-

related portfolios. You may verify this observation by computing the corre-

lation coefficients between returns on the basis of the covariances listed in

Table 18.1.

214 Chapter 18. A Portfolio Selection Problem

Portfolio

diversification

illustrated

Similar to the parametric curve representing the optimal risk value as a func-

tion of the minimal level of expected return, you may also want to view the

budget fractions of the optimal portfolio as functions of the minimal level of

expected return. These parametric curves illustrate portfolio diversification,

and are presented in Figure 18.3.

7.6 8.6 9.6 10.6

0

1 stocks
bonds
real estate

Minimal level

of expected

return

Budget

fractions

Figure 18.3: Portfolio diversification

18.6 A tactical investment model

This section At the tactical level, there are specialized fund managers to manage a partic-

ular investment category. Each manager receives a specific budget, which is

based on the solution of the strategic investment model. In this section the

tactical investment model is derived from the strategic investment model. The

major difference between the two models is that the much larger covariance

matrix in the tactical model is no longer modeled as an explicit matrix.

From

aggregated

investment

categories . . .

The solution of the strategic investment model in the previous section sug-

gested to invest approximately 32 percent of the overall budget in stocks.

Such a result was based on aggregated data representing the entire stock in-

vestment category, and not on data regarding individual stocks. For individual

stocks the question naturally arises which ones should be selected to spend

the 32 percent of the total budget. This is considered to be a question at the

tactical level.

. . . to numerous

individual

securities

The possibilities to select individual securities from within a particular invest-

ment category are enormous. If the underlying decision model at this level was

the same as the strategic decision model, the corresponding covariance matrix

would become very large. That is why an alternative modeling approach is

proposed to deal with securities at the tactical level

18.6. A tactical investment model 215

Observed

returns

determine

scenarios . . .

In the paragraphs to follow, it is shown that the original portfolio variance as

measure of risk can be estimated directly from real-world observed returns

taken at distinct points in time. Each time observation consists of a vector

of returns, where the size of the vector is equal to the number of individual

securities. By considering two subsequent time periods, it is possible to com-

pute the corresponding rate of returns. The resulting vector is referred to as a

scenario.

. . . based on

specific time

steps

By construction, there are as many scenarios as there are time observations mi-

nus one. It is to be expected that the time step size will vary the rate of return

values associated with each scenario. The movements in returns between sub-

sequent time observations are likely to be different when you consider hourly,

daily or monthly changes in return values. The choice of time step in the com-

putation of scenarios should be commensurable with the time unit associated

with the investment decision.

NotationConsider a vector of random variables denoting rates of returns Rj for j. Every

instance of this vector denotes a scenario. Assume that there is a finite set of

scenarios. Let T denote this set with index t ∈ T . Let rt denote a single

scenario, and p(rt) its associated probability. By definition, the sum over all

scenarios of the probabilities (i.e.
∑
t p(rt)) equals 1.

Index:

t scenarios of size |T |

Parameters:

rt vector of particular return rates for scenario t

p(rt) probability of scenario t

rtj particular return rate of security j in scenario t

Note that the symbol r is overloaded in that it is used for both the vector of

return rates (rt) and the individual return rates per scenario (rtj). This is done

to resemble previous notation and is used throughout the remainder of this

section for consistency.

Reformulation

of the objective

Consider the following straightforward algebraic manipulations based on mov-

ing the
∑

-operator, and using the properties of the E-operator.

216 Chapter 18. A Portfolio Selection Problem

Var[
∑

j

Rjxj] = E[((
∑

j

Rjxj)− E[
∑

j

Rjxj])
2]

= E[((
∑

j

Rjxj)−
∑

j

xj E[Rj])
2]

= E[(
∑

j

xj(Rj − E[Rj]))
2]

=
∑

t

(
∑

j

xj(rtj − E[Rj]))
2p(rt)

=
∑

t

p(rt)y
2
t

where yt =
∑
j xj(rtj − E[Rj]) ∀t ∈ T . This results in a compact formula for

the objective function in terms of the new variables yt . These new decision

variables plus their definition will be added to the model.

Comparing the

number of

nonlinear terms

The repetitive calculation of the objective function and its derivatives, required

by a nonlinear programming solver, can be carried out much faster in the

above formulation than in the formulation of Section 18.2. This is because, in

the tactical investment model, |T | (the number of scenarios) is typically much

smaller than |J| (the number of individual securities). Therefore, the number

of nonlinear terms yt
2 is significantly smaller than the number of nonlinear

terms xjxk.

The model

formulation

Let mj = E[Rj] be the expected value of security j, and let dtj = (rtj −mj) be

the deviation from the expected value defined for each scenario. Then using

the approach presented in the previous paragraph, a quadratic optimization

model with xj and yt as the decision variables can be written as follows.

Minimize:

∑

t

p(rt)y
2
t

Subject to: ∑

j

dtjxj = yt ∀t
∑

j

mjxj ≥ M
∑

j

xj = 1

xj ≥ 0 ∀j

18.7. Example of tactical investment model 217

Model

properties

unchanged

The properties of the above investment model are the same as the ones asso-

ciated with the strategic investment model, because the above model is just an

equivalent reformulation of the model presented in Section 18.2. Of course, it

is still possible to derive the model properties directly from the mathematical

formulation above. For instance, the verification that the new objective func-

tion is also convex, follows directly from the observation that the matrix with

second-order derivatives is a |T | × |T | diagonal matrix with 2p(rt) ≥ 0 as its

diagonal elements. Such a matrix is always positive semi-definite.

18.7 Example of tactical investment model

This sectionIn this section you find a small example in terms of 5 individual stocks and 51

observations. In a realistic application, the number of observations is usually

in the hundreds, while the number of candidate stocks is likely to be a multiple

thereof.

DataThe stocks that can be part of the portfolio are: RD (Royal Dutch), AKZ (Akzo

Nobel), KLM (Royal Dutch Airline Company), PHI (Philips) and UN (Unilever).

The historical data are weekly closing values from August 1997 to August

1998, and are provided in Table 18.2. The corresponding weekly rates of return

can be computed on the basis of these return values, and have all been given

equal probability.

The resultsAs for the strategic investment model a risk-reward characteristic can be pre-

sented. The expected level of return for the various stocks is: RD -0.28, AKZ

0.33, KLM 0.40, PHI 0.30, UN 0.55. The parametric curve V(µ) is computed

on the interval [0,0.55]. Below both the risk-reward characteristic as well as

the budget fractions of the optimal solutions are presented in Figure 18.4 and

Figure 18.5.

0 0.1 0.2 0.3 0.4 0.5

0

5.0

10.0

15.0

20.0

Minimal level

of expected

return

Risk

Figure 18.4: Risk-reward characteristic

218 Chapter 18. A Portfolio Selection Problem

Scena− Valueofstocks Scena− Valueofstocks

rios RD AKZ KLM PHI UN rios RD AKZ KLM PHI UN

t − 0 111.0 82.5 70.0 154.6 110.8 t − 26 112.8 107.0 76.3 155.9 134.2

t − 1 108.1 81.6 73.7 152.4 108.0 t − 27 109.7 110.4 86.0 155.0 140.9

t − 2 107.9 80.1 72.3 146.1 103.7 t − 28 111.7 109.7 88.9 149.9 138.2

t − 3 108.5 83.1 69.7 157.5 106.6 t − 29 120.4 105.9 83.5 153.5 141.6

t − 4 111.4 85.0 69.5 168.4 107.3 t − 30 118.0 105.9 83.4 153.0 140.6

t − 5 115.5 92.6 74.8 166.9 109.5 t − 31 119.7 103.0 84.9 149.9 158.2

t − 6 113.2 91.6 73.8 164.1 108.7 t − 32 116.7 102.4 84.9 153.7 149.6

t − 7 111.9 88.3 70.2 169.0 111.1 t − 33 115.8 107.2 86.1 167.0 152.8

t − 8 99.7 80.8 64.3 143.8 101.0 t − 34 113.7 104.5 78.9 181.0 144.3

t − 9 105.1 86.1 71.8 151.3 105.4 t − 35 115.7 105.8 79.5 189.4 155.5

t − 10 100.9 81.8 71.7 148.3 109.6 t − 36 114.4 104.8 79.1 197.9 154.2

t − 11 105.0 85.6 69.5 140.6 112.8 t − 37 113.8 103.8 79.9 201.7 154.5

t − 12 105.2 84.6 70.5 131.5 113.6 t − 38 114.0 107.0 82.0 196.3 158.0

t − 13 107.0 90.3 74.9 138.0 117.4 t − 39 114.1 107.4 77.2 188.0 163.8

t − 14 109.0 88.3 78.5 135.4 123.1 t − 40 111.5 112.0 78.5 189.9 164.3

t − 15 111.4 85.6 73.0 114.0 124.5 t − 41 109.2 106.8 77.1 172.1 163.9

t − 16 107.2 81.6 74.5 116.1 118.7 t − 42 110.1 105.3 76.1 178.0 165.6

t − 17 111.3 87.4 75.0 121.6 125.0 t − 43 112.8 113.1 82.6 171.0 161.4

t − 18 108.6 87.5 77.0 127.6 127.7 t − 44 111.0 116.6 91.4 179.5 165.4

t − 19 105.6 86.6 72.4 116.2 121.2 t − 45 105.6 126.7 94.5 180.6 160.9

t − 20 105.9 90.0 71.4 128.6 125.1 t − 46 107.3 123.1 90.0 173.5 162.0

t − 21 104.7 91.4 68.9 129.4 119.9 t − 47 103.2 112.3 88.5 164.4 153.0

t − 22 107.7 95.3 69.7 137.1 117.9 t − 48 102.8 103.1 81.8 164.2 141.2

t − 23 107.4 92.9 68.6 134.5 124.6 t − 49 93.9 95.0 80.7 153.0 133.4

t − 24 108.0 97.0 70.2 156.0 124.3 t − 50 93.6 92.7 80.5 164.0 139.3

t − 25 104.7 102.6 74.3 159.5 128.8

Table 18.2: Stock returns for 50 different scenarios

Comment Although the stock RD has a negative expected return, it is a major compo-

nent in the optimal portfolio for low values of minimal expected return. This

unexpected result is an artifact of the problem formulation and is addressed

in the next section. The stock is included due to its relative stable behavior

which stabilizes the overall performance of the portfolio and is therefore used

to reduce the overall risk of the portfolio. Only for large values of minimal ex-

pected rates of return (over the 0.02 on a weekly basis, so over the 10 percent

on a yearly basis) the budget fraction of the stock UN will be larger than the

fraction of RD.

0 0.1 0.2 0.3 0.4 0.5

0

1 RD
AKZ
KLM
PHI
UN

Minimal level

of expected

return

Budget

Fractions

Figure 18.5: Portfolio diversification

18.8. One-sided variance as portfolio risk 219

18.8 One-sided variance as portfolio risk

This sectionIn this section, the notion of one-sided variance will be introduced as an exten-

sion of regular variance. Based on this new notion a more realistic reformula-

tion of the basic Markowitz model can be developed.

Main fallacy of

variance as

portfolio risk

A serious drawback of using variance as a measure of risk is that it penal-

izes both high and low portfolio returns. In this sense, it fails to capture an

investor’s basic preference for higher rather than lower portfolio returns.

Concept of

one-sided

variance

The concept of one-sided variance is similar to the concept of variance but

considers only deviations either below (downside variance) or above (upside

variance) of some specific target value. For each random variable Rj consider

the following two definitions of one-sided variance with respect to the desired

expected portfolio return M .

DownVar[Rj ,M] = E[(max[M − Rj ,0])2] =
∑

t|rtj≤M
(M − rtj)2p(rt)

UpVar[Rj ,M] = E[(max[Rj −M,0])2] =
∑

t|rtj≥M
(rtj −M)2p(rt)

Downside

variance of a

portfolio

Reflecting the investor’s preference for higher rather than lower portfolio re-

turns, the focus in this section will be on downside variance of a portfolio as

the risk measure to be minimized.

DownVar[
∑

j

Rjxj ,M] = E[(max[M −
∑

j

Rjxj ,0])
2]

=
∑

t|∑j rtjxj≤M
[M −

∑

j

rtjxj]
2
p(rt)

Reformulation

required

The above expression makes reference to the unknown budget fractions xj
inside the condition controlling the summation. Such expressions cannot be

handled by current solution packages, as these require the structure of the

constraints to be known and fixed prior to solving the model. That is why an-

other representation must be found such that the special condition controlling

the summation is no longer present.

Introduce new

variables

Whenever you are required to reference positive and/or negative values of an

arbitrary expression, it is convenient to write the expression as the difference

between two nonnegative variables. This reformulation trick was already in-

troduced in Chapter 6.

220 Chapter 18. A Portfolio Selection Problem

Equivalent

formulation

As indicated before, the focus is on downside variance, and only one new vari-

able needs to be introduced. Let the new variable qt ≥ 0 measure the below

deviations of the target value M . Then,

Minimize
∑

t|
∑
j rtjxj≤M

[M −
∑

j

rtjxj]
2
p(rt)

can be rewritten as

Minimize:

∑

t

p(rt)q
2
t

Subject to:

M −
∑

j

rtjxj ≤ qt ∀t

qt ≥ 0 ∀t

Comment Note that this reformulation does not result in a simple computational for-

mula, but in an optimization model with inequalities. The objective function

will force the nonnegative qt variables to be as small as possible. This results

in qt = M − ∑j rtjxj whenever M is greater than or equal to
∑
j rtjxj , and

qt = 0 otherwise.

Summary of

model using

downside

variance

Based on the above development concerning the downside risk of a portfolio,

the tactical quadratic optimization model of Section 18.6 can be rewritten with

xj and qt as the decision variables.

Minimize:

∑

t

p(rt)q
2
t

Subject to: ∑

j

rtjxj + qt ≥ M ∀t
∑

j

mjxj ≥ M
∑

j

xj = 1

xj ≥ 0 ∀j
qt ≥ 0 ∀t

18.9. Adding logical constraints 221

Global

optimality

guaranteed

Global optimality of any optimal solution to the above model is guaranteed. As

before, the quadratic and minimizing objective function possesses a positive

semi-definite matrix of second-order derivatives, and all constraints are linear.

SolutionTo compare the computational results for the two notions of variance, Ta-

ble 18.3 presents the optimal budget fractions for a minimal level of expected

return of M = 0.2. Note that a lower total risk value associated with down-

sided variance does not necessarily imply a lower risk, because there is no

ordinal relationship between both risk measures.

two-sided variance down-sided variance

RD 0.335 0.337

AKZ 0.066 0.046

KLM 0.214 0.351

PHI 0.091 0.017

UN 0.294 0.250

total risk 8.982 5.189

Table 18.3: Optimal budget fractions for M = 0.2

18.9 Adding logical constraints

This sectionThis section discusses several logical conditions that can be added to the port-

folio selection models in this chapter. The resulting models are mixed-integer

quadratic programming models. When linearized, these models can be suc-

cessfully solved within Aimms.

Imposing

minimum

fractions

Investing extremely small fractions of the budget in an investment category

or individual security is unrealistic in real-life applications. A natural exten-

sion is to introduce an either-or condition. Such a condition specifies for each

investment category or individual security to invest either at least a smallest

positive fraction of the budget or nothing at all.

Fixed fee for

transaction

costs

Some financial institutions may charge a fixed fee each time they execute a

transaction involving a particular type of security. Such a fee may have a

limiting effect on the number of different securities in the optimal portfolio,

and is significant enough in most real-world applications to be considered as

a necessary part of the model.

222 Chapter 18. A Portfolio Selection Problem

Conditional

selections

A portfolio manager may have specific preferences for various types of secu-

rities. Some of these preferences are of the form: if security of type A is to

be included in the optimal portfolio, then also security of type B has to be in-

cluded. Such conditional selections result from practical considerations, and

therefore form a natural extension of the model.

Use logical

variables

The logical conditions described in the previous paragraphs can be translated

into new constraints and new variables to be added to the portfolio models

developed thus far. None of the above logical conditions are worked out in

detail in this chapter, as you have already encountered them in previous chap-

ters. The formulation tricks involving binary decision variables are described

in detail in Chapter 7 with additional illustrations thereof in Chapter 9.

Motivation to

linearize the

objective

Adding binary variables to the quadratic programming model of the previous

section requires the availability of a solver for quadratic mixed-integer pro-

gramming. One way to circumvent the need for this class of algorithms is to

approximate the quadratic terms in the objective by piecewise linear functions,

thus obtaining a linear formulation. Adding binary variables to that formula-

tion causes the entire model to become a mixed-integer linear program, for

which solvers are readily available.

18.10 Piecewise linear approximation

This section In this section the piecewise approximation of the quadratic function f(qt) =
q2
t is explained in detail. Special attention is paid to the determination of the

overall interval of approximation, the quality of the approximation, and the

corresponding division into subintervals.

Illustration of

piecewise

approximation

Figure 18.6 illustrates how a simple quadratic function can be approximated

through a piecewise linear function. The function domain is divided into equal-

length subintervals. By construction, both the true function value and the

approximated function value coincide at the endpoints of each subinterval.

The slopes of the linear segments increase from left to right, which is what

you would expect for a piecewise convex function. Through visual inspection

you might already conclude that the approximation is worst at the midpoints

of each subinterval. As will be shown, the size of the corresponding maximum

approximation error is the same for each interval, as long as intervals are of

equal length.

Components

piecewise

formulation

Recall from the previous section that the quadratic objective function to be

minimized is
∑
t p(rt)q

2
t . The individual quadratic terms f(qt) = q2

t can each

be approximated independently over a finite portion of qt-axis divided into

subintervals indexed with t and l. The length of each subinterval is denoted

18.10. Piecewise linear approximation 223

Figure 18.6: Piecewise linear approximation illustrated

with ūtl. For each subinterval, a variable utl is introduced where

0 ≤ utl ≤ ūtl ∀(t, l)

In addition, the slope of the function f(qt) in each subinterval is defined as

stl =
f(qetl)− f(qbtl)

qetl − qbtl
∀(t, l)

where qbtl and qetl denote the beginning and end values of the intervals, respec-

tively. The following three expressions, defining the approximation of each

individual term f(qt), can now be written.

f(qt) =
∑

l

stlutl ∀t

qt =
∑

l

utl ∀t

utl ≤ ūtl ∀(t, l)

CorrectnessThe above approximation only makes sense if the variable utl = ūtl whenever

ut,l+1 > 0. That is, utl must be filled to their maximum in the left-to-right

order of the intervals l, and no gaps are allowed. Fortunately, this condition is

automatically guaranteed for convex functions to be minimized. The slope stl
increases in value for increasing values of l, and any optimal solution in terms

of the utl-variables will favor the variables with the lowest stl-values.

Function

domain

Recall that qt denotes downside variance, which is always greater than or equal

to zero. The largest value that qt can attain is when rtj attains its smallest

value over all investment categories or individual securities j, and the corre-

sponding fraction xj is equal to one. It is highly unlikely that xj will be one,

but this value establishes the proper interval size for qt .

0 ≤ qt ≤ q̄t ≡ min
j
rtj ∀t

224 Chapter 18. A Portfolio Selection Problem

The value of

slope stl

For the special case of quadratic terms f(qt) = q2
t , the general expression for

the slope of the linear approximation

stl =
f(qetl)− f(qbtl)

qetl − qbtl
∀(t, l)

reduces to the following simple expression in terms of endpoints.

stl =
(qetl)

2 − (qbtl)2
qetl − qbtl

= (qetl + qbtl)(qetl − qbtl)
qetl − qbtl

= qetl + qbtl ∀(t, l)

Approximation

is worst at

midpoint . . .

The function q2
t is convex, and the linear approximation on the interior of any

subinterval of its domain overestimates the true function value. The point

at which the approximation is the worst, turns out to be the midpoint of the

subinterval. The steps required to prove this result are as follows. First write

an error function that captures the difference between the approximated value

and the actual value of q2
t on a particular subinterval. Then, find the point

at which this error function attains its maximum by setting the first derivate

equal to zero.

. . . and can be

derived as

follows

Consider the error function to be maximized with respect to utl

((qbtl)
2 + stlutl)− (qbtl +utl)

2

By taking the first derivative with respect to utl and equating this to zero, the

following expression results.

stl − 2(qbtl +utl) = 0

Using the fact that stl = qetl + qbtl, the value of utl for which the above error

function is maximized, becomes

utl =
qetl − qbtl

2

Note that a maximum occurs at this value of utl, because the second derivative

of the error function is negative (a necessary and sufficient condition). As a

result, the maximum is attained at the midpoint of the subinterval.

qbtl +utl = qbtl +
qetl − qbtl

2
= qetl + qbtl

2

Maximum

approximation

error

The size of the maximum approximation error ǫǫǫtl can be determined in a

straightforward manner by substituting the optimal utl expression in the error

function. This requires some symbolic manipulations, but finally results in the

following simple compact formula.

ǫǫǫtl =
(qetl − qbtl)2

4

18.11. Summary 225

Number of

subintervals

Note that the above maximum approximation error is a function of the length

of the subinterval, and is in no way dependent on the position of the inter-

val. This implies that the choice of equal-length subintervals is an optimal one

when you are interested in minimizing the maximum approximation error of

the piecewise linear approximation of a quadratic function. In addition, the

number of subintervals nt dividing the overall interval [0, q̄t] can be deter-

mined as soon as the desired value of an overall ǫǫǫ, say ǭǫǫ, is specified by the

user of the model. The following formula for the number of subintervals nt of

equal size guarantees that the maximum approximation error of qt will never

be more than ǭǫǫ.

nt =
⌈
q̄t

2
√
ǭǫǫ

⌉

The piecewise

linear program

Using the notation developed in this section, the following piecewise linear

programming formulation of the portfolio selection model from the previous

section can be obtained.

Minimize:
∑

t

p(rt)
∑

l

stlutl

Subject to: ∑

j

rtjxj +
∑

l

utl ≥ M ∀t ∈ T
∑

j

mjxj ≥ M
∑

j

xj = 1

xj ≥ 0 ∀j
0 ≤ utl ≤ Ltl ∀(t, l)

18.11 Summary

In this chapter, both a strategic and a tactical portfolio selection problem have

been translated into a quadratic programming model. The relatively small

strategic model uses a covariance matrix as input, whereas the relatively large

tactical model uses historic rates of return as scenarios to estimate the risk

and expected return of a portfolio. Both models can be used to determine the

particular combination of investment categories or securities that is the least

risky for a given lower bound on expected return. Apart from single optimal

solutions, parametric curves depicting the trade-off between risk and return

were also provided. Several properties of the investment model were investi-

gated. It was shown that (a) any optimal solution is also a global optimum, (b)

the risk-reward curve is nondecreasing and convex, and (c) multiple optimal

portfolio returns are perfectly correlated. An improvement to the model was

introduced by minimizing only downside risk, thus making the model more

realistic. Further extensions were suggested to take into account such real-

world requirements as minimum investment fractions, transaction costs and

226 Chapter 18. A Portfolio Selection Problem

conditional security selections. Finally, a piecewise linear approximation of the

quadratic objective function was introduced in order to keep the model with

logical constraints within the framework of mixed-integer linear programming.

Exercises

18.1 Implement the strategic investment model presented in Section 18.2

using the example data provided in Table 18.1. Use Aimms to repro-

duce the risk-reward curve illustrated in Figure 18.2.

18.2 Implement the tactical investment model presented in Section 18.6

using the example data presented in Table 18.2. Modify the objective

function to represent downside variance as the measure of portfolio

risk, and compare the result with the solution presented in Table 18.3.

18.3 Implement the piecewise linear formulation of the tactical investment

model as described at the end of Section 18.10. Add the logical re-

quirement that either at least 5% of the total budget is invested in any

particular security or 0%. In addition, add the requirement that when-

ever the percentage invested in security ‘RD’ is greater than 20%, then

the percentage invested in security ‘KLM’ has to be less than 30%. If

the number of intervals becomes too large for a particular t and a par-

ticular ǫǫǫ, design a dynamic scheme to adjust the interval length based

on a previous solution.

Chapter 19

A File Merge Problem

This chapterThis chapter considers the merging of two statistical database files. The prob-

lem can be formulated as a transportation model and solved using a linear

programming solver or a specialized network solver. However for large files,

the number of variables in the underlying model is too large. To overcome this,

a column evaluation approach is proposed. Specifically, a customized solution

algorithm which controls the size of the network to be solved by systemati-

cally considering a subset of all columns each major iteration. The underlying

theory is explained, and subsequently applied to the file merge model.

ReferencesThe problem and its formulation have been adapted from Glover et al. ([Gl92]).

The underlying theory of the simplex method and column generation can be

found in [Ch83].

KeywordsLinear Program, Network Program, Simplex Method, Column Generation, Math-

ematical Derivation, Customized Algorithm, Worked Example.

19.1 Problem description

This sectionIn this section the problem of merging an income data file and a population

data file is described. The structure of these files is examined, and the file

merge problem is viewed as a distance minimization problem.

Statistical

database files

. . .

Statistical databases are typically developed and maintained in such govern-

ment institutions as statistical offices, ministries and planning agencies. These

databases are the result of extensive surveys involving (tens of) thousands of

households or businesses, and contain information that can be used to ana-

lyze, for instance, the effect of government policy measures. Examples are the

study of welfare measures, the effect of social security benefits or taxation on

government income, etc.

228 Chapter 19. A File Merge Problem

. . . and their

structure

A statistical database file consists of similar records. Each record has a fixed

number of data fields. These data fields contain values that are applicable to

a group of households or businesses with similar characteristics. As a result,

data is not stored per individual household or business, but aggregated (in

some way) for each group. That is why the number of similar households or

businesses is always part of each record. The net effect is that the number of

records in a file is much smaller than when records are maintained for each

individual household or business. Nevertheless, the number of records may

still be in the order of thousands. As you will see in later paragraphs, the data

field containing the number of families or businesses in each record will play

a central role in both the problem and model formulation.

Income data file One example of a statistical database file used in this chapter is a file referred

to as the ‘Income Data File’ (see [Gl92]). Each record describes some specific

income characteristics of families, and also contains the number of families

sharing these characteristics. These families from one record are of course

not identical in all respects. For instance, in Table 19.1, the ‘Gross Family

Income’ is an average and thus not exact for an individual family, while the

‘Source of Income’ is identical for all families in the record.

No. of

No. of Gross Family Family Source of Interest

Record Families Income Members Income Income

1 20 10,000 3 Commerce 0

2 30 15,500 2 Commerce 1,000

3 25 20,000 5 Agriculture 1,000

4 18 25,000 4 Agriculture 3,000

5 32 15,000 3 Commerce 500

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Table 19.1: Income Data File

Population data

file

Another example of a statistical database file used in this chapter is a file re-

ferred to as the ‘Population Data File’ (see [Gl92]). Each record describes some

specific demographic characteristics of families. Again, the families within a

record are not identical in all respects. For instance, in Table 19.2, the ‘Number

of Family Members’ is just an indication for the group as a whole, while the

‘Head of Household’ characteristics may apply to all families in the record.

Need to merge Consider the evaluation of a tax reduction scheme. Such a scheme is usually

based on a partitioning of households in terms of both income and demo-

graphic characteristics. Unfortunately, it is not clear how families in the ‘In-

come Data File’ are related to families in the ‘Population Data File’. What is

needed is a way to combine these two files, so that each new record describes

19.1. Problem description 229

No. of

No. of Family

No. of Gross Family Family Head of Household Members

Record Families Income Members Age Education Sex Under 18

1 25 15,000 4 40 12 M 2

2 30 15,000 2 25 16 M 0

3 18 20,000 1 30 18 F 0

4 27 25,000 2 35 16 F 1

5 25 20,000 4 25 12 M 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Table 19.2: Population Data File

both income and demographic characteristics for an entire group of similar

families.

Common

information

Records in both files contain common information such as ‘Number of Fam-

ilies’, ‘Gross Family Income’ and ‘Number of Family Members’. These data

fields form the basis for merging the two files. In practical applications, how-

ever, there is not a one-to-one mapping between records in each file on the

basis of common characteristics. The database files, presumably derived from

the same population, are typically based on data from different samples of

households. Merging records in such a case is no trivial exercise.

Distance

between records

With database files from different sources, the merging of records becomes

somewhat arbitrary. One could even wonder whether entire records should be

merged. Perhaps the merging of two particular records should take place for

just a subset of families in each record. In any case, some measure has to be

developed to determine whether two records are similar enough to be merged.

Such a measure can only be based on common information. When the common

information is exact, only records with matching entries can be combined. In

such a situation, quite a few combinations of records can be ignored. When

the common information in a data field is an average or a typical value, then

records with differing, but sufficiently close, entries can be combined. One

could speak of “distance” between records, where pairs of records with low

distance are regarded as similar, and the ones with large distance are regarded

as dissimilar.

Decisions to be

made

Assume that a distance measure has been determined. Then the goal is to

combine records in such a way that the sum of distances for all combined

records is minimal. Of course, when two records are combined in this process,

it must be decided how many families from each of them share this new record.

In addition, the new value of each income and demographic data field must be

decided. A specific approach to deal with these questions is proposed in the

next section.

230 Chapter 19. A File Merge Problem

19.2 Mathematical formulation

This section In this section the translation of the file merge problem into a network model

is proposed and evaluated. The construction of an overall distance function

is illustrated for the merging of the ‘Income’ and ‘Population’ data files. In

addition, suggestions are made for the computation of data entries that make

up the newly constructed records.

Several

approaches

As noted in the previous section the merging of records is arbitrary, and sev-

eral approaches can be thought of. Without the use of an optimization model

you might think of sorting each of the two files according to one or more

major characteristics, and then select families from both sorted files in in-

creasing order to make up new records. Other similar heuristic approaches

can be thought of, but they all suffer from the fact that issues are not looked

at simultaneously but only sequentially in an ad hoc manner. This is why a

mathematical formulation based on simultaneous constraints is proposed in

this section.

Network

approach

In several modeling exercises the translation of a problem into a model is not

obvious at first, but almost trivial or self-evident afterwards. This is also the

case with the file merge problem. Each record contains a data field for the

number of families, and somehow families in records of the first file must be

assigned to families in records of the second file. This sounds like an assign-

ment problem of some sort, which may remind you of the network applications

in Chapter 5. As it turns out, the key observation is to view each record as a

node in a network.

View as

transportation

model

Consider the records of one file as supply nodes in a transportation network

with the ‘Number of Families’ as the available supply. Similarly, consider the

records of the second file as demand nodes with the ‘Number of Families’ as

the required demand. Throughout this chapter it is assumed that the total

supply of families is equal to the total demand of families. Next consider a

decision variable for each pair of nodes (records) to express how many families

from a particular supply node will be “shipped” (i.e. assigned) to a particular

demand node. You now have the ingredients for describing a set of constraints

which contains all permitted assignments of families.

Transportation

constraints

Indices:

i supply nodes (records i)

j demand nodes (records j)

Parameters:

Ni number of families in record i

Nj number of families in record j

19.2. Mathematical formulation 231

Variable:

xij number of families shipped from i to j

Constraints:

∑

j

xij = Ni ∀i
∑

i

xij = Nj ∀j

xij ≥ 0 ∀(i, j)

Integer solutionsWhen the simplex method is applied to the above set of equalities, then the

solution values xij are guaranteed to be integer as long as both Ni and Nj are

integer. This (unimodularity) property has been referred to in Chapter 2.

InterpretationIn the context of the file merge problem you may interpret any feasible solution

of the above set of constraints as follows. Whenever the variable xij is positive,

records i and j will be merged to form a new record, and the value of xij is the

number of families sharing that new record. As the total number of families

(summed over all records) in both files are identical, all families will be placed

in some new record. Note that nothing has been said thus far concerning the

contents of the income and demographic data fields of the new records. This

will be discussed later.

Objective

function

When you add a total distance function as the objective function to the above

set of constraints, you obtain a complete optimization model. Any optimal

solution of this model states how existing records must be merged to form

new records such that the total distance between merged records is minimal.

Let dij be a parameter containing the distance between records i and j. Then

the objective function to be added to the above constraints becomes

Minimize: ∑

ij

dijxij

Formulation of

distance

Similarity between records can be stated in a variety of ways. The following

formulation of distance was developed and motivated in [Gl92].

Parameters:

Gi, Gj ‘Gross Family Income’ in record i or j

Mi,Mj ‘Number of Family Members’ in record i or j

s2
G estimated variance of all Gi and Gj values

s2
M estimated variance of all Mi and Mj values

232 Chapter 19. A File Merge Problem

The proposed measure of distance dij is then as follows.

dij =

√√√√(Gi −Gj)2
s2
G

+ (Mi −Mj)
2

s2
M

Note that by dividing the squared deviation of two data values by their vari-

ance, the computed values become comparable in size. Such normalization

avoids the situation that deviations in one parameter strongly dominate devi-

ations in another parameter.

Constructing

data fields

Once the solution of the above optimization model is obtained, the number of

families for each new record is known. However, the value of the other data

fields must still be computed. As stated previously, there is no unique method

to determine new data entries whenever the originating records show differing

values. Choices have to be made by those who are involved in the construction

process. The following constructs are merely two different suggestions. Let

the index n(i, j) refer to a new record derived from records i and j. Then the

new values of ‘Gross Family Income’ and ‘Number of Family Members’ can be

computed as follows.

Gn(i,j) = (Gi +Gj)/2 (average)

Mn(i,j) = max{Mi,Mj} (largest)

Choice of origin

and destination

In the file merge model the role of the two database files can be reversed, be-

cause the total number of families in each file are assumed to be identical. The

question then arises whether such reversal has any effect on the optimal solu-

tion. The answer is negative. First of all, any feasible shipments from supply

nodes to demand nodes are also feasible shipments from demand nodes to

supply nodes. This implies that the set of feasible solutions is not affected by

the role reversal of the two database files. Secondly, in the total distance func-

tion the coefficients are symmetric for each pair of records. As a result, the

optimal solution value remains optimal when the shipping direction between

the supply and demand nodes is reversed.

Size of merged

file

An initial guess concerning the size of the newly formed merged file, might

lead to the following bounds. Let |I| and |J| denote the number of records in

file 1 and 2 respectively. Then max{|I|, |J|} seems to be the smallest number

of records in the newly merged file, while |I| × |J| seems to be the largest

such number. The lower bound is correct, but the upper bound is excessively

over estimated. According to the theory of the simplex method (explained

in Section 19.4), the maximum number of decision variables away from their

bounds is equal to the number of constraints. For the above transportation

model this implies that the maximum number of positive decision variables

is at most |I| + |J|. This value is then a much improved upper bound on the

number of records in the merged file.

19.2. Mathematical formulation 233

Example of

network . . .

Consider the first five records of both the Income Data File in Table 19.1 and

the Population Data File in Table 19.2. The total number of families in each of

these two portions is 125. Let the distance between records be determined by

the differences between ‘Gross Family Income’. Then the graph in Figure 19.1

displays a possible merging scheme for which total distance has been kept to

a minimum. The number associated with a node is the number of families in

the corresponding original record. The number associated with an arc is the

number of families in the corresponding new record.

32

18

25

30

20

25

27

18

30

2520

30

25

18

5

18

9

Figure 19.1: Network representation of a solution

. . . and resulting

merged file

On the basis of Figure 19.1 it is now straightforward to construct the merged

file as displayed in Table 19.3. As expected, the total Number of Families has

remain unchanged. Only the entries underneath the common headers ‘Gross

Family Income’ and ‘Number of Family Members’ have to be reconciled. In this

example, ‘Gross Family Income’ in the merged file is the average of the entries

in the originating files. The ‘Number of Family Members’ in the merged file is

determined differently, and has been set to the maximum of the originating

entries.

No. of

Gross No. of Family

No. of Family Family Source of Interest Head of Household Members

Record Families Income Members Income Income Age Education Sex Under 18

1 20 12,500 4 Commerce 0 40 12 M 2

2 30 15,250 2 Commerce 1,000 25 16 M 0

3 25 20,000 5 Agriculture 1,000 25 12 M 1

4 18 25,000 4 Agriculture 3,000 35 16 F 1

5 5 15,000 4 Commerce 500 40 12 M 2

6 18 17,500 3 Commerce 500 30 18 F 0

7 9 20,000 3 Commerce 500 35 16 F 1

Table 19.3: Merged Data File

234 Chapter 19. A File Merge Problem

19.3 Solving large instances

This section This section presents an overview of a method to solve large instances of the

file merge model. The key idea is to use an iterative approach that systemati-

cally adds and removes variables so that an overall optimized model is found.

Model size The number of decision variables and objective coefficients in the file merge

model is the product of the two file sizes and consequently the model size can

become unmanageable very quickly. When the number of records in each file

is of the order O(102), then the number of decision variables (reflecting all

possible pairs of records) is of the order O(104). Such a model is not consid-

ered to be large by today’s standards. However, when the number of records

in each file is of the order O(104), then the number of variables is of the order

O(108). In general, models of this size cannot be solved in its entirety using

currently available technology. For standard hardware and software configu-

rations, either a special solution approach is required, or the model must be

reduced in size prior to being solved.

A priori

reduction . . .

One approach is to consider whether all possible combinations of records must

be included. The number of variables can be reduced significantly if you only

consider those variables with a distance value dij less than or equal to some

sufficiently low cutoff value. Alternatively, a controlled number of variables

can be generated if only the k smallest dij values are considered for each i.

There are several other such schemes, all aimed at reducing the number of

variables to a manageable level.

. . . may not

always work

Using these plausible suggestions many variables can be eliminated, but the

question remains whether such a priori reduction will result in unwanted side

effects. The answer is surprisingly yes. The main reason is that these reduction

schemes are based on the values of dij alone, and do not take into account

the values of both Ni and Nj . In many applications, the reduction schemes

discussed above lead directly to infeasible solutions.

A better

approach

A better approach to reduce the number of variables would be to carry out the

following three steps.

1. Apply a heuristic to determine at least one feasible solution.

2. Consider some form of a priori reduction.

3. Extend the set of variables iteratively and selectively until the optimal

solution is found.

Note that feasibility is guaranteed by construction. The quality of the op-

timal solution for the reduced model following the second step should be

quite good, as several variables with low dij values are already included in

19.4. The simplex method 235

the model. The key to a successful implementation of the last step is the

identification of variables that will improve the objective function. It turns

out that the simplex method of linear programming provides a basis to imple-

ment this step. The underlying theory is explained in the next section, and is

subsequently applied to the file merge problem in Section 19.5.

Calculating dijAs already highlighted, in practical applications the number of distance coef-

ficients dij ’s may be so large that it is impractical to store them. However,

the coefficients do not need to be stored since it is possible to calculate dij
from its definition during runtime. The value of all dij ’s can be calculated

from just |I| + |J| records. Clearly, calculating dij will consume significant

runtime and therefore care should be given when specifying the expression to

reduce calculation overhead. In Aimms it is possible to specify the objective

coefficients (like all parameters) using expressions. Consequently, the solution

method presented above can be implemented in Aimms such that the distance

coefficients are calculated during runtime as required.

19.4 The simplex method

This sectionThis section describes the simplex algorithm using matrix-vector notation for

the underlying linear algebra. The algorithm forms the basis for the column

evaluation technique used in this chapter, and the column generation tech-

nique used in Chapters 20 and 21.

Basic and

nonbasic

variables

Without loss of generality all linear programming constraints can be written

as equalities. Specifically, an inequality can be transformed to an equality by

introducing a slack or surplus variable. In the Simplex method, the variables

in the model are partitioned into two groups: the basic variables xB and the

nonbasic variables xN . By definition, nonbasic variables are at one of their

bounds (upper or lower) while basic variables are between their bounds. The

matrices associated with the basic and nonbasic variables are denoted with B

and N, respectively.

NotationIt is important to note that the choice of x here follows standard notation and

it is not related to the xij used in the file merge model. Similarly, the matrix N

is not related to Ni or Nj . The scope of this notation is limited to the current

section.

Partitioned

linear program

Minimize:

ctBxB + ctNxN
Subject to:

BxB +NxN = b
xB , xN ≥ 0

236 Chapter 19. A File Merge Problem

Solution

rewritten

After rewriting the equality constraint, and using the fact that the optimal ba-

sis is invertible, the basic variables xB can be written in terms of the nonbasic

variables xN .

xB = B−1b − B−1N xN ≥ 0

Objective

function

rewritten

Next, this expression for xB is substituted in the objective function to obtain

the following form.

ctBB
−1b + (ctN − ctBB−1N)xN

Shadow prices Taking the vector derivative of the last expression with respect to b, gives

λt = ctBB
−1. This defines the shadow price of the associated constraint. As

explained in Chapter 4, it is the rate of change of the objective function for a

unit increase in the right-hand side of the constraint.

Reduced costs Similarly, taking the vector derivative with respect to xN gives the term (ctN −
ctBB

−1N) = (ctN−λtN). This defines the reduced cost of a variable. The reduced

cost of a variable gives the rate of change of the objective function for a one

unit increase in the bound of the variable. As discussed in Chapter 4, the

reduced cost of a basic variable is zero. Reduced costs can be considered

to be the sensitivity of the objective function value with respect to bounds

associated with the nonbasic variables.

Simplex

iteration

As previously discussed, nonbasic variables xN in the simplex method are at

one of their bounds. During a simplex iteration, one of these variables is intro-

duced into the basis, and a basic variable leaves the basis to become nonbasic.

For the case, as in the file merge problem, where all variables are positive and

nonbasic variables are at their lower bound, such an exchange is only of inter-

est (for a minimization problem) when the corresponding component of the

reduced cost vector (ctN−λtN) is negative. In this particular case, the objective

function value will decrease when the value of the corresponding component

of xN is increased (away from its lower bound of zero). As soon as all compo-

nents of the reduced cost vector (ctN − λtN) are nonnegative, no improvement

in the objective function value can be made, and the current basic solution

xB = B−1b is optimal. Note that, by definition, the reduced costs associated

with basic variables are always zero.

19.5 Algorithmic approach

This section This section describes an algorithmic approach to solve the overall file merge

model as a sequence of smaller submodels. The construction of each submodel

is based on evaluating the reduced cost values of all variables as given by the

simplex method. The inter-record distance dij are computed during runtime,

and the corresponding variable is either put into a candidate list or ignored.

19.5. Algorithmic approach 237

Candidate

variables

Assume that the file merge model has been solved for a subset S of the vari-

ables xij , (i, j) ∈ S. The resulting vector of shadow prices λ can be partitioned

into λs for the supply constraints and λd for the demand constraints with com-

ponents λsi and λdj respectively. Consider a particular combination of records

i and j, (i, j) 6∈ S. After computing dij directly from the two records, the

quantity dij − (λsi + λdj) can be evaluated. Whenever this quantity is nega-

tive (i.e may lower the objective function), the corresponding variable xij is a

candidate variable.

Initial solution

in words

The first step of the algorithm is to find an initial feasible solution using an

heuristic approach. Specifically, the records in each file are sorted with respect

to ‘Gross Family Income’. Next, in each file the first record with a positive

value of ‘Number of Families’ is found. These two records are then merged

to form a new record. The ’Number of Families’ of the new record is equal to

the minimum of the ’Number of Families’ associated with the two input file

records. The ’Number of Families’ associated with each input file are adjusted

by subtracting the smallest value of the two. The process is repeated until all

records in both files have been considered, and the total number of families

has been divided over the new records. All pairs of originating records i and j

considered in this process, result in a basic variable xij > 0.

Additional

selection of

variables

In addition to the variables identified in the previous paragraph a further se-

lection can be made on the basis of small dij values for each i. The number of

such additional variables can be as large as you desire. A typical value is be-

tween 5 to 25 extra variables for each i. Experience has shown that such a set

is quite a good selection, and that for this selection the solution, the objective

function value and the shadow prices of the submodel are close to optimal for

the much larger model with all |I| × |J| variables.

Overall solution

in words

Once an initial optimal solution for the current selection of variables has been

computed, the algorithm visits all |I| × |J| pairs of records. During this pro-

cess there is an active search for candidate variables which, together with the

variables from the previous submodel, will determine the next submodel to be

solved. The entire process is repeated until there are no new candidates after

visiting all possible pairs of records.

Flowchart initial

solution

The flowchart in Figure 19.2 presents the computational steps to determine the

initial values of S and xij . The set S contains all pairs (i, j) for which the corre-

sponding variable xij is greater than zero. The element parameters i∗ and j∗

refer to records. Eventually, the xij values satisfy the equality constraints, and

form a basic solution. At most |I| + |J| values of xij will be positive, because

each iteration the (remaining) number of families from at least one record is

assigned. The symbol ∧ represents the logical AND.

238 Chapter 19. A File Merge Problem

Setup and Parameter Initialization

Sort record i according to Gi,

Sort record j according to Gj ,

S := ∅.

❄
Next Tuple

i∗ := first(i | Ni > 0),

j∗ := first(j | Nj > 0).

❄

(i∗ ≠ ’ ’)∧ (j∗ ≠ ’ ’) ✲NO
STOP

❄
YES Determine x-values and S

N∗ := min{Ni∗ , Nj∗},
xi∗j∗ := N∗, Ni∗−= N∗, Nj∗−= N∗,

S+= {(i∗, j∗)}, retain di∗j∗ .

✲

Figure 19.2: Flowchart initial solution

Flowchart

overall solution

The flowchart in Figure 19.3 presents the computational steps to determine

the optimal solution of the overall file merge model. Most of the notation has

been introduced previously. New is that the element parameters i∗ and j∗ can

be increased in value. That is, the assignment i∗+= 1 states that i∗ refers to

the next record in the sorted set I of records. Any reference beyond the last

element is empty (i.e. ’ ’).

Computational

considerations

In the algorithm presented above there is no control over the size of the set S

(the set of considered variables xij). Control could be implemented by either

deleting already considered variables or by limiting the number of candidate

variables to be added. Deletion could be based on examining the (already con-

sidered) variables with the highest (instead of the lowest) dij − (λsi +λdj) value.

Addition could be based on restricting the maximum number of candidates for

each i.

19.6 Summary

In this chapter the problem of merging of two files has been introduced as an

application of the classical transportation problem. However, in practical ap-

plications the number of decision variable is extremely large and the resulting

LP can not be solved in its entirety. To overcome this problem, a customized

solution algorithm has been proposed. The proposal consists of a heuristic

19.6. Summary 239

YESNO
STOPCandidateCount = 0

NO
SearchCount = |I| × |J|

Next Tuple

j∗+= 1,

if (j∗ = ’ ’) then i∗+= 1, j∗ := first(J),

SearchCount += 1.

S+= {(i∗, j∗)}, retain di∗j∗ ,

CandidateCount += 1.

Add Candidate Variables

NO
di∗j∗ − λsi∗ − λdj∗ < 0

Setup Candidate Search

i∗ := first(I), j∗ := first(J);

SearchCount := 0,CandidateCount := 0;

Solve Submodel

min
∑
(i,j)∈S dijxij

s.t.
∑
j|(i,j)∈S xij = Ni ∀i∑
i|(i,j)∈S xij = Nj ∀j

xij ≥ 0.

S and xij from initial step,

Extend S by a priori reduction scheme.

Initialization

YES

YES

Figure 19.3: Flowchart algorithmic approach

approach to find initial solution values and shadow prices, followed by an

algorithm to find the optimal solution of the model through systematically

solving a sequence of smaller submodels. The underlying theory and detailed

flowcharts have been presented.

Exercises

19.1 Implement the file merge model presented in Section 19.2 using the

first five records of the Income Data file and the Population Data File

contained in Tables 19.1 and 19.2. Verify for yourself whether the

240 Chapter 19. A File Merge Problem

optimal solution found with Aimms is the same as the one presented

in Table 19.3.

19.2 How would you adjust your formulation of the model if the number

of families in the Income Data File of Table 19.1 were 5 less for each

of the five records?

19.3 Implement the algorithmic approach presented in Section 19.5 for the

model and data referred to in the first exercise. Verify for yourself

whether the optimal solution found is the same as the one found pre-

viously.

Chapter 20

A Cutting Stock Problem

This chapterThis chapter applies a delayed column generation technique to find a set of

optimum cutting patterns for a class of cutting stock problems. Each pattern

is essentially a column of the underlying linear program. In practical applica-

tions, the number of cutting patterns can be extremely large. However, instead

of considering the millions of possible cutting patterns, a submodel of the cut-

ting stock problem is systematically built up with new patterns until it contains

the optimum solution. The new patterns are added to the submodel by solv-

ing an auxiliary integer program, referred to as the column pattern generation

model. The chapter begins with a basic model which is then extended.

ReferencesThe methodology for cutting stock problems dates back to work of Gilmore

and Gomory ([Gi61, Gi63]). A good exposition on this subject and its underly-

ing theory can also be found in [Ch83].

KeywordsLinear Program, Integer Program, Simplex Method, Column Generation, Mathe-

matical Derivation, Customized Algorithm, Auxiliary Model, Worked Example.

20.1 Problem description

This sectionThis section introduces a class of cutting stock problems, which are typically

encountered in the paper and textile industries.

Raws and finalsMaterials such as paper and textiles are often produced in long rolls, the length

of a truck trailer for instance. These long rolls are referred to as raws. These

raws are subsequently cut into smaller portions called finals, with their sizes

specified by customers.

Slicing rawsA raw can be sliced all the way through so that the diameter of each final has

the same diameter as the original raw. This is usually what happens when rolls

of paper are cut. The slicing of a raw is illustrated in Figure 20.1.

242 Chapter 20. A Cutting Stock Problem

Raw

Slicing

Figure 20.1: Slicing raws of paper and textile

Demand

requirements

Assume that a production scheduler has a list which specifies the required

number of each final size. He must then develop a production schedule detail-

ing the number of rolls and how they should be cut to meet demand.

Objective The objective of the scheduler is to determine the most economical way to

meet the demand. It is assumed that there are no storage space constraints.

The objective becomes to minimize the total number of rolls required to make

the finals. In this chapter, the more general multi-period inventory case is

not addressed. When time periods are considered, the objective is not just

to minimize the number of raws used, but also to consider the storage costs

involved.

20.2 The initial model formulation

Investigating

the structure

A natural inclination when initially constructing a model for the cutting stock

problem is to consider two sets, namely ‘Raws’ and ‘Finals’. However, on closer

inspection, you will note there is only one kind of raw in the problem descrip-

tion. The question then arises: does the set ‘Raws’ contain only one element

(reflecting that only one kind exists), or does this set contain an undetermined

number of elements (one for each raw to be cut)? Similarly, should the set

‘Finals’ contain each final or just the possible sizes of finals? The answer to

these questions is not immediately apparent, and further analysis is required.

Cutting patterns If you have to write down a model for a small example, it is likely you will

develop the concept of a cutting pattern. A cutting pattern is a specific recipe

stating for each size of final how many finals are cut from a single raw. Of

course, there are several such recipes. For small examples the size of the set

of cutting patterns is not exorbitant, but in most real problems the number of

possible cutting patterns could be in the millions.

The set ‘Finals’ When you have adopted the concept of a cutting pattern as a building block for

the model, it is also clear that the set ‘Finals’ should contain the possible sizes

of finals (and not each individual final that is demanded by the customers).

This is because the cutting pattern is defined in terms of possible sizes of

finals.

20.2. The initial model formulation 243

Verbal model

description

Assume for the duration of this section that the size of the set of cutting

patterns is workable. A verbal statement of the model is then as follows.

Minimize: the number of raws to be used

Subject to:

for all possible sizes of finals: the number of finals produced from

cutting raws according to the set of allowable cutting patterns must

meet the demand.

Mathematical

description

The following integer program is a mathematical representation of the verbal

model in the previous paragraph.

Indices:

p cutting patterns

f finals

Parameters:

df demand for final f

afp number of finals f in cutting pattern p

Variable:

xp number of raws cut with cutting pattern p

Minimize: ∑

p

xp

Subject to: ∑

p

afpxp ≥ df ∀f

xp ≥ 0 integer ∀p

Relax integer

requirement

As the number of cutting patterns increases, the solution time of the underly-

ing integer programming solver will also increase. In which case, an attractive

alternative may be to drop the requirement that xp is integer, and just solve

the corresponding linear programming model. A straightforward rounding

scheme may then be quite sufficient for all practical purposes. The rounded

integer solution may not be optimal, but it can easily be made to satisfy the

demand requirements.

Largest In Least

Empty

A simple and useful heuristic is ‘Largest In Least Empty’ (LILE). This heuristic

is loosely described in the following four steps.

1. Round the fractional solution values downwards, and determine the un-

met demand.

2. Sort the finals in the unmet demand from largest to smallest.

3. Place the largest final from the unmet demand in the least empty raw

that can contain this final. If this is not possible, an extra raw must be

added.

244 Chapter 20. A Cutting Stock Problem

4. Continue this process until the sorted list of finals from the unmet de-

mand is completely allocated.

It is possible that a pattern generated by this algorithm is one of the patterns

used in the relaxed integer programming solution (see Table 20.2 in which pat-

tern 12 is generated again). The LILE algorithm tends to minimize the number

of extra raws required, and turns out to work quite well in practice.

Example data

and . . .

Consider an example where the raws are ten meters long, and there are four

sizes of finals, namely, 450 cm, 360 cm, 310 cm and 140 cm. The raws can be

cut using thirty-seven cutting patterns as shown in Table 20.1.

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

450 cm 2 1 1 1 1 1 1 1 1

360 cm 1 1 2 2 2 1 1 1 1 1 1 1

310 cm 1 1 2 1 1 1

140 cm 1 1 3 2 1 2 1 2 1 4 3 2

2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

450 cm

360 cm 1 1

310 cm 3 2 2 2 1 1 1 1 1

140 cm 1 2 1 4 3 2 1 7 6 5 4 3 2 1

Table 20.1: Thirty-seven cutting patterns to cut a raw of size 1000

. . . the solution With the use of all thirty-seven cutting patterns, the minimum number of raws

required according to the linear programming solution is 452
1
4 . As expected,

the number of times a cutting pattern is used in the optimal solution is frac-

tional. One of the optimal solutions is listed in Table 20.2. Rounding this

optimal fractional linear programming solution, using the LILE heuristic, gives

an integer objective function value of 453 required raws. This number of 453

is optimal, because the linear programming objective function value of 452
1
4

is a lower bound for the integer objective function value, and 453 is the first

integer in line.

20.3 Delayed cutting pattern generation

Cutting stock

submodel

approach

Problems commonly encountered in the paper industry involve raws and fi-

nals of arbitrary sizes. The number of possible cutting patterns can then grow

into the millions and the approach of the previous section is no longer work-

able. This section describes an algorithm that makes the problem workable by

limiting the number of possible cutting patterns. Instead of going explicitly

through millions of cutting patterns, a cutting stock submodel is systematically

20.3. Delayed cutting pattern generation 245

Finals Optimal Patterns LILE Patterns Demand

01 10 12 13 02 12 30

450 cm 2 1 97

360 cm 2 2 1 1 2 610

310 cm 2 1 395

140 cm 2 1 211

Fractional Solution 48
1
2

105
1
2

100
3
4

197
1
2

LILE Solution 48 105 100 197 1 1 1

Table 20.2: The solutions: linear programming versus LILE

built up to contain the optimum solution by adding patterns identified by solv-

ing an auxiliary integer program, referred to as the column pattern generation

model.

Algorithm

description

The first step of the algorithm is to create a submodel of the cutting stock

problem which contains a set of cutting patterns which will satisfy the re-

quirements. Clearly, this initial set will not (necessarily) be optimal. This sub-

model is then solved. Using the resulting shadow prices in conjunction with

simplex method theory, it is possible to formulate an auxiliary model (cutting

pattern generation model) integer program. Solving this model identifies one

cutting pattern which is then added to the cutting stock submodel to improve

its objective (i.e. to reduce the number of raws). The cutting stock submodel

with this extra pattern, is then solved. The process is repeated (using updated

shadow prices) until the submodel contains the set of optimum cutting pat-

terns. In practice, the total number of new cutting patterns generated by the

cutting pattern generation model is quite small and so the overall algorithm is

very efficient.

New approachLike in Chapter 19, this algorithm is based on the simplex method. However,

the approach differs because it takes advantage of the fact that all objective

function coefficients in the cutting stock model are identical, while the ones in

the file merge model are not. You are referred to Chapter 19 for a discussion of

the simplex method and the application of shadow prices and reduced costs.

Iteration

between two

models

The iterative solving of the cutting stock submodel and the cutting pattern

generation program is summarized below.

Initialize cutting stock submodel

WHILE progress is being made DO

Solve cutting stock submodel

Solve cutting pattern generation model

IF new cutting pattern will lead to improvement

THEN add it to cutting stock submodel

ENDWHILE

246 Chapter 20. A Cutting Stock Problem

Cutting stock

model

initialization

The cutting stock submodel can be initialized in many ways. The simplest op-

tion is to include one pattern for each final size. With each pattern consisting

of the maximum number of finals that can be cut from the raw. For example,

for the model in the previous section, you could use patterns 1, 12, 22 and 31.

By selecting patterns which include all final sizes, then the first solution will

be feasible (but not necessarily optimal).

Additional

patterns

In addition to the four initial patterns, patterns 10 and 13 were generated by

the cutting pattern generation program. These six patterns were sufficient to

determine an optimal solution of the cutting stock model.

Mathematical

formulation

Assume there is some cutting pattern y which is not part of the cutting stock

submodel. Let yf be a component of this vector. Each such component cor-

responds to the number of finals of size f used in the cutting pattern. In

addition to yf , let λf denote the shadow price associated with each demand

requirement f in the cutting stock submodel. Then cutting pattern y should

be added to the submodel whenever

1−
∑

f

λfyf < 0

This condition is the reduced cost criterion in the simplex method when ap-

plied to the cutting stock model.

An auxiliary

model

An auxiliary cutting pattern generation model can now be proposed based on

the following three observations. First of all, the numbers yf making up a

cutting pattern must be nonnegative integers. Secondly, their values must be

such that the cutting pattern does not require more than the total width of a

raw. Thirdly, the new cutting pattern values should offer the opportunity to

improve the objective function value of the reduced cutting stock problem as

discussed in the previous paragraphs. Let wf denote the required width of

final f , and let W denote the total width of a raw. Then the three observations

can be translated into the following model constraints.

yf ≥ 0, integer ∀f (1)∑
f wfyf ≤ W (2)

1−∑f λfyf < 0 (3)

Transformation

into a MIP

model

The above model formulation contains a strict inequality and it must be ma-

nipulated before using a solver which is based on inequalities. There is one

observation that makes it possible to rewrite the above system as a mixed-

integer linear programming model. Whenever the term
∑
f λfyf is greater

than one, the last inequality is satisfied. You could write this term as an objec-

tive function to be maximized subject to the first two constraints. Whenever

the optimal value of this mathematical program is greater than one, you have

found an interesting cutting pattern. Whenever this optimal value is less than

20.3. Delayed cutting pattern generation 247

or equal to one, you know that there does not exist a cutting pattern that can

improve the objective value of the reduced cutting stock problem expressed as∑
f λfyf . This observation results in the following cutting pattern generation

model.

Cutting pattern

generation

model

Maximize: ∑

f

λfyf

Subject to: ∑

f

wfyf ≤ W

yf ≥ 0, integer ∀f

Allowing

inaccuracies

The implementation of this model in Aimms is straightforward since the λf ’s

are calculated during each solve iteration and can be directly accessed. It is

important to allow numerical inaccuracies in the computed shadow prices.

For this reason, it is generally advisable to use a small tolerance δ > 0 when

verifying whether a new patterns will lead to improvement. The mathematical

condition to be verified for progress then becomes

∑

f

λfyf ≥ 1+ δ

The value of δ is typically in the order of 10−4. When δ is too small, the overall

algorithm may not converge. In that case the cutting pattern generation model

produces the same new pattern every time it is solved.

Identical

objective

coefficients

The transformation of the initial auxiliary model into a MIP model is strongly

dependent on the property that all objective function coefficients are identical.

Without this property, it is not meaningful to translate a strict inequality of the

form cy −
∑
f λfyf < 0 into an objective function of the form

∑
f λfyf as has

been done. Without identical coefficients, the stopping criterion in the delayed

column generation algorithm is no longer correct. The reason is that when

cy∗ −
∑
f λfy

∗
f ≥ 0 holds for an optimal solution y∗ (indicating termination),

it is still possible that cŷ −
∑
f λf ŷf < 0 holds for some other solution ŷ due

to a smaller value of cŷ .

248 Chapter 20. A Cutting Stock Problem

20.4 Extending the original cutting stock problem

This section In this section three possible extensions to the original cutting stock model

are introduced and subsequently incorporated into a single new cutting stock

model.

Multiple types of

raws

One extension is to include several types of raws. Each type with its own

length. This will result in a large increase in the overall number of cutting

patterns to be considered when solving the underlying model.

Purchase cost Another extension is to include the purchase cost of each type of raw. This

changes the objective function of the underlying model. Rather than minimiz-

ing the number of raws to be used, the objective is to minimize the cost of

raws.

Capacity

limitation

The third extension is to introduce machine capacity restrictions. It is assumed

that there is an upper bound on the number of raws of each type that can be

cut on the available machines during a fixed period of time. It is assumed that

these upper bounds are not dependent on each other.

Model

formulation

The resulting extended cutting stock problem can be translated into the fol-

lowing mathematical model.

Indices:

r types of raws

p cutting patterns

f finals

Parameters:

cr unit cost of raws of type r

df required demand for final f

afpr number of finals f in pattern p for raws of type r

kr available capacity for raws of type r

Variable:

xpr number of raws of type r cut with pattern p

Minimize: ∑

p,r

crxpr

Subject to: ∑

pr

afprxpr ≥ df ∀f
∑

p

xpr ≤ kr ∀r

xpr ≥ 0, integer ∀(p, r)

20.4. Extending the original cutting stock problem 249

Delayed pattern

generation . . .

With the extension of multiple raws and varying cost coefficients, it is no longer

clear whether the delayed column generation algorithm of the previous section

is applicable. The previous auxiliary model, finds a cutting pattern for just a

single size of raw, and the contribution of a new cutting pattern is compared

to the constant value of 1.

. . . can still be

applied

Observe, however, that the cost coefficients are constant for all patterns be-

longing to a single type of raw. This implies that the idea of cutting pattern

generation can still be applied as long as each type of raw is considered sepa-

rately. The resulting generalized delayed pattern generation algorithm is sum-

marized below.

WHILE progress is being made DO

Solve cutting stock submodel

FOR each type of raw DO

Solve cutting pattern generation model

IF new cutting pattern will lead to improvement

THEN add it to cutting stock submodel

ENDFOR

ENDWHILE

Capacity

constraint

modification

As a result of the extra capacity constraints, the condition to check whether

a new pattern will lead to improvement needs to be modified. Let πr denote

the shadow price associated with the capacity constraint for raws of type r

obtained after solving the cutting stock submodel. Then any cutting pattern

yr produced by the auxiliary pattern generation model for raws of type r will

lead to an improvement only if

cr −πr −
∑

f

λfy
r
f < 0

This condition is the reduced cost criterion in the simplex method applied to

the extended cutting stock model developed in this section.

Allow for

inaccuracies

Recall from the previous section that the inaccuracies in the shadow price

computation need to be taken into account. By again introducing a δ > 0, the

above condition can be rewritten as

∑

f

λfy
r
f ≥ cr − πr + δ

Alternative

solution

sequence

In the above delayed pattern generation algorithm summary, the auxiliary

model is solved for every type of raw r before solving the next cutting stock

submodel. An alternative approach is to solve the cutting stock model as soon

as one new interesting pattern has been found. You might want to investigate

this alternative when the time required to solve the cutting pattern generation

model is large relative to the time required to solve the cutting stock submodel.

250 Chapter 20. A Cutting Stock Problem

A worked

example

Consider three types of raws (600 cm, 800 cm and 1000 cm) and the same four

final sizes as in Section 20.2 (140 cm, 310 cm, 360 cm and 450 cm). The corre-

sponding demand for these finals is 100, 300, 500 and 200 respectively. The

unit cost and the available capacity associated with each raw type is presented

in Table 20.3.

Raw cr kr

600 cm 25 200

800 cm 30 200

1000 cm 40 300

Table 20.3: Raw type data

20.5 Summary

In this chapter a cutting stock problem was translated into a mathematical for-

mulation based on the concept of cutting patterns. Due to the large number

of cutting patterns in practical applications, a delayed column generation ap-

proach using a cutting stock submodel was introduced. This approach solves

an auxiliary integer programming model to produce a single new cutting pat-

tern which is then added to the cutting stock submodel. The auxiliary model

has been developed in detail, and the overall solution approach has been out-

lined. The algorithm can easily be implemented in Aimms.

Exercises

20.1 Implement the cutting stock model described in Section 20.2 using

the example data presented in Table 20.1. Write a small procedure in

Aimms to round the optimal linear programming solution using the

Largest-In-Least-Empty heuristic.

20.2 Implement the delayed cutting pattern generation approach described

in Section 20.3 in Aimms as an iteration between two models. Check

whether the optimal solution found is the same as the one found pre-

viously.

20.3 Implement the extension of the initial cutting stock model, which is

described in Section 20.4. Verify that the optimal objective function

value equals 15,600 using the example data from Section 20.4.

Chapter 21

A Telecommunication Network Problem

This chapterIn this chapter you will encounter a capacity utilization problem in a telecom-

munication network. Traffic in such a network is expressed in terms of calls,

and calls are made between a large number of origin-destination pairs during a

particular period of time. Calls between origins and destinations can be routed

along any path through the network subject to capacity limitations. The objec-

tive is to identify bottleneck capacity in the network. In practical applications,

the model turns out to be quite large due to the many possible paths that exist

between origins and destinations. For that reason a path generating technique

is introduced to control the size of the model that is passed to a solver during

a sequence of iterations.

ReferencesThe telecommunication network model discussed in this chapter can be found

in various sources. Two references, spanning a period of almost 30 years, are

[Hu69] and [Me98]. The required theory of linear programming and column

generation can be found in [Ch83] and in Chapter 19 of this book. In addition,

Chapter 20, ‘A Cutting Stock Problem’, also provides an application in which

column generation plays a central role.

KeywordsLinear Program, Network Program, Simplex Method, Column Generation, Auxil-

iary Model, Customized Algorithm, Mathematical Derivation, Worked Example.

21.1 Problem description

This sectionThis section provides a brief introduction to the terminology and concepts

used in the telecommunication network problem described in this chapter.

The problem itself is summarized towards the end of this section.

Network

configuration

In a telecommunication network, transmission lines are used to carry traffic in

the form of calls. These lines form the link between switch-stations. Traffic is

routed from one switch-station to the next until it reaches its destination. For

the sake of simplicity both the origin and destination of a call are assumed to

be switch-stations.

252 Chapter 21. A Telecommunication Network Problem

Nodes, arcs and

paths

Each switch-station is represented as a node in the network, and each link

between any two nodes is represented as an arc. The maximum amount of

traffic that can go through a switch-station during a specific period of time

will be referred to as node capacity. A similar definition holds for arc capacity.

A route from origin to destination through the network is a path.

Flexible routing Traffic for a particular origin-destination pair can be split and subsequently

recombined at any node in the network. This flexibility in routing traffic allows

for efficient use of the entire network. The implication of flexible routing for

the model to be developed, is that all possible paths between an origin and a

destination will need to be considered.

Problem

summary

Assume that the amount of traffic between all origin-destination pairs for a

particular period is known, and that the capacity for all switch-stations and

transmission lines is provided. The problem that will be addressed is the bot-

tleneck identification problem. In this problem traffic is routed along paths

in the network so that traffic requirements are met. In addition, the bottle-

neck in the network is identified by finding that arc or node with the largest

percentage use of the available capacity.

Network design The bottleneck identification problem can be viewed as a strategic network de-

sign problem. In a network there are often bottlenecks that must be alleviated

through redesign either by adding new switch-stations or new transmission

lines, or by adding capacity to any of the existing facilities. The problem in

this chapter represents a simplification, because it does not consider such

practical matters as network robustness and reliability under (uncertain) traf-

fic regimes. Nevertheless, the model developed next is of interest, as it forms

a basis for several extensions.

21.2 Bottleneck identification model

This section In this section you will encounter a compact arc-path formulation of the bot-

tleneck identification problem described in the previous section. Initially, it is

assumed that all possible paths between origin-destination pairs are enumer-

ated explicitly. This assumption will be relaxed in the next section where paths

are generated one-at-a-time as needed.

Example Figure 21.1 depicts a simplified Dutch telecommunication network containing

6 nodes and 12 (bi-directional) arcs. In this example, it is assumed that there

is traffic between all possible pairs of (origin-destination) nodes, and that each

node and arc has a limited capacity. Even in this small example, the number of

undirected paths is quite large (namely 377), and only a few of them are listed

in Table 21.1.

21.2. Bottleneck identification model 253

Utrecht

Amsterdam

Gouda

The Hague

Arnhem

Maastricht

Figure 21.1: A Dutch Telecommunication Network

Verbal model

description

The verbal model is expressed in terms of network terminology for reasons

of conciseness and ease of recall. The interpretation in terms of transmission

lines and switch-stations is straightforward. Note that the use of any arc or

node (as referred to in the problem summary) is expressed as a fraction of the

available capacity.

Minimize: maximum fraction of either arc use or node use,

Subject to:

� for each origin-destination pair: total traffic along paths

connecting this pair is equal to the required amount of traffic,

� for each arc in the network: total traffic that uses that arc is

equal to a fraction of the available arc capacity,

� for each node in the network: total traffic that uses that node is

equal to a fraction of the available node capacity,

� for each arc in the network: capacity use is less than or equal to

the maximum fraction,

� for each node in the network: capacity use is less than or equal

to the maximum fraction.

The mathematical description is slightly more complicated due to the various

indices that play a role.

254 Chapter 21. A Telecommunication Network Problem

origin destination path

Amsterdam Maastricht Amsterdam – The Hague – Maastricht

– Amsterdam – The Hague – Utrecht – Maastricht

– Amsterdam – The Hague – Utrecht – Gouda – Maastricht

– Amsterdam – The Hague – Utrecht – Gouda – Arnhem – Maastricht

– Amsterdam – The Hague – Utrecht – Arnhem – Maastricht

– Amsterdam – The Hague – Utrecht – Arnhem – Gouda – Maastricht

– Amsterdam – The Hague – Gouda – Maastricht

– Amsterdam – The Hague – Gouda – Utrecht – Maastricht

– Amsterdam – The Hague – Gouda – Utrecht – Arnhem – Maastricht

– Amsterdam – The Hague – Gouda – Arnhem – Maastricht

– Amsterdam – The Hague – Gouda – Arnhem – Utrecht – Maastricht

– Amsterdam – Utrecht – Maastricht

– Amsterdam – Utrecht – The Hague – Maastricht

. . .

Table 21.1: Paths between Amsterdam and Maastricht

Mathematical

description

The following symbols will be used for the mathematical description of the

bottleneck identification model.

Indices:

n nodes

a arcs

o,d origin and destination nodes

p paths

Set:

Sod all paths between origin o and destination d

Parameters:

Aap incidence: arc a is on path p

Bnp incidence: node n is on path p

Ca capacity of arc a

Cn capacity of node n

Dod required traffic between origin o and destination d

Variables:

xp traffic along path p

fa fraction of available capacity of arc a

fn fraction of available capacity of node n

M maximum fraction of either arc or node capacity

Traffic

requirement

Traffic requirements are typically specified for only a subset of all origin-

destination pairs. Such traffic may be routed along any path. As the set Sod
contains all paths for each (o,d) pair, specifying the corresponding traffic re-

quirement is straightforward.

∑

p∈Sod
xp = Dod ∀(o,d) |Dod > 0

21.2. Bottleneck identification model 255

Reducing the

number of

constraints

Note that the above traffic requirement constraint is only defined when the

required amount of traffic Dod is greater than zero. Enforcing this condition is

one way to reduce the number of constraints. A second and practically more

effective reduction in the number of constraints is to add the requirements

Dod and Ddo, and to consider only traffic requirement constraints for o < d.

Arc capacity

utilization

An arc a can be on several paths that are selected to meet the traffic require-

ment for various (o,d) pairs. The total (bi-directional) amount of traffic along

such an arc, however, is limited by the arc’s capacity. Rather than specifying a

hard capacity constraint for each arc, an additional nonnegative variable fa is

introduced to indicate the fraction of capacity used for that arc. Such a frac-

tion should, of course, be less than or equal to one. By leaving it unrestricted

from above, however, it measures the fraction of capacity sufficient to meet

traffic requirements.

∑

p

Aapxp = faCa ∀a |Ca > 0

Note that the above arc capacity utilization constraint is only defined when the

corresponding arc capacity Ca is greater than zero.

Node capacity

utilization

A node n can also be on several paths selected to meet traffic requirements

for various (o,d) pairs. Just like arcs, nodes also have limited capacity. An

additional nonnegative variable fn is introduced to measure the fraction of

capacity sufficient to meet traffic requirements.

∑

p

Bnpxp = fnCn ∀n |Cn > 0

Note that the above node capacity utilization constraint is only defined when

the corresponding node capacity Cn is greater than zero.

Identifying

bottleneck

capacity

Identifying the bottleneck capacity is now straightforward to model. Consider

the maximum capacity utilization fraction M , and let all fractions of capacity

utilization in the network be less than or equal to this fraction. By minimiz-

ing M , the optimal solution will identify one or more critical capacities. Note

that the underlying linear program will always be feasible, because there is no

effective capacity limitation (i.e. limit on M).

Minimize: M

Subject to: fa ≤ M ∀a |Ca > 0

fn ≤ M ∀n |Cn > 0

An optimal M ≤ 1 indicates that existing capacities can be utilized to meet

all traffic requirements. An optimal M > 1 implies that capacity expansion is

needed.

256 Chapter 21. A Telecommunication Network Problem

Model summary The following mathematical statement summarizes the model.

Minimize:

M

Subject to: ∑

p∈Sod
xp = Dod ∀(o,d) | o < d,Dod > 0

∑

p

Aapxp = faCa ∀a |Ca > 0

∑

p

Bnpxp = fnCn ∀n |Cn > 0

0 ≤ xp ∀p
0 ≤ fa ≤ M ∀a |Ca > 0

0 ≤ fn ≤ M ∀n |Cn > 0

21.3 Path generation technique

This section The number of paths in practical applications is too large to enumerate, and

thus the corresponding linear program cannot be generated in its entirety.

This section develops a path generating scheme which avoids the complete

enumeration of all paths. The approach resembles the column generating tech-

nique described in Chapter 20, except that the columns now correspond to

paths.

Dynamic

column

generation

If all columns of a linear program cannot be generated prior to solving, they

need to be generated ’as needed’ during the solution phase. This requires

insight into the construction of a column together with knowledge of the rele-

vant shadow prices to make sure that any generated column will improve the

objective function value of the underlying linear program. In the case of the

bottleneck identification model, you need to consider the path-related variable

xp and see whether there is a new column p that may lead to a better solution

of the overall model.

A typical

column

Each new column with coefficients corresponding to a new xp variable has

zero-one entries in the first three symbolic constraints of the above bottleneck

identification model. The entries associated with the first constraint are all 0

except for a single 1 corresponding to a particular (o,d) pair. The entries of

the new column associated with the second constraint are 1 or 0 dependent

on whether an arc is on the new path or not. Let za be 1 if arc a is on the path,

and 0 otherwise. Similarly, the entries associated with the third constraint are

1 or 0 dependent on whether a node is on the new path or not. Let hn be 1 if

node n is on the path, and 0 otherwise.

21.3. Path generation technique 257

Column entry

condition . . .

The symbols za and hn can be viewed as variables characterizing the path-

related coefficients of each new column to be determined. The shadow prices

corresponding to the first three constraints are needed to decide on a new

column to be added to the bottleneck identification model. They are:

λod for the traffic requirement constraint

µa for the arc capacity utilization constraint

θn for the node capacity utilization constraint

You may want to verify that the condition below describes the situation in

which a path p may contribute to the optimal solution value of the underlying

bottleneck identification model. This condition, which is equivalent to the

column entry condition in the simplex method for a minimization model, is

similar to the reduced cost criterion explained in Chapters 19 and 20.

0− λod −
∑

a

µaza −
∑

n

θnhn < 0

. . . leads to

minimization

By considering only those values of za and hn that together determine a path,

and by minimizing the left side of the above inequality over all particular (o,d)

pairs, you obtain the best path in terms of the reduced cost criterion. If the

minimum value is strictly less than zero, you have found a path between an o

and a d that will improve the underlying linear program. If this minimum is

greater than or equal to zero, then there does not exist a new path that will

improve the linear program. This observation leads to the idea to employ a

path-finding model as an auxiliary model to identify a new path p satisfying

the above column entry condition. In this chapter a path-finding linear pro-

gramming formulation has been selected. A shortest-path approach based on

Dijkstra’s algorithm could also have been employed.

Auxiliary

path-finding

model

The following auxiliary model is selected to play a role in the path generating

approach proposed in this chapter. The notation in this auxiliary path-finding

model is based on the concept of directed arcs for reason of convenience. Its

relationship to the column entry condition above will be discussed in subse-

quent paragraphs.

Sets:

N nodes

I ⊂ N intermediate nodes

Indices:

i, j nodes

Element Parameters:

orig originating node

dest destination node

Numerical Parameter:

kij objective coefficient for arc (i, j)

258 Chapter 21. A Telecommunication Network Problem

Variable:

yij 1 if arc (i, j) is on optimal path, 0 otherwise

When kij > 0 and the set I contains all nodes except the originating node

orig and the destination node dest , you may verify that the following model

with network constraints determines a best path from orig to dest expressed

in terms of indices i and j.

Minimize:

∑

(ij)

kijyij

Subject to:
∑

j

yji −
∑

j

yij =

−1 if i = orig

0 if i ∈ I
1 if i = dest

The above model can be solved using a specialized algorithm. It can also be

solved as a linear program with constraints 0 ≤ yij ≤ 1, which will result in a

zero-one optimal solution due to the network property of the model (see e.g.

Chapter 5).

Restricting the

yij domain

Not all yij variables need to be considered in the above model formulation.

First of all, all variables with i = j are superfluous, as no such variable will be

in the optimal solution with kii > 0. Similarly, all variables yij with i = dest

or with j = orig are also superfluous. As a result, the number of relevant yij
variables is equal to |N|(|N| − 3) + 3 for |N| ≥ 2. Throughout the remainder

of this section the restricted domain of yij is implied.

Required

translation

It is not immediately obvious how the above auxiliary path-finding model can

be used to minimize the expression

−λod −
∑

a

µaza −
∑

n

θnhn

The required translation turns out to be fairly straightforward, but demands

some attention. In essence, the z and h terms must be translated into the

yij decision variables, while the other terms must translated into the objective

function coefficients kij .

The λ terms The term λod is a constant once a particular (o,d) pair is selected. Therefore,

this term can be ignored when constructing the objective function coefficients

of the auxiliary model for a particular pair.

21.3. Path generation technique 259

The µ and z

terms

An arc a corresponds to a tuple (i, j) as well as a tuple (j, i). Therefore, a

possible translation is to write za = yij + yji with µij = µji = µa. Such a

translation is permitted, because at most one of the yij and yji values can be

equal to 1 in an optimal solution of the auxiliary model when kij > 0.

The θ and h

terms

Let (o,d) = (orig,dest). You can express the relationship between hn and yij
as follows. First of all, ho =

∑
j yoj and hd =

∑
iyid. Then for all intermediate

nodes, either hi∈I =
∑
j yij or hi∈I =

∑
j yji. The term θn needs not be mod-

ified, and can be used directly in the construction of the objective function

coefficients kij .

Rewriting the

column entry

condition

The column entry condition without the constant term λod is

−
∑

a

µaza −
∑

n

θnhn

and can now be rewritten in terms of the yij variables of the auxiliary model

in one of two ways depending on the expression for hi∈I . Either

−
∑

(ij)

µijyij − θo
∑

j

yoj −
∑

i∈I
θi
∑

j

yij − θd
∑

i

yid

or

−
∑

(ij)

µijyij − θo
∑

j

yoj −
∑

i∈I
θi
∑

j

yji − θd
∑

i

yid

Determining the

coefficients kij

By carefully combining terms in the above two expressions and considering

only the restricted (i, j) domain, the corresponding values of kij can be written

either as
koj := −µoj − θo ∀j ≠ d
kij := −µij − θi ∀(i, j), i ≠ o, j ≠ d
kid := −µid − θi − θd ∀i

or as
koj := −µoj − θj − θo ∀j
kij := −µij − θi ∀(i, j), i ≠ o, j ≠ d
kid := −µid − θd ∀i ≠ o

Forcing kij > 0The values µ and θ are typically zero when the corresponding capacity con-

straints in the bottleneck identification model are not critical. Once a capacity

constraint has an associated capacity fraction value equal to the critical value

M , then the corresponding µ or θ value will be strictly less than 0, causing

the corresponding kij to be greater than 0. You may verify this by applying

the definition of a shadow price as described in Section 4.2 to the capacity

constraints after moving all variable terms to the left-hand side. By adding

a sufficiently small ǫ > 0 to all permitted values of kij , the requirement of

kij > 0 is automatically satisfied and the optimal solution of the auxiliary path

finding model is guaranteed to be a proper path between o and d without any

260 Chapter 21. A Telecommunication Network Problem

zero-valued subtours. A recommended choice for ǫ is the smallest positive

initial kij value divided by the total number of positive initial kij values.

Correcting kij
afterwards

Once the optimal solution of the auxiliary path finding model has been de-

termined, a check must be made to verify whether the newly generated path

should be added to the bottleneck identification model. This check is nothing

more than verifying whether the column entry condition, described in terms of

the yij values, is satisfied. You may verify that the following expression forms

the correct check.

−λod +
∑

ij

(kij − ǫ)yij < 0

Recall that the values of kij could have been determined in one of two ways,

but both sets are appropriate when checking the above condition.

Path generation

algorithmic

skeleton

The translation of the column entry condition into the terminology of the aux-

iliary path-finding model is now complete. The following algorithmic skeleton

loosely summarizes the approach to solve the bottleneck identification model

with path generation. Initialization (without initial shadow prices) is accom-

plished by setting the objective function coefficients kij equal to 1, leading to

the computation of the shortest path with the fewest number of intermediate

nodes between every possible (o,d) pair. These paths determine the initial

entries of the parameters Aap and Bnp in the bottleneck identification model

(referred to as ’main model’ below). In addition, each such shortest path is

also a single initial element of the set Sod.

FOR all origin-destination pairs DO

Solve path-finding model

Add shortest path to parameters in main model

ENDFOR

WHILE at least one new path has been added DO

Solve current bottleneck model

FOR all origin-destination pairs DO

Solve path-finding model

IF new path contributes

THEN add path to parameters in main model

ENDIF

ENDFOR

ENDWHILE

An implementation of this algorithm in Aimms is not entirely straightforward,

and does require some carefully constructed set and parameter manipulations

to update the input of both the path-finding model and the bottleneck identi-

fication model. Special care is also required when implementing the column

entry condition in order to avoid the repeated generation of a single path. The

powerful language features of Aimms, however, allow for a one-to-one transla-

tion of the notation used in this chapter.

21.4. A worked example 261

Reducing

computational

efforts

In the above proposed algorithm a new path between all possible (o,d) pairs

is computed prior to solving the next bottleneck capacity model. By restrict-

ing yourself to only those (o,d) pairs with paths along critical nodes and/or

arcs (i.e. nodes and/or arcs with maximum capacity utilization fractions), the

computational effort to find new paths prior to solving the next bottleneck

identification model can be significantly reduced. The suggestion in this para-

graph is only one of several possibilities to reduce computational effort.

21.4 A worked example

Traffic dataThe traffic requirements (in terms of calls) between all possible origins and

destination pairs are presented in Table 21.2.

d Amsterdam Utrecht The Hague Gouda Arnhem Maastricht

o

Amsterdam 55 95 20 30 45

Utrecht 90 50 10 15 20

The Hague 85 45 15 10 30

Gouda 35 25 35 10 15

Arnhem 45 15 20 5 35

Maastricht 60 25 40 10 30

Table 21.2: Traffic requirements between all origin-destination pairs

Capacity dataThe node and arc capacities for the network in this example are provided in

Table 21.3.

Arc capacities Node

Amsterdam Utrecht The Hague Gouda Arnhem Maastricht capacities

Amsterdam 360 300 240 490

Utrecht 360 60 90 120 340

The Hague 90 180 400

Gouda 40 120 220

Arnhem 210 280

Maastricht 340

Table 21.3: Arc and node capacities in the network

Initial pathsThe initial number of shortest paths between all possible (o,d) pairs is 15

(=
(

6
2

)
). These paths were generated by the shortest-path procedure, and are

summarized in Table 21.4. Note that only the arc-path incidences are provided.

An explicit path description in terms of nodes can always be derived from the

arc names.

262 Chapter 21. A Telecommunication Network Problem

Initial paths

Arcs 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

(Amsterdam,Utrecht) × × ×
(Amsterdam,The Hague) × ×
(Amsterdam,Arnhem) × ×
(Utrecht,The Hague) ×
(Utrecht,Gouda) × ×
(Utrecht,Arnhem) ×
(Utrecht,Maastricht) × ×
(The Hague,Gouda) ×
(The Hague,Maastricht) ×
(Gouda,Arnhem) ×
(Gouda,Maastricht) ×
(Arnhem,Maastricht) ×

Table 21.4: Initial paths generated by shortest-path algorithm

Additional

paths

After continuing the path generating procedure, a total of 9 additional paths

were generated. The observed bottleneck fraction was reduced from 1.500

(based on the initial paths only) to a value of 1.143 (based on both the initial

and additional paths). The 9 additional paths are summarized in Table 21.5.

It is of interest to note that the bottleneck identification model was solved

5 times in total to obtain theses results. The number of times the auxiliary

path-finding model was solved, amounted to 90.

Additional paths

Arcs 16 17 18 19 20 21 22 23 24

(Amsterdam,Utrecht) ×
(Amsterdam,The Hague) × × ×
(Amsterdam,Arnhem) × × ×
(Utrecht,The Hague)

(Utrecht,Gouda) ×
(Utrecht,Arnhem) ×
(Utrecht,Maastricht)

(The Hague,Gouda) × ×
(The Hague,Maastricht) × × ×
(Gouda,Arnhem) ×
(Gouda,Maastricht) × × × × ×
(Arnhem,Maastricht) × × × ×

Table 21.5: Additional paths generated by path-finding algorithm

Restricting to

critical paths

When the algorithm was modified and restricted to path generation for criti-

cal (o,d) pairs only, 4 instead of 9 additional new paths were generated. In

this case, the bottleneck identification model was solved 4 instead of 5 times,

and the auxiliary path-finding model was solved 35 instead of 90 times. As

expected, the bottleneck fraction was again reduced to 1.143.

21.5. Summary 263

21.5 Summary

In this chapter you have encountered a bottleneck identification problem in a

telecommunication network, together with two model formulations. The first

formulation assumes that the input to the model is based on all possible paths

between origins and destinations. The second (more practical) formulation

does not explicitly enumerate all possible paths, but generates them only when

they can contribute to the identification of the bottleneck capacity. An auxil-

iary model is used to generate these paths. The overall model can be used to

decide how to modify existing capacity to meet changing traffic requirements,

or how existing traffic is to be routed through the network.

Exercises

21.1 Consider the path generation technique presented in Section 21.3 and

implement the bottleneck identification model of Section 21.2 using

the example data contained in Tables 21.2 and 21.3. Verify whether

the optimal solution found with Aimms coincides with the one pre-

sented in Tables 21.4 and 21.5.

21.2 Investigate whether there is any difference in the optimal solution due

to the choice of the kij coefficient values developed in Section 21.3.

21.3 Adjust your search algorithm to examine only those (o,d) pairs with

paths along critical nodes and/or arcs. Verify for yourself how much

the amount of computational work has been reduced due to this mod-

ification.

Chapter 22

A Facility Location Problem

This chapter This chapter considers the problem of selecting distribution centers along with

their associated customer zones. For small and medium-sized data sets, the

mathematical model is a straightforward mixed-integer programming formu-

lation and can easily be solved with standard solvers. However for large data

sets, a decomposition approach is proposed. This chapter explains the Ben-

ders’ decomposition technique and applies it to the facility location problem.

References The example in this chapter is based on ”Multicommodity Distribution System

Design by Benders Decomposition” ([Ge74]) by Geoffrion and Graves.

Keywords Integer Program, Mathematical Reformulation, Mathematical Derivation, Cus-

tomized Algorithm, Auxiliary Model, Constraint Generation, Worked Example.

22.1 Problem description

Distribution

system design

A commonly occurring problem in distribution system design is the optimal

location of intermediate distribution centers between production plants and

customer zones. These intermediate facilities (temporarily) store a large vari-

ety of commodities that are later shipped to designated customer zones.

Basic problem

in words

Consider the situation where several commodities are produced at a number

of plants with known production capacities. The demands for each commod-

ity at a number of customer zones are also known. This demand is satisfied

by shipping via intermediate distribution centers, and for reasons of adminis-

tration and efficiency, each customer zone is assigned exclusively to a single

distribution center. For each center there is a lower as well as an upper limit

on the total throughput (of all commodities). There is also a fixed rental charge

and a per unit throughput charge associated with each distribution center. In

addition, there is a variable unit cost of shipping a commodity from a plant to

a customer zone through a distribution center. This cost usually includes the

unit production cost.

22.1. Problem description 265

Plants Distribution centers Customer zones

Figure 22.1: Commodity distribution scheme

Decisions to be

made

The facility location problem is shown schematically in Figure 22.1. It has the

property that the main decisions are of type yes/no. The problem is to deter-

mine which distribution centers should be selected, and what customer zones

should be served by the selected distribution centers. The optimum solution is

clearly dependent on the pattern of transportation flows for all commodities.

It is assumed that the time frame under consideration is sufficiently long to

motivate good decision making.

Cost

minimization

The decisions described in the previous paragraphs are to be made with the

objective to meet the given demands at minimum total distribution and pro-

duction cost, subject to plant capacities and distribution center throughput

requirements.

Problem

extensions

This chapter formulates and solves the above problem description. However

in real-world applications, there may be additional constraints which require

some specialized formulation. Some possibilities are mentioned below.

� The throughput capacity in a particular distribution center can be treated

as a decision variable with an associated cost.

� Top management could impose an a priori limit on the number of dis-

tribution centers, or express preferences for particular logical combina-

tions of such centers (not A unless B, not C and D, etc.).

� Similarly, there could be an a priori preference for certain logical combi-

nations of customer zones and distribution centers (if Center A is open,

then Zone 2 must be assigned, etc.).

266 Chapter 22. A Facility Location Problem

� If distribution centers happen to share common resources or facilities,

there could be joint capacity constraints.

You are referred to Chapter 7 for ideas on how to model these special logical

conditions.

22.2 Mathematical formulation

This section This section presents the mathematical description of the facility location

problem discussed in the previous section.

Qualitative

model

description

The objective and the constraints are described in the following qualitative

model formulation.

Minimize: total production and transport costs,

Subject to:

� for all commodities and production plants: transport must be

less than or equal to available supply,

� for all commodities, distribution centers and customer zones:

transport must be greater than or equal to required demand,

� for all distribution centers: throughput must be between specific

bounds, and

� for all customer zones: supply must come from exactly one

distribution center.

Notation The following notation will be used in this chapter:

Indices:

c commodities

p production plants

d distribution centers

z customer zones

Parameters:

Scp supply (production capacity) of commodity c at plant p

Dcz demand for commodity c in customer zone z

Md maximum throughput at distribution center d

Md minimum throughput at distribution center d

Rd per unit throughput charge at distribution center d

Fd fixed cost for distribution center d

Kcpdz variable cost for production and shipping of commodity

c, from plant p via distribution center d to customer

zone z

Variables:

xcpdz nonnegative amount of commodity c shipped from plant

p via distribution center d to customer zone z

22.3. Solve large instances through decomposition 267

vd binary to indicate selection of distribution center d

ydz binary to indicate that customer zone z is served by dis-

tribution center d

Supply

constraint

The supply constraint specifies that for each commodity c and each produc-

tion plant p, the total amount shipped to customer zones via distribution cen-

ters cannot be more than the available production capacity,

∑

dz

xcpdz ≤ Scp ∀c,p

Demand

constraint

The demand constraint specifies that the demand for each commodity c in

each zone z should be supplied by all plants, but only through the chosen

distribution center ydz,

∑

p

xcpdz ≥ Dczydz ∀c,d, z

Throughput

constraints

The throughput constraints make sure that for each distribution center d the

total volume of commodities to be delivered to its customer zones remains

between the minimum and maximum allowed throughput,

Mdvd ≤
∑

cpz

xcpdz =
∑

cz

Dczydz ≤ Mdvd ∀d

Allocation

constraint

The allocation constraint ensures that each customer zone z is allocated to

exactly one distribution center d.

∑

d

ydz = 1 ∀z

Objective

function

The objective function that is to be minimized is essentially the addition of

production and transportation costs augmented with the fixed and variable

charges for distribution centers and the throughput of commodities through

these centers.

Minimize:
∑

cpdz

Kcpdzxcpdz +
∑

d

[Fdvd + Rd
∑

cz

Dczydz]

22.3 Solve large instances through decomposition

Black box

approach

The facility location problem can be solved for small to medium sized data

sets using any of the mixed integer programming solvers that are available

through Aimms. However, its solution process is based on a branch-and-bound

approach and this can sometimes be improved if you add some constraints.

268 Chapter 22. A Facility Location Problem

These constraints are redundant for the integer formulation but tighten the as-

sociated relaxed linear program solved at each node of the underlying branch-

and-bound tree.

Redundant

constraints

Two examples of such redundant constraints are:

ydz ≤ vd ∀d, z, and
∑

d

vd ≤ L

where L is a heuristically determined upper limit on the number of distribu-

tion centers to be opened (based on total demand). For your application, you

may want to test if adding these constraints does indeed improve the solution

process. In general, the benefit increases as the data set becomes larger.

Large instances In some practical applications, it is not unusual for the number of commodities

and customer zones to be in the order of 100’s to 1000’s. Under these condi-

tions, it is possible that the internal memory required by the solver to hold the

initial data set is insufficient. If there is enough memory for the solver to start

the underlying branch-and-bound solution process, the number of nodes to

be searched can be extremely large, and inefficient search strategies (such as

depth-first search) may be required to keep the entire search tree in memory.

Decomposition When your model uses an extremely large data set, you may consider re-

examining your approach to the problem. One option is to decompose the

problem into several smaller subproblems that are solved sequentially rather

than simultaneously. The next section explains one such approach, namely

Benders’ decomposition. The technique is a powerful algorithmic-based ap-

proach and its application to solve large instances of the facility location prob-

lem will be detailed.

22.4 Benders’ decomposition with feasible subproblems

This section This section presents the mathematical description of Benders’ decomposi-

tion for the case with feasible subproblems. It is based on an abstract model

that has been partitioned into an easy linear portion and a difficult nonlin-

ear/integer portion. Once you understand the underlying decomposition the-

ory plus the basic rules for writing dual linear programs described in the next

section, you will be able to apply the Benders’ decomposition approach to the

facility location problem.

22.4. Benders’ decomposition with feasible subproblems 269

Initial problem

P(x,y)

Consider the following minimization problem, which is referred to as P(x,y):

Minimize:

cTx + f(y)

Subject to:

Ax + F(y) = b
x ≥ 0

y ∈ Y

with A ∈ Rm×n, x and c ∈ Rn, b ∈ Rm, and y ∈ Y ⊂ Rp . Here, f(y) and F(y)

may be nonlinear. Y can be a discrete or a continuous range.

Feasible

subproblems

P(x|y)

First, it is important to observe that for a fixed value of y ∈ Y the problem

becomes a linear program in terms of x. This is represented mathematically

as P(x|y). Next, it is assumed that P(x|y) has a finite optimal solution x for

every y ∈ Y . This may seem to be a rather restrictive assumption, but in most

real-world applications this assumption is already met or else you can modify

Y in such a way that the assumption becomes valid.

Equivalent

reformulation

P1(x,y)

The expression for P(x,y) can be written in terms of an equivalent nested

minimization statement, P1(x,y):

min
y∈Y

{
f(y)+min

x
{cTx

∣∣ Ax = b − F(y), x ≥ 0}
}

Equivalent

reformulation

P2(u,y)

This statement can be rewritten by substituting the dual formulation of the in-

ner optimization problem (see Section 22.6), to get an equivalent formulation,

P2(u,y):

min
y∈Y

{
f(y)+max

u
{[b − F(y)]Tu

∣∣ ATu ≤ c}
}

Extreme point

reformulation

P3(u,y)

The main advantage of the latter formulation is that the constraint set of the

inner problem is independent of y . Furthermore, the optimal solution of the

inner maximization problem is finite because of the explicit assumption that

P(x|y) has a finite optimal solution for every y ∈ Y . Such an optimal solution

will always be at one of the extreme points u ∈ U . Therefore, the following

equivalent formulation, P3(u,y), may be obtained:

min
y∈Y

{
f(y)+max

u∈U
[b − F(y)]Tu

}

270 Chapter 22. A Facility Location Problem

Full master

P4(y,m)

This nested formulation of P3(x,y) can finally be re-written as a single mini-

mization problem which is referred to as the full master problem, P4(y,m):

Minimize:

f(y)+m

Subject to:

[b − F(y)]Tu ≤m u ∈ U
y ∈ Y

Solve P(x,y)

iteratively

In the full master problem it is important to observe that there is one con-

straint for each extreme point. It is true that there may be an enormous num-

ber in a problem of even moderate size. However, only a small fraction of

the constraints will be binding in the optimal solution. This presents a natu-

ral setting for applying an iterative scheme in which a master problem begins

with only a few (or no) constraints while new constraints are added as needed.

This constraint generation technique is dual to the column generation scheme

described in Chapter 20.

The relaxed

master problem

M(y,m)

From the full master problem, it is possible to define a relaxed master problem

M(y,m) which considers a subset B of the constraints U .

Minimize:

f(y)+m

Subject to:

[b − F(y)]Tu ≤m u ∈ B
y ∈ Y

where B is initially empty and m is initially 0.

The subproblem

S(u|y)
The Benders subproblem is S(u|y), which solves for an extreme point u given

a fixed value of y ∈ Y , can be written as the following maximization problem:

Maximize:

[b − F(y)]Tu

Subject to:

ATu ≤ c

with u ∈ Rm. S(u|y) has a finite optimal solution, because of the assumption

that P(x|y) has a finite optimal solution for every y ∈ Y .

22.4. Benders’ decomposition with feasible subproblems 271

A flowchart of

Benders’

decomposition

Figure 22.2 presents a flowchart of Benders’ decomposition algorithm for the

case when all subproblems are feasible.

ε > 0 relative convergence tolerance

B := ∅ set with generated constraints

UB := inf upper bound for P(x,y)

Solve M(y,m = 0)

LB := f(y) lower bound for P(x,y)

❄

Solve S(u|y) to get u

UB := min(UB, f (y)+ [b − F(y)]Tu)

❄

UB < LB+ ε|LB| ✲YES
STOP

❄
NO

C := ([b − F(y)]Tu ≤m) construct new constraint

B := B + {C} adds a constraint to M(y,m)

Solve M(y,m)

LB := f(y)+m

✲

Figure 22.2: Benders’ decomposition algorithm flowchart

The iterative

process in words

Summarizing Benders’ decomposition algorithm in words, the subproblem is

solved for u given some initial y ∈ Y determined by the master. Next, there

is a simple test to determine whether a constraint involving u must be added

to the master. If so, the master is solved to produce a new y as input to

the subproblem which is solved again. This process continues until optimality

(within a tolerance level) can be concluded.

Increasing

lower bounds

Since B is a subset of U , the optimal value of the objective function of the

relaxed master problemM(y,m) is a lower bound on the optimal value of the

objective function of the full master problem P4(y,m) and thus of P(x,y).

Each time a new constraint is added to the master, the optimal value of its

objective function can only increase or stay the same.

272 Chapter 22. A Facility Location Problem

Decreasing

upper bounds

The optimal solution u plus the corresponding value of y of the subproblem

S(u|y), when substituted in the constraints of P3(u,y), produces an upper

bound on the optimal value of P3(u,y) and thus of P(x,y). The best upper

bound found during the iterative process, can only decrease or stay the same.

Termination As soon as the lower and upper bounds of P(x,y) are sufficiently close, the

iterative process can be terminated. In practice, you cannot expect the two

bounds to be identical due to numerical differences when computing the lower

and upper bounds. It is customary to set a relative sufficiently small tolerance

typically of the order 1 to
1

100 of a percent.

Premature

termination

When the iterative process is terminated prematurely for whatever reason, the

latest y-value is still feasible for P(x|y). The current lower and upper bounds

on P(x,y) provide an indication on how far the latest solution (x,y) is re-

moved from optimality.

22.5 Convergence of Benders’ decomposition

Uniqueness

assumption

results in . . .

For the moment, assume that for every iteration the extreme point u produced

by solving the subproblem S(u|y) is unique. Each such point will then result

in the addition of a new constraint to the relaxed master problem.

. . . finite

number of steps

As a result of the uniqueness assumption the iterative process will terminate

in a finite number of steps. After all, there are only a finite number of extreme

points. In the event that they have all been generated by solving S(u|y) re-

peatedly, the resulting relaxed master problem M(y,m) becomes equivalent

to the full master problem P4(y,m) and thus the original problem P(x,y).

. . . converging

bounds

The sequence of relaxed master problems M(y,m) produces a monotone se-

quence of lower bounds. In the event that after a finite number of steps the

relaxed master problem M(y,m) becomes the full master problem P4(y,m),

the set B becomes equal to the set U . The corresponding lower bound is then

equal to the original objective function value of P4(y,m) and thus of the orig-

inal problem P(x,y). At that moment both the optimal value of f(y) and the

optimal u-value of the subproblem make up the original solution of P3(u,y).

As a result, the upper bound is then equal to the optimal objective function

value of P3(u,y) and thus of the original problem P(x,y).

. . . overall

convergence

Based on the uniqueness assumption and the resulting convergence of lower

and upper bounds in a finite number of steps, the overall convergence of

Benders’ decomposition is guaranteed. Termination takes place whenever the

lower bound on the objective function value of P(x,y) is equal to its upper

bound.

22.6. Formulating dual models 273

Is uniqueness

assumption

true?

The entire convergence argument of the Benders’ decomposition algorithm so

far hinges on the uniqueness assumption, i.e. the assumption that all extreme

points u produced by solving the subproblems S(u|y) during the iterative

process are unique as long as termination has not been reached. Assume that

at some point during the iteration process prior to termination, the u-value

produced by solving the subproblem is not unique. In this case, the lower

bound is still strictly less than the upper bound, but the relaxed master prob-

lem will produce the same y value as in the previous iteration. The Benders’ al-

gorithm then cycles from here on and produces the same solution tuple (û, ŷ)

each solution. This tuple has the property that the current lower bound LB

(obtained from the relaxed master problem) is

f(ŷ)+m

and that the current upper bound UB (with û obtained from the subproblem

and substituted in the objective function of P3(û, ŷ)) is at least as large as

f(ŷ)+ [b − F(ŷ)]Tû

Note that

m ≥ [b − F(ŷ)]Tu, for u ∈ B

by construction. Note also that û is already in B due to cycling, which implies

that

m ≥ [b − F(ŷ)]Tû

Combining the above leads to

LB = f(ŷ)+m ≥ f(ŷ)+ [b − F(ŷ)]Tû ≥ UB

which is a contradiction to the fact that prior to termination the lower bound

is strictly less than the upper bound. This shows that the uniqueness assump-

tion is true and that Benders’ decomposition with feasible subproblems as

described in this chapter will always converge.

22.6 Formulating dual models

This sectionIn order to apply the Benders’ decomposition scheme, it is necessary to for-

mulate the dual of P(x|y). The rules for this step can be found in books on

linear programming. For purposes of completeness and later reference these

rules are summarized in this section in the form of typical examples.

Dual of a

minimization

problem

If a primal problem is stated as:

Minimize:

c1x1 + c2x2

274 Chapter 22. A Facility Location Problem

Subject to:

a11x1 + a12x2 ≥ b1

a21x1 + a22x2 = b2

a31x1 + a32x2 ≤ b3

x1 ≥ 0, x2 ≥ 0

then its dual problem is:

Maximize:

u1b1 +u2b2 +u3b3

Subject to:

a11u1 + a21u2 + a31u3 ≤ c1

a12u1 + a22u2 + a32u3 ≤ c2

u1 ≥ 0, u2 free , u3 ≤ 0

Dual of a

maximization

problem

If a primal problem is stated as:

Maximize:

c1x1 + c2x2

Subject to:

a11x1 + a12x2 ≥ b1

a21x1 + a22x2 = b2

a31x1 + a32x2 ≤ b3

x1 ≥ 0, x2 ≥ 0

then its dual problem is:

Minimize:

u1b1 +u2b2 +u3b3

Subject to:

a11u1 + a21u2 + a31u3 ≥ c1

a12u1 + a22u2 + a32u3 ≥ c2

u1 ≤ 0, u2 free , u3 ≥ 0

22.7. Application of Benders’ decomposition 275

22.7 Application of Benders’ decomposition

This sectionUsing the decomposition and duality theory of the previous sections, the fa-

cility location example can now be divided into a master problem and a dual

subproblem.

Facility location

problem

P(x,v,y)

The original facility location problem can be summarized as follows.

Minimize:

∑

cpdz

Kcpdzxcpdz +
∑

d

{
Fdvd + Rd

∑

cz

Dczydz
}

Subject to:∑

dz

xcpdz ≤ Scp ∀(c, p) (1)

∑

p

xcpdz = Dczydz ∀(c, d, z) (2)

∑

d

ydz = 1 ∀z (3)

Mdvd ≤
∑

cz

Dczydz ≤ Mdvd ∀d (4)

vd, ydz ∈ {0,1} (5)

xcpdz ≥ 0 (6)

How to

decompose

To conduct a Benders’ decomposition, it is first necessary to divide the vari-

ables and constraints into two groups. The binary variables vd and ydz, to-

gether with the constraints (3), (4) and (5) represent the set Y . The continu-

ous variable xcpdz, together with the constraints (1), (2) and (6) represent the

linear part to be dualized. As detailed soon, σ and π are two dual variables

introduced for constraints (1) and (2).

Model notationIn the description of the Benders’ decomposition algorithm, the various mod-

els are indicated by P(x,y), M(y,m) and S(u|y). The correspondence be-

tween the variables used here and those defined for the facility location prob-

lem is as follows.

� x used previously is equivalent to x used above,

� y used previously is equivalent to v and y used above, and

� u used previously is equivalent to σ and π used above.

As a result, the equivalent model indicators become P(x,v,y), M(v,y,m)

and S(σ ,π|v,y), respectively.

276 Chapter 22. A Facility Location Problem

Initial master

model

M(v,y,m = 0)

The initial master model M(v,y,m = 0) can be stated as follows.

Minimize: ∑

d

{
Fdvd + Rd

∑

cz

Dczydz
}

Subject to: ∑

d

ydz = 1 ∀z (3)

Mdvd ≤
∑

cz

Dczydz ≤ Mdvd ∀d (4)

vd, ydz ∈ {0,1} (5)

Note that the initial master model does not yet contain any Benders’ cuts (i.e.

m = 0) and that it corresponds to solving:

min
y∈Y

f(y)

previously introduced in the original Benders’ decomposition algorithm.

Problem to be

dualized

The problem to be dualized, namely the equivalent of the inner optimization

problem in P1(x,y) of Section 22.4, can now be stated as follows.

Minimize: ∑

cpdz

Kcpdzxcpdz

Subject to:∑

dz

xcpdz ≤ Scp ∀(c, p) | Scp > 0 (1)

∑

p

xcpdz = Dczydz ∀(c, d, z) |ydz = 1 (2)

xcpdz ≥ 0 (6)

Resulting

subproblem

S(σ ,π|v,y)

By introducing two dual variables σcp and πcdz corresponding to the two con-

straints (1) and (2) respectively, the dual formulation of the problem from the

previous paragraph can be written in accordance with the rules mentioned in

Section 22.6. Note that the dual variable σcp is only defined when Scp > 0, and

the dual variable πcdz is only defined when ydz = 1.

22.7. Application of Benders’ decomposition 277

Maximize: ∑

cp

σcpScp +
∑

cdz

πcdzDczydz

Subject to:

σcp +πcdz ≤ Kcpdz ∀(c, p,d, z)
σcp ≤ 0

πcdz free

Subproblem is

always feasible

The question arises whether the above subproblem S(σ ,π|v,y) is always fea-

sible for any solution of the initial master problem M(v,y,m = 0). If this is

the case, then the Benders’ decomposition algorithm described in this chapter

is applicable to the original facility location problem. Note that,

∑

p

Scp ≥
∑

z

Dcz ∀c

is a natural necessary requirement, and that

∑

z

Dcz ≡
∑

dz

Dczydz ∀c

is an identity, because
∑
dydz = 1. These together imply that there is enough

supply in the system to meet the demand no matter which distribution center

d is used to serve a particular customer zone z.

Benders’ cut to

be added

The Benders’ cut to be added each iteration is directly derived from the objec-

tive function of the above subproblem S(σ ,π|v,y) evaluated at the original

solution (σ ,π). This new constraint is of the form

∑

cp

σcpScp +
∑

cdz

πcdzDczydz ≤m

where (σcp, πcdz) are parameters and ydz and m are unknowns.

Resulting

master problem

M(v,y,m)

By adding the Bender’s cuts to the initial master problem M(v,y,m = 0), the

following regular master problem M(v,y,m) can be obtained after introduc-

ing the set B of Benders’ cuts generated so far. Note that the optimal dual

variables σ and π have been given an extra index b ∈ B for each Benders’ cut.

278 Chapter 22. A Facility Location Problem

Minimize:

∑

d

{
Fdvd + Rd

∑

cz

Dczydz
}
+m

Subject to:∑

d

ydz = 1 ∀z

Mdvd ≤
∑

cz

Dczydz ≤ Mvd ∀d
∑

cp

σbcpScp +
∑

cdz

πbcdzDczydz ≤m ∀b

vd, ydz ∈ {0,1}

All ingredients

available

At this point all relevant components of the original facility location problem

to be used inside the Benders’ decomposition algorithm have been presented.

These components, together with the flowchart in Section 22.4, form all neces-

sary ingredients to implement the decomposition algorithm in Aimms.

22.8 Computational considerations

This section The presentation thus far has mainly focussed on the theory of Benders’ de-

composition and its application to the particular facility location problem. Im-

plementation issues have barely been considered. This section touches on two

of these issues, namely subproblem splitting aimed at preserving primary mem-

ory, and use of first-found integer solution aimed at diminishing computational

time. Whether or not these aims are reached, depends strongly on the data

associated with each particular model instance.

Splitting

subproblem

S(σ ,π|v,y)

The dual subproblem can be broken up and solved independently for each

commodity c. This gives the advantage that the LP model is divided into |c|
smaller models which can all be solved independently. This can reduce mem-

ory usage, which is especially true when Kcpdz is stored on disk or tape. In

this case, it is sufficient to read data into primary memory for only one c at

the time. For each fixed commodity c the problem then becomes

22.8. Computational considerations 279

Maximize: ∑

p

σcpScp +
∑

dz

πcdzDczydz

Subject to:

σcp +πcdz ≤ Kcpdz ∀(p,d, z)
σcp ≤ 0

πcdz free

Joining solutionsAfter solving the above problem for each fixed commodity c, the objective

function value of the overall problem S(σ ,π|v,y), is then the sum over all

commodities of the individual objective function values.

Use first integer

solution

The Benders’ cut is derived after finding the optimal integer solution to the

master problem. In practice, finding optimal integer solutions can be ex-

tremely time consuming as most solution algorithms have difficulty proving

that a perceived optimal solution is indeed the optimal solution. Finding a

first integer solution is in general easier than finding an optimal integer so-

lution. That is why an alternative implementation of Benders’ decomposition

can be proposed to take advantage of such a first integer solution.

Extra cut

required

Consider the objective function value of the relaxed master problem for the

first integer solution found. This value is not necessarily optimal and there-

fore cannot be considered as a valid lower bound for the original problem.

Nevertheless, it will be treated as such. Now, the Benders’ algorithm can termi-

nate prematurely whenever this fake lower bound exceeds the current upper

bound. In order to avoid premature termination in the presence of these fake

lower bounds, the following constraint should be added:

f(y)+m ≤ UB− ǫ, ǫ ≥ 0, small

This constraint makes sure that any fake lower bound resulting from the use of

a first integer solution of the master problem cannot be greater than or equal

to the current upper bound, and thus will never cause unwanted premature

termination.

Convergence

with first

integer solutions

New Benders’ cuts are added every iteration. Their presence together with the

above constraint on the fake lower bound will eventually result in an empty in-

teger solution space. This happens when the generated Benders’ cuts are such

that the true lower bound is greater than or equal to the upper bound minus ǫ.

From original Benders’ algorithm it follows that convergence has occurred and

that the current upper bound provides equals the optimal objective function

value. Thus, the alternative approach based on first integer solutions termi-

nates when the modified master problem becomes infeasible and no longer

produces a first integer solution.

280 Chapter 22. A Facility Location Problem

22.9 A worked example

This section In this section you will find a small and somewhat artificial example to illus-

trate the computational results of applying the Benders’ decomposition ap-

proach to the facility location problem described in this chapter.

Network layout In this example there are two production plants, three customer zones, and

seven potential sites for distribution centers. Their coordinates are presented

in Table 22.1, and are used to determine the transport cost figures as well as

the map in Figure 22.3.

City Type X-coord. Y-coord.

Arnhem Production plant 191 444

Rotterdam Production plant 92 436

Amsterdam Distribution center 121 488

The Hague Distribution center 79 454

Utrecht Distribution center 136 455

Gouda Distribution center 108 447

Amersfoort Distribution center 155 464

Zwolle Distribution center 203 503

Nijmegen Distribution center 187 427

Maastricht Customer zone 175 318

Haarlem Customer zone 103 489

Groningen Customer zone 233 582

Table 22.1: Considered cities and their coordinates

Commodities A total of two commodities are considered. The corresponding supply and

demand data for the production plants and the customer zones are provided

in Table 22.2, and are specified without units.

Product A Product B

City Scp Dcz Scp Dcz

Arnhem 18 18

Rotterdam 15 40

Maastricht 8 9

Haarlem 9 10

Groningen 7 11

Table 22.2: Supply and demand data

22.9. A worked example 281

Throughput

data

For each distribution center the minimal and maximal throughput data, to-

gether with the associated throughput cost figures, are displayed in Table 22.3

d Md Md Rd Fd

Amsterdam 2 20 5.0 180

The Hague 20 7.0 130

Utrecht 14 3.0 60

Gouda 20 5.5 150

Amersfoort 21 6.0 140

Zwolle 17 7.0 150

Nijmegen 16 3.5 100

Table 22.3: Distribution throughput data

Cost

determination

The transport cost values Kcpdz are based on distance according to the follow-

ing formula:

Kcpdz =
(√
(Xp −Xd)2 + (Yp − Yd)2 +
√
(Xz − Xd)2 + (Yz − Yd)2

)
/100

Note that these cost values are the same for both products, and could have

been written as Kpdz.

SolutionIn the optimal solution ‘The Hague’, ’Gouda’ and ‘Amersfoort’ are selected

as distribution centers. ‘Haarlem’ is served from ‘The Hague’, ‘Maastricht’ is

served from ‘Gouda’, and ‘Groningen’ is served from ‘Amersfoort’. The optimal

flows through the network are presented in Table 22.4. The graphical repre-

sentation of the optimal flows is displayed in Figure 22.3. The corresponding

total production and transport costs amount to 828.9408. This optimal solu-

tion was obtained with an optimality tolerance of ε = 0.0001 and a total of 15

Benders’ cuts.

c p d z xcpdz

product A Arnhem Gouda Maastricht 2

product A Arnhem Amersfoort Groningen 7

product A Rotterdam The Hague Haarlem 9

product A Rotterdam Gouda Maastricht 6

product B Arnhem Amersfoort Groningen 11

product B Rotterdam The Hague Haarlem 10

product B Rotterdam Gouda Maastricht 9

Table 22.4: Optimal flows

282 Chapter 22. A Facility Location Problem

Utrecht

AmsterdamHaarlem

GoudaThe Hague

Rotterdam
Arnhem

Zwolle

Amersfoort

Groningen

Nijmegen

Maastricht

Product A

Product B

Figure 22.3: Optimal commodity flows

Final comments The computational performance of the Benders’ decomposition method in

terms of solution times is inferior when compared to solving the model as

a single mathematical program. Nevertheless, the decomposition method pro-

vides a solution approach for extremely large model instances, with the added

advantage that a feasible solution is available at any iteration. A premature ter-

mination of the algorithm (for instance, when the upper bound remains nearly

constant) may very well lead to a good near-optimal solution. This observation

applies to the data instance provided in this section.

22.10 Summary

In this chapter a facility location problem was translated into a mixed-integer

mathematical program. A Benders’ decomposition approach was introduced

to support the solution of large model instances. The theory underlying the

decomposition method with feasible subproblems was first introduced, and

subsequently applied to the facility location model. A flowchart illustrating

the general Benders’ decomposition algorithm was presented as the basis for

an implementation in Aimms. A small data set was provided for computational

purposes.

22.10. Summary 283

Exercises

22.1 Implement the facility location model described in Section 22.2 using

the example data presented in Tables 22.1, 22.2 and 22.3.

22.2 Implement the same model by using the Benders’ decomposition ap-

proach described in Section 22.4 and further applied in Section 22.7.

Verify whether the solution found with Aimms is the same as the one

found without applying Benders’ decomposition.

22.3 Implement the Benders’ decomposition approach based on using the

first integer solution found during the solution of the relaxed master

model as described in Section 22.8. In Aimms you need to set the

option Maximal number of integer solutions to 1 in order for the MIP

solver to stop after it has found the first feasible integer solution.

284 Chapter 22. A Facility Location Problem

Part VI

Appendices

Keyword Table

Chapters Basic Intermediate Advanced

Keywords A
n

E
m

p
lo

y
e
e

T
ra

in
in

g
P
ro

b
le

m

A
M

e
d

ia
S
e
le

c
ti

o
n

P
ro

b
le

m

A
D

ie
t

P
ro

b
le

m

A
F
a
rm

P
la

n
n

in
g

P
ro

b
le

m

A
P
o
o
li

n
g

P
ro

b
le

m

A
P
e
rf

o
rm

a
n

c
e

A
s
s
e
s
s
m

e
n

t
P
ro

b
le

m

A
T

w
o
-L

e
v
e
l

D
e
c
is

io
n

P
ro

b
le

m

A
B

a
n

d
w

id
th

A
ll

o
c
a
ti

o
n

P
ro

b
le

m

A
P
o
w

e
r

S
y
s
te

m
E
x
p

a
n

s
io

n
P
ro

b
le

m

A
n

In
v
e
n

to
ry

C
o
n

tr
o
l

P
ro

b
le

m

A
P
o
rt

fo
li

o
S
e
le

c
ti

o
n

P
ro

b
le

m

A
F
il

e
M

e
rg

e
P
ro

b
le

m

A
C

u
tt

in
g

S
to

c
k

P
ro

b
le

m

A
T

e
le

c
o
m

m
u

n
ic

a
ti

o
n

N
e
tw

o
rk

P
ro

b
le

m

A
F
a
c
il

it
y

L
o
c
a
ti

o
n

P
ro

b
le

m

Auxiliary Model � � � �

Column Generation � � �

Constraint Generation �

Control-State Variables � � �

Customized Algorithm � � � � �

Integer Program � � � � � � �

Linear Program � � � � � � � �

Logical Constraint � �

Mathematical Derivation � � � � � � �

Mathematical Reformulation � � � �

Measurement Units � �

Multiple Optima �

Multi-Stage �

Network Program � �

Nonlinear Program � �

Piece-Wise Approximation �

Probabilistic Constraint �

Quadratic Program �

Rounding Heuristic �

Sensitivity Analysis �

Simplex Method � � �

Stochastic Program � �

Two-Stage �

What-If Analysis � � � �

Worked Example � � � � � � � � � � � � � � �

Index

Symbols

λ-formulation, 84

A

a priori reduction, 234

absolute values, 65

abstract model, 3

agricultural model, 12, 117

AIMMS, v

Aimms, v

deployment documentation, xv

example projects, xv

help files, xv

Language Reference, xiv

Optimization Modeling, xiv

tutorials, xv

User’s Guide, xiii

algebraic, 30

notation, 33

approximation

piecewise linear, 83, 222

arc, 56, 252

assignment problem, 60

authors

Bisschop, J.J., xviii

B

balance

constraint, 92

tax-subsidy, 152

bandwidth allocation problem, 163

base unit, 113

basic variable, 235

basis

constant, 50

Benders’ cut, 277

Benders’ decomposition, 268

convergence, 272

flowchart, 271

termination, 272

binary variable, 27

binding constraint, 21

bisection phase, 155

bisection search, 154

blending

model, 127

proportional, 130

bottleneck identification model, 252

branch and bound, 27, 267

C

candidate variable, 237

chance constraint, 73

Chebyshev inequality, 207

column

entry condition, 257

generation, 245, 256

concavity, 85

concrete model, 3

conditional probability, 187

constant basis, 50

constant objective, 49

constraint

balance, 56, 92

binding, 21

chance, 73

conditional, 81

covering, 102

either-or, 79

flow, 132

logical, 103, 221

non-binding, 21

nonnegativity, 17

probabilistic, 73, 76, 97

range, 70, 111

redundant, 268

shadow price, 43

transportation, 230

contour, 19, 30

control variable, 92, 174, 187

convex combination, 122

convexity, 85, 209

strict, 152

corner solution, 21

correlated data, 145

correlation

perfect, 211

covariance, 208

cover, see set, covering

critical value, 74

cumulative distribution, 74

curve fitting, 66

least absolute values, 67

Index 289

least maximum deviation, 67

least-squares, 67

cutting stock problem, 241

D

data

correlated, 145

scaling, 147

data envelopment analysis, 139

data initialization, 40

DEA, see data envelopment analysis

decision problem

picturing, 18

decision variable, 16

decomposition, 268

degeneracy, 45

delayed

column generation, 245

pattern generation, 244

derived unit, 113

deterministic model, 173

diet problem, 109

directed network, 53

discontinuous variable, 77

distribution

cumulative, 74

documentation

deployment features, xv

domain restriction, 133

downside variance, 219

dual model

overview, 273

dual of maximization problem, 274

dual of minimization problem, 273

dynamic column generation, 256

E

efficiency

absolute, 140

relative, 140

either-or constraint, 79

element parameter, 141, 191, 237

employee training problem, 91

equilibrium model, 28

event

parameter, 173, 186

probability, 187

example projects, xv

expectation, 206

expected cost, 182

explicit formulation, 33

extreme point, 269

F

facility location problem, 264

farm planning problem, 117

feasible region, 19, 26, 30

picturing, 19

file merge problem, 227

fixed cost, 78

formulation

λ, 84

Aimms, 38

dual overview, 273

explicit, 33

piecewise linear, 83, 222

symbolic, 34

symbolic-indexed, 35

fractional objective, 69

full master problem, 270

G

general pure network flow model, 60

generalized network problem, 61

global optimum, 31, 209, 211, 221

H

horizon, 94

hunt phase, 154

I

index notation, 36

indicator variable, 78

inequality

linear, 14

infeasibility, 23, 28

initialization

data, 40

integer programming, 27

inventory control problem, 186

inverse cumulative distribution, 74

investment model

strategic, 204

tactical, 214

IP, see integer programming

L

lag and lead notation, 93

Largest In Least Empty, 243

LILE, see Largest In Least Empty

linear

equation, 14

inequality, 14

piecewise, 83, 222

program, 65

partitioned, 235

programming, 14

local optimum, 31

logical constraint, 103, 221

290 Index

conditional, 81

either-or, 79

LP, see linear, programming

M

marginal values, 42

master problem, 270

mathematical

algorithm, 6

language, 6

model, 4

programming, 14

theory, 6

maximum flow problem, 61

measurement units, 112

base unit, 113

derived unit, 113

quantities, 112

SI unit, 113

unit consistency, 113

unit convention, 115

unit conversion, 114

unit-valued parameter, 114

media selection problem, 100

minimax objective, 68

MIP, see mixed-integer programming

mixed integer programming, 27

model, 3

abstract, 3

agricultural, 12, 117

assignment, 60

blending, 127

bottleneck identification, 252

concrete, 3

deterministic, 173

dual overview, 273

equilibrium, 28

general pure network flow, 60

generalized network, 61

linear, 65

mathematical, 4

maximum flow, 61

multi-commodity network, 62

multi-period, 91

network, 28

network flow, 53

nonlinear, 30

optimization, 4

path-finding, 257

personnel planning, 11, 91

portfolio, 10

refinery, 8, 127

relaxed, 27, 96

set covering, 106

set packing, 107

set partitioning, 107

shortest path, 61

strategic investment, 204

tactical investment, 214

transportation, 60

transshipment, 60

validation, 8

waste water, 149

Model Explorer, 38

modeling process, 7

multi-commodity, 264

multi-commodity network problem, 62

multi-period model, 91

multi-stage, 174, 187

N

network, 53

approach, 230

arc, 56

assignment problem, 60

design, 252

directed, 53

flow model, 53

general pure network flow, 60

generalized network problem, 61

maximum flow problem, 61

multi-commodity network problem, 62

node, 56

shortest path problem, 61

telecommunication problem, 251

transportation problem, 60

transshipment problem, 60

network model, 28

NLP, see nonlinear, programming

node, 56, 252

non binding constraint, 21

nonbasic variable, 235

nonlinear

model, 30

programming, 28

O

objective

coefficient range, 51

concave, 85

constant, 49

convex, 85

fractional, 69

minimax, 68

one-sided variance, 219

optimal solution, 21, 22

optimization

model, 4

optimum

global, 31, 209, 211, 221

local, 31

multiple, 22

Index 291

P

parameter

element, 141, 191, 237

event, 173, 186

unit-valued, 114

partitioned linear program, 235

path, 252

path-finding model, 257

pattern generation, 244

performance assessment problem, 139

performance measure, 140

personnel planning model, 11, 91

piecewise linear formulation, 83, 222

planning interval, 94

policy making, 150

policy receiving, 150

pooling problem, 127

portfolio, 203

diversification, 203

model, 10

problem, 201

risk, 203

positive semi-definite, 217

power system expansion problem, 173

priority, 95

probabilistic constraint, 73, 76, 97

probability

conditional, 187

event, 187

recursive, 194

unconditional, 188

problem

bandwidth allocation, 163

cutting stock, 241

diet, 109

employee training, 91

facility location, 264

farm planning, 117

file merge, 227

inventory control, 186

media selection, 100

performance assessment, 139

pooling, 127

portfolio, 201

power system expansion, 173

telecommunication network, 251

two-level decision, 149

profit function

contour, 19

picturing, 19

programming, 14

integer, 27

linear, 14, 65

mathematical, 14

mixed integer, 27

multi-stage, 174, 187

stochastic, 174, 181

two-level, 149

two-stage, 174, 187

zero-one, 27

proportional blending, 130

Q

quantities, 112

R

random variable, 73, 206

range constraint, 70, 111

recursive probability, 194

reduced cost, 42, 46, 236

reduction

a priori, 234

redundant constraint, 268

reference set, 143

refinery model, 8, 127

relaxed

master problem, 270

model, 27, 96

right-hand-side

range, 51

risk, 203

rounding, 25, 96

S

scaling, 147

scenario, 174, 188, 215

selection, 175

security, 202

sensitivity analysis, 23, 42, 125

sensitivity range, 43

constant basis, 50

constant objective, 49

separable function, 83

separation

model and data, 35

symbols and values, 34

set

covering, 106

packing, 107

partitioning, 107

reference, 143

shadow price, 43, 125, 236

binding constraint, 44

degeneracy, 45

equality constraint, 43

limitation, 45

nonbinding constraint, 44

picturing, 45

range, 50

shortest path problem, 61

SI unit, 113

simplex

292 Index

iteration, 236

method, 22, 235

solution

corner, 21

optimal, 21, 22

picturing, 19, 26, 30

rounding, 25, 96

suboptimal, 95

solver failure

derivative error, 135, 156

division error, 155

SOS, see special ordered set

special ordered set, 82

SOS1, 82

SOS2, 83

state variable, 92, 174, 187

stochastic programming, 174, 181

multi-stage, 174, 187

two-stage, 174, 187

stochastic terminology, 189

strategic investment model, 204

symbolic

formulation, 34

T

tactical investment model, 214

tax & subsidy, 150

telecommunication network problem, 251

time

beyond, 94

horizon, 94

past, 94

planning interval, 94

step, 215

tolerance

absolute optimality, 95

optimality, 27

relative optimality, 95

transportation problem, 60

transshipment problem, 60

tree-based terminology, 189

tutorials, xv

two-level

different knowledge levels, 150

optimality conditions, 161

two-level decision problem, 149

two-stage, 174, 187

U

unboundedness, 23, 28

uncertain demand, 175

unconditional probability, 188

unimodular, 28

unit

base, 113

consistency, 113

convention, 115

conversion, 114

derived, 113

SI, 113

unit-valued parameter, 114

units, see measurement units

V

variable, 15

adjusting objective coefficient, 47

basic, 235

binary, 27

bound, 111

bound relaxation, 47

candidate, 237

control, 92, 174, 187

decision, 16

discontinuous, 77

eliminating product, 86

indicator, 78

name, 16

nonbasic, 235

priority, 95

random, 73, 206

reduced cost, 42, 46

shadow price range, 50

state, 92, 174, 187

status, 133

variable range, 50

variance, 206

downside, 219

one-sided, 219

W

waste water model, 149

what-if analysis, 174, 179

Z

zero-one programming, 27

Bibliography

[]An91 R. Anbil, E. Gelman, B. Patty, and R. Tanga, Recent advances in crew-

pairing optimization at american airlines, Interfaces 21 (1991), no. 1,

62–74.

[]Ba66 F.M. Bass and R.T. Lonsdale, An exploration of linear programming in

media selection, Journal of Marketing Research 3 (1966), 179–188.

[]Ba79 M.S. Bazaraa and C.M. Shetty, Nonlinear programming: Theory and

algorithms, John Wiley & Sons, New York, 1979.

[]Be69 E.M.L. Beale and J.A. Tomlin, Special facilities in a general mathemat-

ical programming system for non-convex problems using ordered sets

of variables, Proceedings of the 5th International Conference on Op-

erations Research (Tavistock, London) (J. Lawrence, ed.), 1969.

[]Bi82 J.J. Bisschop, W. Candler, J.H. Duloy, and G.T. O’Mara, The indus basin

model: A special application of two-level linear programming, Mathe-

matical Programming Study 20 (1982), 30–38.

[]Bi99 J.J. Bisschop and M.R. Roelofs, Aimms, the language reference, 1999.

[]Bo93 R.A. Bosch, Big mac attack, OR/MS Today (1993).

[]Bu89 G. Buxey, Production scheduling: Practice and theory, European Jour-

nal of Operational Research 39 (1989), 17–31.

[]Ch55 A. Charnes and W.W. Cooper, Generalizations of the warehousing

model, Operations Research Quarterly 6 (1955), 131–172.

[]Ch59 A. Charnes and W.W. Cooper, Change-constrained programming, Man-

agement Science 6 (1959), 73–80.

[]Ch62 A. Charnes and W.W. Cooper, Programming with linear fractional

functional, Naval Research Logistics Quarterly 9 (1962), 181–186.

[]Ch68a A. Charnes, W.W. Cooper, J.K. DeVoe, D.B. Learner, and W. Reinecke,

A goal programming model for media planning, Management Science

14 (1968), B431–B436.

[]Ch68b A. Charnes, W.W. Cooper, and R.J. Niehaus, A goal programming

model for manpower planning, Management Science in Planning and

Control (J. Blood, ed.), Technical Association of the Pulp and Paper

Industry, New York, 1968.

[]Ch78 A. Charnes, W.W. Cooper, and E. Rhodes, Measuring the efficiency of

decision making units, European Journal of Operational Research 2

(1978), 429–444.

[]Ch83 V. Chvátal, Linear programming, W.H. Freeman and Company, New

York, 1983.

294 Bibliography

[]Ch96 A. Charnes, W.W. Cooper, A.Y. Lewin, and L.M. Seiford (eds.), Data

envelopment analysis: Theory, methodology and applications, 2nd ed.,

ch. 4, Computational Aspects of DEA, pp. 63–88, Kluwer Academic

Publishers, 1996.

[]Da63 G.B. Dantzig, Linear programming and extensions, Princeton Univer-

sity Press, Princeton, N.J., 1963.

[]Ep87 D.D. Eppen, F.J. Gould, and C.P. Schmidt, Introductory management

science, 2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1987.

[]Er94 E. Erkut, Big mac attack revisited, OR/MS Today (1994).

[]Fl89 C.A. Floudas, A. Aggarwal, and A.R. Ciric, Global optimum search for

nonconvex NLP and MINLP problems, Computers & Chemical Engineer-

ing 13 (1989).

[]Ga72 R.S. Garfinkel and G.L. Nemhauser, Integer programming, John Wiley

& Sons, New York, 1972.

[]Ge74 A.M. Geoffrion and G.W. Graves, Multicommodity distribution system

design by benders decomposition, Management Science 20 (1974),

no. 5, 822–844.

[]Gi61 P.C. Gilmore and R.E. Gomory, A linear programming approach to the

cutting stock problem part i, Operations Research 9 (1961), 849–859.

[]Gi63 P.C. Gilmore and R.E. Gomory, A linear programming approach to the

cutting stock problem part ii, Operations Research 11 (1963), 863–888.

[]Gl92 F. Glover, D. Klingman, and N.V. Phillips, Network models in optimiza-

tion and their applications in practice, John Wiley & Sons, New York,

1992.

[]Go77 B. Golden and T. Magnanti, Deterministic network optimizations: A

bibliography, Networks 7 (1977), 149–183.

[]Ha60 F. Hanssmann and S.W. Hess, A linear programming approach to

production and employment scheduling, Management Technology 1

(1960), 46–52.

[]Ha78 C.A. Haverly, Studies of the behaviour of recursion for the pooling

problem, ACM SIGMAP Bulletin 26 (1978).

[]Ha86 P.B.R. Hazell and R.D. Norton, Mathematical programming for eco-

nomic analysis in agriculture, Macmillan, New York, 1986.

[]Hu69 T.C. Hu, Integer programming and network flows, Addison-Wesley,

Reading, Massachusetts, 1969.

[]In94 G. Infanger, Planning under uncertainty, Boyd & Fraser, Danvers, Mas-

sachusetts, 1994.

[]Ka94 P. Kall and S.W. Wallace, Stochastic programming, John Wiley & Sons,

Chichester, 1994.

[]Ke80 J. Kennington and R. Helgason, Algorithms for network programming,

John Wiley & Sons, New York, 1980.

[]Ke81 D. Kendrick, A. Meeraus, and J.S. Suh, Oil refinery modeling with the

gams language, Tech. Report Research Report Number 14, Center for

Energy Studies, The University of Texas, Austin, 1981.

[]Ko87 J.S.H. Kornbluth and G.R. Salkin, The management of corporate finan-

cial assets: Applications of mathematical programming models, Aca-

Bibliography 295

demic Press Ltd., London, 1987.

[]Ku88 G. Kutcher, A. Meeraus, and G.T. O’Mara, Modeling for agricultural

policy and project analysis, Tech. report, The World Bank, Washington

D.C., 1988.

[]Lu73 D.G. Luenberger, Introduction to linear and nonlinear programming,

Addison-Wesley, Reading, Massachusetts, 1973.

[]Ma52 H.M. Markowitz, Portfolio selection, Journal of Finance 7 (1952), 77–91.

[]Ma56 A.S. Manne, Scheduling of petroleum refinery operations, Harvard Eco-

nomic Studies, vol. 48, Harvard University Press, Cambridge, Mas-

sachusetts, 1956.

[]Ma76 A.S. Manne, Eta: A model for energy technology assessment, Bell Jour-

nal of Economics 7 (1976), 379–406.

[]Ma92 S.A. Malcolm and S.A. Zenios, Robust optimization for power systems

capacity expansion under uncertainty, Tech. Report Report 92-03-07,

Decision Sciences Department, The Wharton School, University of

Pennsylvania, Philadelphia, 1992.

[]Me98 E.A. Medova, Chance-constrained stochastic programming for inte-

grated services network management, Annals of Operations Research

81 (1998).

[]Ne88 G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimiza-

tion, John Wiley & Sons, New York, 1988.

[]No91 M. Norman and B. Stoker, Data envelopment analysis: The assessment

of performance, John Wiley & Sons, Chichester, 1991.

[]Or93 J.B. Orlin, R.K Ahuja, and T.L. Magnanti, Network flows, theory, algo-

rithms and applications, Prentice Hall, New Jersey, 1993.

[]Re89 F.K. Reilly, Investment analysis and portfolio management, The Dry-

den Press, Orlando, Florida, 1989.

[]Sc91 L. Schrage, Lindo: An optimization modeling system, 4th ed., The Sci-

entific Press, South San Francisco, 1991.

[]Th92 G.L. Thompson and S. Thore, Computational economics: Economic

modeling with optimization software, The Scientific Press, South San

Francisco, 1992.

[]Va84 H.R. Varian, Microeconomic analysis, 2nd ed., W.W. Norton & Com-

pany, New York, 1984.

[]Wa75 H.M. Wagner, Principles of operations research, 2nd ed., Prentice-Hall,

Englewood Cliffs, N.J., 1975.

[]We67 Webster’s seventh new collegiate dictionary, G. & C. Merriam Company,

Springfield, Massachusetts, 1967.

[]Wi90 H.P. Williams, Model building in mathematical programming, 3rd ed.,

John Wiley & Sons, Chichester, 1990.

