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Chapter 4

Sensitivity Analysis

This chapterThe subject of this chapter is the introduction of marginal values (shadow

prices and reduced costs) and sensitivity ranges which are tools used when

conducting a sensitivity analysis of a linear programming model. A sensitivity

analysis investigates the changes to the optimal solution of a model as the

result of changes in input data.

ReferencesSensitivity analysis is discussed in a variety of text books. A basic treatment

can be found in, for instance, [Ch83], [Ep87] and [Ko87].

4.1 Introduction

TerminologyIn a linear program, slack variables may be introduced to transform an inequal-

ity constraint into an equality constraint. When the simplex method is used to

solve a linear program, it calculates an optimal solution (i.e. optimal values for

the decision and/or slack variables), an optimal objective function value, and

partitions the variables into basic variables and nonbasic variables. Nonbasic

variables are always at one of their bounds (upper or lower), while basic vari-

ables are between their bounds. The set of basic variables is usually referred

to as the optimal basis and the corresponding solution is referred to as the

basic solution. Whenever one or more of the basic variables (decision and/or

slack variables) happen to be at one of their bounds, the corresponding basic

solution is said to be degenerate.

Marginal valuesThe simplex algorithm gives extra information in addition to the optimal so-

lution. The algorithm provides marginal values which give information on the

variability of the optimal solution to changes in the data. The marginal values

are divided into two groups:

� shadow prices which are associated with constraints and their right-hand

side, and

� reduced costs which are associated with the decision variables and their

bounds.

These are discussed in the next two sections.
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Sensitivity

ranges

In addition to marginal values, the simplex algorithm can also provide sen-

sitivity range information. These ranges are defined in terms of two of the

characteristics of the optimal solution, namely the optimal objective value and

the optimal basis. By considering the objective function as fixed at its optimal

value, sensitivity ranges can be calculated for both the decision variables and

the shadow prices. Similarly, it is possible to fix the optimal basis, and to cal-

culate the sensitivity ranges for both the coefficients in the objective function

and the right-hand sides of the constraints. All four types will be illustrated in

this chapter.

Linear

programming

only

Although algorithms for integer programming also provide marginal values,

the applicability of these figures is very limited, and therefore they will not be

used when examining the solution of an integer program.

4.2 Shadow prices

Constant

right-hand side

In this section all constraints are assumed to be in standard form. This means

that all variable terms are on the left-hand side of the (in)equality operator and

the right-hand side consists of a single constant. The following definition then

applies.

DefinitionThe marginal value of a constraint, referred to as its shadow price, is

defined as the rate of change of the objective function from a one unit

increase in its right-hand side. Therefore, a positive shadow price indi-

cates that the objective will increase with a unit increase in the right-

hand side of the constraint while a negative shadow price indicates that

the objective will decrease. For a nonbinding constraint, the shadow

price will be zero since its right-hand side is not constraining the opti-

mal solution.

Constraint

weakening

To improve the objective function (that is, decreases for a minimization prob-

lem and increases for a maximization problem), it is necessary to weaken a

binding constraint. This is intuitive because relaxing is equivalent to enlarging

the feasible region. A “≤” constraint is weakened by increasing the right-hand

side and a “≥” constraint is weakened by decreasing the right-hand side. It

therefore follows that the signs of the shadow prices for binding inequality

constraints of the form “≤” and “≥” are opposite.

Equality

constraints

When your model includes equality constraints, such a constraint could be in-

corporated into the LP by converting it into two separate inequality constraints.

In this case, at most one of these will have a nonzero price. As discussed above,

the nature of the binding constraint can be inferred from the sign of its shadow

price. For example, consider a minimization problem with a negative shadow

price for an equality constraint. This indicates that the objective will decrease
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(i.e. improve) with an increase in the right-hand side of the equality constraint.

Therefore, it is possible to conclude that it is the “≤” constraint (and not the

“≥” constraint) that is binding since it is relaxed by increasing the right-hand

side.

Potato chips

model

Table 4.1 presents the shadow prices associated with the constraints in the

potato chips example from Chapter 2.

process constraint optimal time upper bound shadow price

[min] [min] [$/min]

slicing 2Xp + 4Xm ≤ 345 315 345 0.00

frying 4Xp + 5Xm ≤ 480 480 480 0.17

packing 4Xp + 2Xm ≤ 330 330 330 0.33

Table 4.1: Shadow prices

The objective in the potato chips model is profit maximization with less than

or equal process requirement constraints. The above shadow prices can be

used to estimate the effects of changing the binding constraints. Specifically,

as discussed below, it is possible to deduce from the positive values of the

frying and packing constraints that there will be an increase in the overall

profit if these process times are increased.

Nonbinding

constraint

It is important to note that the slicing inequality constraint is nonbinding at

the optimal solution and hence its associated shadow price is zero. This pre-

dicts that there will be no improvement in the objective function value if the

constraint is relaxed. This is expected because a sufficiently small change in

the right-hand side of such a constraint has no effect on the (optimal) solution.

In contrast, a change in the objective function is expected for each sufficiently

small change in the right-hand side of a binding constraint.

Relaxing

binding

constraints

The benefit of relaxing a binding constraint can be investigated by resolving

the LP with the upper bound on the availability of the packer increased to 331

minutes. Solving gives a new profit of $190.33, which is exactly the amount

predicted by the shadow price ($0.33). Similarly an upper bound of 332 min-

utes gives rise to a profit of $190.67. This shows that the shadow price gives

the revenue of an extra minute of packing time, which can then be compared

with the cost of installing additional packing equipment. The shadow price can

therefore be considered to represent the benefit of relaxing a constraint. From

comparing the shadow prices of frying and packing, it is fair to conclude that

upgrading packing equipment is probably more attractive than frying equip-

ment.
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Tightening

constraint

If a binding constraint is tightened, the value of the objective will deteriorate

by the amount approximated by the shadow price. For the case of lowering the

upper bound on the availability of the packer to 329 minutes, profit decreases

by $0.33 to $189.67. This shows that the shadow price gives the amount of

change in both directions.

Amount of

plain chips

Amount of

Mexican chips

(0,0)

(0,70)

(0,86.25)

(32.5,0) (120,0)(82.5,0)

frying

packing

Figure 4.1: Weakening the constraint on packing

Picturing the

process

In Figure 4.1, there is a graphical illustration of what happens when the pack-

ing constraint is weakened. The corresponding line shifts to the right, thus

enlarging the feasible region. Consequently, the dashed line segment repre-

senting the linear objective function can also shift to the right, yielding a more

profitable optimal solution. Notice that if the constraint is weakened much

further, it will no longer be binding. The optimal solution will be on the corner

where the frying line and the plain chips axis intersect (120,0). This demon-

strates that the predictive power of shadow prices in some instances only ap-

plies to limited changes in the data.

Shadow price

limitations

In general, the conclusions drawn by analyzing shadow prices are only true for

small changes in data. In addition, they are only valid if one change is made at

a time. The effects of changing more data at once cannot be predicted.

DegeneracyIn the two decision variable example to date, there have only been two bind-

ing constraints. However, if there were three or more constraints binding at

the optimal solution, weakening one requirement may not have the effect sug-

gested by the shadow prices. Figure 4.2 depicts this situation, where the bold

lines can be interpreted as three constraints that intersect at the optimal so-

lution. This condition is referred to as degeneracy and can be detected when

one or more of the variables (decision and/or slack variables) in the basis are

at one of their bounds. In this example, one of the three slack variables will

be in the basis at their bound of zero. In the presence of degeneracy, shadow
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prices are no longer unique, and their interpretation is therefore ambiguous.

Under these conditions, it is useful to analyse sensitivity ranges as discussed

in Section 4.4.

Amount of

plain chips

Amount of

Mexican chips

(0,0)

31 2

Figure 4.2: Non-unique solutions illustrated

ConclusionIn general, the information provided by shadow prices should only be used as

an indication of the potential for improvement to the optimal objective func-

tion value. However, there are some circumstances where a slightly stronger

conclusion can be drawn. Specifically, if there are shadow prices that are large

relative to others, then it is possible that the optimal solution is overly sen-

sitive to changes in the corresponding data. Particular care should be taken

when this data is not known exactly. Under these conditions, it might be wise

to use methods specifically designed for handling uncertainty in data, or to

run a set of experiments investigating the exact effect on the (optimal) solu-

tion with particular data modifications.

4.3 Reduced costs

DefinitionA decision variable has a marginal value, referred to as its reduced cost,

which is defined as the rate of change of the objective function for a one

unit increase in the bound of this variable. If a nonbasic variable has

a positive reduced cost, the objective function will increase with a one

unit increase in the binding bound. The objective function will decrease

if a nonbasic variable has a negative reduced cost. The reduced cost of

a basic variable is zero since its bounds are nonbinding and therefore

do not constrain the optimal solution.
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Improving the

objective

By definition, a nonbasic variable is at one of its bounds. Moving it off the

bound when the solution is optimal, is detrimental to the objective function

value. A nonbasic variable will improve the objective function value when its

binding bound is relaxed. Alternatively, the incentive to include it in the basis

can be increased by adjusting its cost coefficient. The next two paragraphs

explain how reduced cost information can be used to modify the problem to

change the basis.

Bound

relaxation

A nonbasic variable is at either its upper or lower bound. The reduced cost

gives the possible improvement in the objective function if its bound is re-

laxed. Relax means decreasing the bound of a variable at its lower bound or

increasing the bound of a variable at its upper bound. In both cases the size

of the feasible region is increased.

Objective

coefficient

The objective function value is the summation of the product of each variable

by its objective cost coefficient. Therefore, by adjusting the objective cost

coefficient of a nonbasic variable it is possible to make it active in the optimal

solution. The reduced cost represents the amount by which the cost coefficient

of the variable must be lowered. A variable with a positive reduced cost will

become active if its cost coefficient is lowered, while the cost coefficient of a

variable with a negative reduced cost must be increased.

Potato chips

model

Table 4.2 gives the reduced costs associated with the optimal solution of the

potato chips model. In this problem the decision variables are the quantity of

both types of chips to be included in the optimal production plan. The reduced

costs of both chip types are zero. This is expected since neither chip type is

at a bound (upper or lower) in the optimal solution. It is possible to make one

variable nonbasic (at a bound) by modifying the data.

chip type optimal value reduced costs

[kg] [$/kg]

plain 57.5 0.0

Mexican 50.0 0.0

Table 4.2: Reduced costs in the potato chips model

The modified

potato chips

model

A modification to the potato chips model which results in a nonzero reduced

cost, is to lower the net profit contribution of Mexican chips from 1.50 to 0.50

$/kg. Solving the model gives the optimal production plan in Table 4.3, where

Mexican chips production is now nonbasic and at its lower bound of zero. As a

result, there is a reduced cost associated with the production of Mexican chips.

The profit has dropped from $190 to $165, which is the best achievable with

these profit contributions.
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chip type optimal value reduced costs

[kg] [$/kg]

plain 82.5 0.0

Mexican 0.0 −0.5

Table 4.3: Reduced costs in the modified potato chips model

InterpretationIn Table 4.3, the zero reduced cost of plain chips production reflects that it

is basic. The nonzero reduced cost for Mexican chips indicates that it is at a

bound (lower). Its negative reduced cost indicates that the objective function

value will decrease should the quantity of Mexican chips be increased by one

unit. Given that it is a maximization problem, this is unattractive and hence is

consistent with the decision to place the variable at its lower bound.

Adjusting

objective

coefficient

The optimal Mexican chips production is at its lower bound because it is more

attractive to produce plain chips. However, by adjusting its objective cost

coefficient it is possible for Mexican chips to become active in the optimal

solution. From Table 4.3, and using the fact that the potato chips model is a

maximization model, it can be concluded that if the profit contribution from

Mexican chips is increased by at least 0.5 $/kg, then Mexican chips will become

basic.

Picturing the

process

Changing coefficients in the objective can be regarded as changing the slope

of the objective function. In Figure 4.3, profit lines corresponding to different

profit contributions from Mexican chips are given. It can easily be seen that the

slope of the objective determines which corner solution is optimal. Reduced

costs give the minimal change in a coefficient of the objective such that the

optimal solution shifts from a corner on one of the axes to another corner

of the feasible region (possibly on one or more of the other axes). Note that

the slope of line (2) is parallel to the slope of the constraint on packing, thus

yielding multiple optimal solutions.

ConclusionOne might conclude that a model never needs to be solved on the computer

more than once since all variations can be derived from the reduced costs and

shadow prices. However, often it is useful to conduct some further sensitivity

analysis. In general, shadow prices and reduced costs are only valid in a limited

sense, but that they are useful when their values are large relative to others.

Their exact range of validity is not known a priori and their values need not

be unique. It is a result of this limitation that the study of sensitivity ranges

becomes useful.
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Amount of

plain chips

Amount of

Mexican chips

(0,0)

2 13

2Xp + 0.5Xm (optimal value is 165) (1)

2Xp + 1.0Xm (optimal value is 165) (2)

2Xp + 2.0Xm (optimal value is 215) (3)

Figure 4.3: Varying the slope of the objective function

4.4 Sensitivity ranges with constant objective function value

This sectionOptimal decision variables and shadow prices are not always unique. In this

section the range of values of optimal decision variables and optimal shadow

prices for the potato chips model is examined. In Aimms there are in-built

facilities to request such range information.

Amount of

plain chips

Amount of

Mexican chips

(0,0)

31 2

[50.0,70.0]

[32.5,57.5]

Figure 4.4: Decision variable ranges illustrated
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Decision

variable ranges

Figure 4.4 illustrates the sensitivity ranges for decision variables if the three

bold lines are interpreted as different objective contours. It is clear that for

contour (1) there is a range of values for the amount of plain chips ([32.5,57.5]

kg) and, a corresponding range for the amount of Mexican chips ([50.0,70.0]

kg) that can yield the same objective value. Contour (3) also exhibits this be-

havior but the ranges are different. For objective contour (2), there is a unique

optimal decision.

Shadow price

ranges

The bold lines in Figure 4.4 were initially interpreted as constraints that inter-

sect at the optimal solution. In this case, the shadow prices are not unique

and the situation is referred to as a case of degeneracy. The potato chip prob-

lem to date does not have a constraint corresponding to line (2) but a new

constraint can easily be added for illustrative purposes only. This constraint

limits the objective value to be less than its optimal value. Thus, the contours

in Figure 4.4 can also be interpreted as follows:

1. frying constraint,

2. new constraint limiting the optimal value, and

3. packing constraint.

Examining their

values

Examine the shadow prices for values of the bounds in a very small neigh-

borhood about their nominal values. This helps to see that there are multiple

solutions for the shadow prices. If constraint (2) in Figure 4.4 is binding with

shadow price equal to 1.0 $/min, then the shadow prices on constraints (1)

and (3) will necessarily be zero. By relaxing constraint (2) a very small amount,

it becomes non-binding. Its shadow price will go to zero, and as this happens,

constraints (1) and (3) become binding with positive prices equal to the opti-

mal values from Table 4.1. This means that in this special case there is a range

of shadow prices for all three constraints where the optimal objective value

remains constant.

1. frying constraint has shadow price range [0.0,0.17]

2. new constraint has shadow price range [0.0,1.0], and

3. packing constraint has shadow price range [0.0,0.33].

4.5 Sensitivity ranges with constant basis

This sectionThe optimal basis does not always remain constant with changes in input data.

In this section the ranges of values of objective function coefficients and right-

hand sides of the original potato chips model are examined with the require-

ment that the optimal basis does not change. In Aimms there are in-built facil-

ities to request such range information.
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Ranges of

objective

coefficients

Changing one or more coefficients in the objective has the effect of changing

the slope of the objective contours. This can be illustrated by interpreting the

bold lines in Figure 4.4 as the result of

1. decreased plain chip profits (1.2 $/kg)

2. nominal plain chip profits (2.0 $/kg), and

3. increased plain chip profits (3.0 $/kg),

Note that the optimal basis for the nominal profits is still optimal for the other

two objectives. Therefore, the range of objective coefficient values defined by

contours (1) and (3) represent the amount of plain chips for which the optimal

basis remains constant. Outside this range, there would be a change in the

optimal basis (movement to a different extreme point).

Amount of

plain chips

Amount of

Mexican chips

(0,0)

packing

4Xp + 2Xm ≤ 4804Xp + 2Xm ≤ 270

Figure 4.5: Right-hand side ranges illustrated

Ranges of

right-hand sides

The potato chip model uses less than or equal constraints, but the following

analysis also holds for greater than or equal constraints. The nominal solution

of the potato chip problem has the packing and frying constraints binding.

These binding constraints represent a basis for the shadow prices. By changing

the right-hand side on the packing constraint, it will shift as can be seen in

Figure 4.5.

Examining their

values

The right-hand side can shift up to 480.0 minutes, where it would become

redundant with the lower bound of zero on the amount of Mexican chips. The

solution is then degenerate, and there are multiple shadow price solutions.

This can also be interpreted as a change in the basis for the shadow prices. The

right-hand side can shift down to 270.0 minutes, where it becomes redundant

with the slicing constraint, and another change in the shadow price basis can

occur. Through this exercise, it has been shown that the right-hand side on
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the packing constraint has a range of [270.0,480.0] minutes over which the

shadow price basis does not change. Any extension of this range will force a

change in the binding constraints at the optimal solution. Changing the right-

hand side of non-binding constraints can make them become binding. The

non-binding constraints in the potato chip problem are the slicing constraint

and the two non-negativity constraints on the decision variables.

4.6 Summary

In this chapter, the concepts of marginal values and ranges have been ex-

plained using the optimal solution of the potato chips model. The use of

both shadow prices and reduced costs in sensitivity analysis has been demon-

strated. Sensitivity ranges have been introduced to provide validity ranges for

the optimal objective function value and optimal basis. Although there is some

benefit in predicting the effect of changes in data, it has been shown that these

indicators do have their limits. Repeated solving of the model provides the

best method of sensitivity analysis, and the Aimms modeling system has some

powerful facilities to support this type of sensitivity analysis.
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