
AIMMS Modeling Guide - Telecommunication Network Problem

This file contains only one chapter of the book. For a free download of the

complete book in pdf format, please visit www.aimms.com.

Aimms 4

http://www.aimms.com

Copyright c© 1993–2018 by AIMMS B.V. All rights reserved.

AIMMS B.V.

Diakenhuisweg 29-35

2033 AP Haarlem

The Netherlands

Tel.: +31 23 5511512

AIMMS Inc.

11711 SE 8th Street

Suite 303

Bellevue, WA 98005

USA

Tel.: +1 425 458 4024

AIMMS Pte. Ltd.

55 Market Street #10-00

Singapore 048941

Tel.: +65 6521 2827

AIMMS

SOHO Fuxing Plaza No.388

Building D-71, Level 3

Madang Road, Huangpu District

Shanghai 200025

China

Tel.: ++86 21 5309 8733

Email: info@aimms.com

WWW: www.aimms.com

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

http://www.aimms.com

Chapter 21

A Telecommunication Network Problem

This chapterIn this chapter you will encounter a capacity utilization problem in a telecom-

munication network. Traffic in such a network is expressed in terms of calls,

and calls are made between a large number of origin-destination pairs during a

particular period of time. Calls between origins and destinations can be routed

along any path through the network subject to capacity limitations. The objec-

tive is to identify bottleneck capacity in the network. In practical applications,

the model turns out to be quite large due to the many possible paths that exist

between origins and destinations. For that reason a path generating technique

is introduced to control the size of the model that is passed to a solver during

a sequence of iterations.

ReferencesThe telecommunication network model discussed in this chapter can be found

in various sources. Two references, spanning a period of almost 30 years, are

[Hu69] and [Me98]. The required theory of linear programming and column

generation can be found in [Ch83] and in Chapter 19 of this book. In addition,

Chapter 20, ‘A Cutting Stock Problem’, also provides an application in which

column generation plays a central role.

KeywordsLinear Program, Network Program, Simplex Method, Column Generation, Auxil-

iary Model, Customized Algorithm, Mathematical Derivation, Worked Example.

21.1 Problem description

This sectionThis section provides a brief introduction to the terminology and concepts

used in the telecommunication network problem described in this chapter.

The problem itself is summarized towards the end of this section.

Network

configuration

In a telecommunication network, transmission lines are used to carry traffic in

the form of calls. These lines form the link between switch-stations. Traffic is

routed from one switch-station to the next until it reaches its destination. For

the sake of simplicity both the origin and destination of a call are assumed to

be switch-stations.

Chapter 21. A Telecommunication Network Problem 246

Nodes, arcs and

paths

Each switch-station is represented as a node in the network, and each link

between any two nodes is represented as an arc. The maximum amount of

traffic that can go through a switch-station during a specific period of time

will be referred to as node capacity. A similar definition holds for arc capacity.

A route from origin to destination through the network is a path.

Flexible routingTraffic for a particular origin-destination pair can be split and subsequently

recombined at any node in the network. This flexibility in routing traffic allows

for efficient use of the entire network. The implication of flexible routing for

the model to be developed, is that all possible paths between an origin and a

destination will need to be considered.

Problem

summary

Assume that the amount of traffic between all origin-destination pairs for a

particular period is known, and that the capacity for all switch-stations and

transmission lines is provided. The problem that will be addressed is the bot-

tleneck identification problem. In this problem traffic is routed along paths

in the network so that traffic requirements are met. In addition, the bottle-

neck in the network is identified by finding that arc or node with the largest

percentage use of the available capacity.

Network designThe bottleneck identification problem can be viewed as a strategic network de-

sign problem. In a network there are often bottlenecks that must be alleviated

through redesign either by adding new switch-stations or new transmission

lines, or by adding capacity to any of the existing facilities. The problem in

this chapter represents a simplification, because it does not consider such

practical matters as network robustness and reliability under (uncertain) traf-

fic regimes. Nevertheless, the model developed next is of interest, as it forms

a basis for several extensions.

21.2 Bottleneck identification model

This sectionIn this section you will encounter a compact arc-path formulation of the bot-

tleneck identification problem described in the previous section. Initially, it is

assumed that all possible paths between origin-destination pairs are enumer-

ated explicitly. This assumption will be relaxed in the next section where paths

are generated one-at-a-time as needed.

ExampleFigure 21.1 depicts a simplified Dutch telecommunication network containing

6 nodes and 12 (bi-directional) arcs. In this example, it is assumed that there

is traffic between all possible pairs of (origin-destination) nodes, and that each

node and arc has a limited capacity. Even in this small example, the number of

undirected paths is quite large (namely 377), and only a few of them are listed

in Table 21.1.

Chapter 21. A Telecommunication Network Problem 247

Utrecht

Amsterdam

Gouda

The Hague

Arnhem

Maastricht

Figure 21.1: A Dutch Telecommunication Network

Verbal model

description

The verbal model is expressed in terms of network terminology for reasons

of conciseness and ease of recall. The interpretation in terms of transmission

lines and switch-stations is straightforward. Note that the use of any arc or

node (as referred to in the problem summary) is expressed as a fraction of the

available capacity.

Minimize: maximum fraction of either arc use or node use,

Subject to:

� for each origin-destination pair: total traffic along paths

connecting this pair is equal to the required amount of traffic,

� for each arc in the network: total traffic that uses that arc is

equal to a fraction of the available arc capacity,

� for each node in the network: total traffic that uses that node is

equal to a fraction of the available node capacity,

� for each arc in the network: capacity use is less than or equal to

the maximum fraction,

� for each node in the network: capacity use is less than or equal

to the maximum fraction.

The mathematical description is slightly more complicated due to the various

indices that play a role.

Chapter 21. A Telecommunication Network Problem 248

origin destination path

Amsterdam Maastricht Amsterdam – The Hague – Maastricht

– Amsterdam – The Hague – Utrecht – Maastricht

– Amsterdam – The Hague – Utrecht – Gouda – Maastricht

– Amsterdam – The Hague – Utrecht – Gouda – Arnhem – Maastricht

– Amsterdam – The Hague – Utrecht – Arnhem – Maastricht

– Amsterdam – The Hague – Utrecht – Arnhem – Gouda – Maastricht

– Amsterdam – The Hague – Gouda – Maastricht

– Amsterdam – The Hague – Gouda – Utrecht – Maastricht

– Amsterdam – The Hague – Gouda – Utrecht – Arnhem – Maastricht

– Amsterdam – The Hague – Gouda – Arnhem – Maastricht

– Amsterdam – The Hague – Gouda – Arnhem – Utrecht – Maastricht

– Amsterdam – Utrecht – Maastricht

– Amsterdam – Utrecht – The Hague – Maastricht

. . .

Table 21.1: Paths between Amsterdam and Maastricht

Mathematical

description

The following symbols will be used for the mathematical description of the

bottleneck identification model.

Indices:

n nodes

a arcs

o,d origin and destination nodes

p paths

Set:

Sod all paths between origin o and destination d

Parameters:

Aap incidence: arc a is on path p

Bnp incidence: node n is on path p

Ca capacity of arc a

Cn capacity of node n

Dod required traffic between origin o and destination d

Variables:

xp traffic along path p

fa fraction of available capacity of arc a

fn fraction of available capacity of node n

M maximum fraction of either arc or node capacity

Traffic

requirement

Traffic requirements are typically specified for only a subset of all origin-

destination pairs. Such traffic may be routed along any path. As the set Sod
contains all paths for each (o,d) pair, specifying the corresponding traffic re-

quirement is straightforward.

∑

p∈Sod

xp = Dod ∀(o,d) |Dod > 0

Chapter 21. A Telecommunication Network Problem 249

Reducing the

number of

constraints

Note that the above traffic requirement constraint is only defined when the

required amount of traffic Dod is greater than zero. Enforcing this condition is

one way to reduce the number of constraints. A second and practically more

effective reduction in the number of constraints is to add the requirements

Dod and Ddo, and to consider only traffic requirement constraints for o < d.

Arc capacity

utilization

An arc a can be on several paths that are selected to meet the traffic require-

ment for various (o,d) pairs. The total (bi-directional) amount of traffic along

such an arc, however, is limited by the arc’s capacity. Rather than specifying a

hard capacity constraint for each arc, an additional nonnegative variable fa is

introduced to indicate the fraction of capacity used for that arc. Such a frac-

tion should, of course, be less than or equal to one. By leaving it unrestricted

from above, however, it measures the fraction of capacity sufficient to meet

traffic requirements.

∑

p

Aapxp = faCa ∀a |Ca > 0

Note that the above arc capacity utilization constraint is only defined when the

corresponding arc capacity Ca is greater than zero.

Node capacity

utilization

A node n can also be on several paths selected to meet traffic requirements

for various (o,d) pairs. Just like arcs, nodes also have limited capacity. An

additional nonnegative variable fn is introduced to measure the fraction of

capacity sufficient to meet traffic requirements.

∑

p

Bnpxp = fnCn ∀n |Cn > 0

Note that the above node capacity utilization constraint is only defined when

the corresponding node capacity Cn is greater than zero.

Identifying

bottleneck

capacity

Identifying the bottleneck capacity is now straightforward to model. Consider

the maximum capacity utilization fraction M , and let all fractions of capacity

utilization in the network be less than or equal to this fraction. By minimiz-

ing M , the optimal solution will identify one or more critical capacities. Note

that the underlying linear program will always be feasible, because there is no

effective capacity limitation (i.e. limit on M).

Minimize: M

Subject to: fa ≤M ∀a |Ca > 0

fn ≤ M ∀n |Cn > 0

An optimal M ≤ 1 indicates that existing capacities can be utilized to meet

all traffic requirements. An optimal M > 1 implies that capacity expansion is

needed.

Chapter 21. A Telecommunication Network Problem 250

Model summaryThe following mathematical statement summarizes the model.

Minimize:

M

Subject to:
∑

p∈Sod

xp = Dod ∀(o,d) | o < d,Dod > 0

∑

p

Aapxp = faCa ∀a |Ca > 0

∑

p

Bnpxp = fnCn ∀n |Cn > 0

0 ≤ xp ∀p

0 ≤ fa ≤M ∀a |Ca > 0

0 ≤ fn ≤M ∀n |Cn > 0

21.3 Path generation technique

This sectionThe number of paths in practical applications is too large to enumerate, and

thus the corresponding linear program cannot be generated in its entirety.

This section develops a path generating scheme which avoids the complete

enumeration of all paths. The approach resembles the column generating tech-

nique described in Chapter 20, except that the columns now correspond to

paths.

Dynamic

column

generation

If all columns of a linear program cannot be generated prior to solving, they

need to be generated ’as needed’ during the solution phase. This requires

insight into the construction of a column together with knowledge of the rele-

vant shadow prices to make sure that any generated column will improve the

objective function value of the underlying linear program. In the case of the

bottleneck identification model, you need to consider the path-related variable

xp and see whether there is a new column p that may lead to a better solution

of the overall model.

A typical

column

Each new column with coefficients corresponding to a new xp variable has

zero-one entries in the first three symbolic constraints of the above bottleneck

identification model. The entries associated with the first constraint are all 0

except for a single 1 corresponding to a particular (o,d) pair. The entries of

the new column associated with the second constraint are 1 or 0 dependent

on whether an arc is on the new path or not. Let za be 1 if arc a is on the path,

and 0 otherwise. Similarly, the entries associated with the third constraint are

1 or 0 dependent on whether a node is on the new path or not. Let hn be 1 if

node n is on the path, and 0 otherwise.

Chapter 21. A Telecommunication Network Problem 251

Column entry

condition . . .

The symbols za and hn can be viewed as variables characterizing the path-

related coefficients of each new column to be determined. The shadow prices

corresponding to the first three constraints are needed to decide on a new

column to be added to the bottleneck identification model. They are:

λod for the traffic requirement constraint

µa for the arc capacity utilization constraint

θn for the node capacity utilization constraint

You may want to verify that the condition below describes the situation in

which a path p may contribute to the optimal solution value of the underlying

bottleneck identification model. This condition, which is equivalent to the

column entry condition in the simplex method for a minimization model, is

similar to the reduced cost criterion explained in Chapters 19 and 20.

0− λod −
∑

a

µaza −
∑

n

θnhn < 0

. . . leads to

minimization

By considering only those values of za and hn that together determine a path,

and by minimizing the left side of the above inequality over all particular (o,d)

pairs, you obtain the best path in terms of the reduced cost criterion. If the

minimum value is strictly less than zero, you have found a path between an o

and a d that will improve the underlying linear program. If this minimum is

greater than or equal to zero, then there does not exist a new path that will

improve the linear program. This observation leads to the idea to employ a

path-finding model as an auxiliary model to identify a new path p satisfying

the above column entry condition. In this chapter a path-finding linear pro-

gramming formulation has been selected. A shortest-path approach based on

Dijkstra’s algorithm could also have been employed.

Auxiliary

path-finding

model

The following auxiliary model is selected to play a role in the path generating

approach proposed in this chapter. The notation in this auxiliary path-finding

model is based on the concept of directed arcs for reason of convenience. Its

relationship to the column entry condition above will be discussed in subse-

quent paragraphs.

Sets:

N nodes

I ⊂ N intermediate nodes

Indices:

i, j nodes

Element Parameters:

orig originating node

dest destination node

Numerical Parameter:

kij objective coefficient for arc (i, j)

Chapter 21. A Telecommunication Network Problem 252

Variable:

yij 1 if arc (i, j) is on optimal path, 0 otherwise

When kij > 0 and the set I contains all nodes except the originating node

orig and the destination node dest , you may verify that the following model

with network constraints determines a best path from orig to dest expressed

in terms of indices i and j.

Minimize:

∑

(ij)

kijyij

Subject to:
∑

j

yji −
∑

j

yij =

−1 if i = orig

0 if i ∈ I

1 if i = dest

The above model can be solved using a specialized algorithm. It can also be

solved as a linear program with constraints 0 ≤ yij ≤ 1, which will result in a

zero-one optimal solution due to the network property of the model (see e.g.

Chapter 5).

Restricting the

yij domain

Not all yij variables need to be considered in the above model formulation.

First of all, all variables with i = j are superfluous, as no such variable will be

in the optimal solution with kii > 0. Similarly, all variables yij with i = dest

or with j = orig are also superfluous. As a result, the number of relevant yij
variables is equal to |N|(|N| − 3) + 3 for |N| ≥ 2. Throughout the remainder

of this section the restricted domain of yij is implied.

Required

translation

It is not immediately obvious how the above auxiliary path-finding model can

be used to minimize the expression

−λod −
∑

a

µaza −
∑

n

θnhn

The required translation turns out to be fairly straightforward, but demands

some attention. In essence, the z and h terms must be translated into the

yij decision variables, while the other terms must translated into the objective

function coefficients kij .

The λ termsThe term λod is a constant once a particular (o,d) pair is selected. Therefore,

this term can be ignored when constructing the objective function coefficients

of the auxiliary model for a particular pair.

Chapter 21. A Telecommunication Network Problem 253

The µ and z

terms

An arc a corresponds to a tuple (i, j) as well as a tuple (j, i). Therefore, a

possible translation is to write za = yij + yji with µij = µji = µa. Such a

translation is permitted, because at most one of the yij and yji values can be

equal to 1 in an optimal solution of the auxiliary model when kij > 0.

The θ and h

terms

Let (o,d) = (orig,dest). You can express the relationship between hn and yij
as follows. First of all, ho =

∑

j yoj and hd =
∑

iyid. Then for all intermediate

nodes, either hi∈I =
∑

j yij or hi∈I =
∑

j yji. The term θn needs not be mod-

ified, and can be used directly in the construction of the objective function

coefficients kij .

Rewriting the

column entry

condition

The column entry condition without the constant term λod is

−
∑

a

µaza −
∑

n

θnhn

and can now be rewritten in terms of the yij variables of the auxiliary model

in one of two ways depending on the expression for hi∈I . Either

−
∑

(ij)

µijyij − θo
∑

j

yoj −
∑

i∈I

θi
∑

j

yij − θd
∑

i

yid

or

−
∑

(ij)

µijyij − θo
∑

j

yoj −
∑

i∈I

θi
∑

j

yji − θd
∑

i

yid

Determining the

coefficients kij

By carefully combining terms in the above two expressions and considering

only the restricted (i, j) domain, the corresponding values of kij can be written

either as
koj := −µoj − θo ∀j ≠ d

kij := −µij − θi ∀(i, j), i ≠ o, j ≠ d

kid := −µid − θi − θd ∀i

or as
koj := −µoj − θj − θo ∀j

kij := −µij − θi ∀(i, j), i ≠ o, j ≠ d

kid := −µid − θd ∀i ≠ o

Forcing kij > 0The values µ and θ are typically zero when the corresponding capacity con-

straints in the bottleneck identification model are not critical. Once a capacity

constraint has an associated capacity fraction value equal to the critical value

M , then the corresponding µ or θ value will be strictly less than 0, causing

the corresponding kij to be greater than 0. You may verify this by applying

the definition of a shadow price as described in Section 4.2 to the capacity

constraints after moving all variable terms to the left-hand side. By adding

a sufficiently small ǫ > 0 to all permitted values of kij , the requirement of

kij > 0 is automatically satisfied and the optimal solution of the auxiliary path

finding model is guaranteed to be a proper path between o and d without any

Chapter 21. A Telecommunication Network Problem 254

zero-valued subtours. A recommended choice for ǫ is the smallest positive

initial kij value divided by the total number of positive initial kij values.

Correcting kij
afterwards

Once the optimal solution of the auxiliary path finding model has been de-

termined, a check must be made to verify whether the newly generated path

should be added to the bottleneck identification model. This check is nothing

more than verifying whether the column entry condition, described in terms of

the yij values, is satisfied. You may verify that the following expression forms

the correct check.

−λod +
∑

ij

(kij − ǫ)yij < 0

Recall that the values of kij could have been determined in one of two ways,

but both sets are appropriate when checking the above condition.

Path generation

algorithmic

skeleton

The translation of the column entry condition into the terminology of the aux-

iliary path-finding model is now complete. The following algorithmic skeleton

loosely summarizes the approach to solve the bottleneck identification model

with path generation. Initialization (without initial shadow prices) is accom-

plished by setting the objective function coefficients kij equal to 1, leading to

the computation of the shortest path with the fewest number of intermediate

nodes between every possible (o,d) pair. These paths determine the initial

entries of the parameters Aap and Bnp in the bottleneck identification model

(referred to as ’main model’ below). In addition, each such shortest path is

also a single initial element of the set Sod.

FOR all origin-destination pairs DO

Solve path-finding model

Add shortest path to parameters in main model

ENDFOR

WHILE at least one new path has been added DO

Solve current bottleneck model

FOR all origin-destination pairs DO

Solve path-finding model

IF new path contributes

THEN add path to parameters in main model

ENDIF

ENDFOR

ENDWHILE

An implementation of this algorithm in Aimms is not entirely straightforward,

and does require some carefully constructed set and parameter manipulations

to update the input of both the path-finding model and the bottleneck identi-

fication model. Special care is also required when implementing the column

entry condition in order to avoid the repeated generation of a single path. The

powerful language features of Aimms, however, allow for a one-to-one transla-

tion of the notation used in this chapter.

Chapter 21. A Telecommunication Network Problem 255

Reducing

computational

efforts

In the above proposed algorithm a new path between all possible (o,d) pairs

is computed prior to solving the next bottleneck capacity model. By restrict-

ing yourself to only those (o,d) pairs with paths along critical nodes and/or

arcs (i.e. nodes and/or arcs with maximum capacity utilization fractions), the

computational effort to find new paths prior to solving the next bottleneck

identification model can be significantly reduced. The suggestion in this para-

graph is only one of several possibilities to reduce computational effort.

21.4 A worked example

Traffic dataThe traffic requirements (in terms of calls) between all possible origins and

destination pairs are presented in Table 21.2.

d Amsterdam Utrecht The Hague Gouda Arnhem Maastricht

o

Amsterdam 55 95 20 30 45

Utrecht 90 50 10 15 20

The Hague 85 45 15 10 30

Gouda 35 25 35 10 15

Arnhem 45 15 20 5 35

Maastricht 60 25 40 10 30

Table 21.2: Traffic requirements between all origin-destination pairs

Capacity dataThe node and arc capacities for the network in this example are provided in

Table 21.3.

Arc capacities Node

Amsterdam Utrecht The Hague Gouda Arnhem Maastricht capacities

Amsterdam 360 300 240 490

Utrecht 360 60 90 120 340

The Hague 90 180 400

Gouda 40 120 220

Arnhem 210 280

Maastricht 340

Table 21.3: Arc and node capacities in the network

Initial pathsThe initial number of shortest paths between all possible (o,d) pairs is 15

(=
(

6
2

)

). These paths were generated by the shortest-path procedure, and are

summarized in Table 21.4. Note that only the arc-path incidences are provided.

An explicit path description in terms of nodes can always be derived from the

arc names.

Chapter 21. A Telecommunication Network Problem 256

Initial paths

Arcs 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

(Amsterdam,Utrecht) × × ×

(Amsterdam,The Hague) × ×

(Amsterdam,Arnhem) × ×

(Utrecht,The Hague) ×

(Utrecht,Gouda) × ×

(Utrecht,Arnhem) ×

(Utrecht,Maastricht) × ×

(The Hague,Gouda) ×

(The Hague,Maastricht) ×

(Gouda,Arnhem) ×

(Gouda,Maastricht) ×

(Arnhem,Maastricht) ×

Table 21.4: Initial paths generated by shortest-path algorithm

Additional

paths

After continuing the path generating procedure, a total of 9 additional paths

were generated. The observed bottleneck fraction was reduced from 1.500

(based on the initial paths only) to a value of 1.143 (based on both the initial

and additional paths). The 9 additional paths are summarized in Table 21.5.

It is of interest to note that the bottleneck identification model was solved

5 times in total to obtain theses results. The number of times the auxiliary

path-finding model was solved, amounted to 90.

Additional paths

Arcs 16 17 18 19 20 21 22 23 24

(Amsterdam,Utrecht) ×

(Amsterdam,The Hague) × × ×

(Amsterdam,Arnhem) × × ×

(Utrecht,The Hague)

(Utrecht,Gouda) ×

(Utrecht,Arnhem) ×

(Utrecht,Maastricht)

(The Hague,Gouda) × ×

(The Hague,Maastricht) × × ×

(Gouda,Arnhem) ×

(Gouda,Maastricht) × × × × ×

(Arnhem,Maastricht) × × × ×

Table 21.5: Additional paths generated by path-finding algorithm

Restricting to

critical paths

When the algorithm was modified and restricted to path generation for criti-

cal (o,d) pairs only, 4 instead of 9 additional new paths were generated. In

this case, the bottleneck identification model was solved 4 instead of 5 times,

and the auxiliary path-finding model was solved 35 instead of 90 times. As

expected, the bottleneck fraction was again reduced to 1.143.

Chapter 21. A Telecommunication Network Problem 257

21.5 Summary

In this chapter you have encountered a bottleneck identification problem in a

telecommunication network, together with two model formulations. The first

formulation assumes that the input to the model is based on all possible paths

between origins and destinations. The second (more practical) formulation

does not explicitly enumerate all possible paths, but generates them only when

they can contribute to the identification of the bottleneck capacity. An auxil-

iary model is used to generate these paths. The overall model can be used to

decide how to modify existing capacity to meet changing traffic requirements,

or how existing traffic is to be routed through the network.

Exercises

21.1 Consider the path generation technique presented in Section 21.3 and

implement the bottleneck identification model of Section 21.2 using

the example data contained in Tables 21.2 and 21.3. Verify whether

the optimal solution found with Aimms coincides with the one pre-

sented in Tables 21.4 and 21.5.

21.2 Investigate whether there is any difference in the optimal solution due

to the choice of the kij coefficient values developed in Section 21.3.

21.3 Adjust your search algorithm to examine only those (o,d) pairs with

paths along critical nodes and/or arcs. Verify for yourself how much

the amount of computational work has been reduced due to this mod-

ification.

Bibliography

[Ch83] V. Chvátal, Linear programming, W.H. Freeman and Company, New

York, 1983.

[Hu69] T.C. Hu, Integer programming and network flows, Addison-Wesley,

Reading, Massachusetts, 1969.

[Me98] E.A. Medova, Chance-constrained stochastic programming for inte-

grated services network management, Annals of Operations Research

81 (1998).

	AIMMS Modeling Guide - Telecommunication Network Problem
	A Telecommunication Network Problem
	Problem description
	Bottleneck identification model
	Path generation technique
	A worked example
	Summary
	Exercises

	Bibliography

