
AIMMS Modeling Guide - Pooling Problem

This file contains only one chapter of the book. For a free download of the

complete book in pdf format, please visit www.aimms.com.

Aimms 4

http://www.aimms.com


Copyright c© 1993–2018 by AIMMS B.V. All rights reserved.

AIMMS B.V.

Diakenhuisweg 29-35

2033 AP Haarlem

The Netherlands

Tel.: +31 23 5511512

AIMMS Inc.

11711 SE 8th Street

Suite 303

Bellevue, WA 98005

USA

Tel.: +1 425 458 4024

AIMMS Pte. Ltd.

55 Market Street #10-00

Singapore 048941

Tel.: +65 6521 2827

AIMMS

SOHO Fuxing Plaza No.388

Building D-71, Level 3

Madang Road, Huangpu District

Shanghai 200025

China

Tel.: ++86 21 5309 8733

Email: info@aimms.com

WWW: www.aimms.com

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

http://www.aimms.com


Chapter 12

A Pooling Problem

This chapterIn this chapter you will encounter a simplified example of a refinery pool-

ing problem. Intermediate product streams, each with their own particular

properties, are fed into a limited number of available tanks. These tanks are

referred to as pool tanks. Through pooling, the input products no longer ex-

ist in their original form, but are mixed to form new pooled products with

new property values. These new products are subsequently used to blend final

products. These final blends must satisfy specific quality requirements, which

means that their property values must be between a priori specified ranges.

The pooling problem can be translated into a nonlinear programming model.

This model has the nasty property that there are likely to exist multiple lo-

cally optimal solutions. Good starting values are then required to steer the

algorithm away from poor local optima. An instance of the pooling problem is

provided for illustrative purposes.

ReferencesPooling problems have received some attention in the informal literature of the

sixties and seventies. A typical reference is [Ha78] which describes a heuristic

approach based on recursive programming techniques. In later years, global

optimization techniques have been proposed by [Fl89], but these have found

limited application in large-scale practical applications.

KeywordsNonlinear Program, Multiple Optima, Worked Example.

12.1 Problem description

This sectionIn this section a simplified version of the pooling problem is discussed and

illustrated. The paragraphs aim to give you a basic feel for the problem at

hand. Despite its simplifications, the problem is still of interest, because it

captures the difficulties associated with pooling problems in general.

Refinery

operations

summarized

In a refinery, crude oils of different types are first distilled in one or more

crude distillers. This process results in the production of several intermediate

product streams that are immediately pooled in dedicated pool tanks. Any

further processing consists of blending pooled products into final products.

This three-step process is illustrated in Figure 12.1. In this chapter the time-



Chapter 12. A Pooling Problem 124

phasing of product flows is completely ignored in order to prevent the problem

and the resulting model from becoming too complicated.

LS2

LS1

HS2

HS1

Crudes

Distiller

Distiller

LS2-VGO

LS2-HGO

LS1-CR

LS1-SR

HS2-VGO

HS2-HGO

HS1-CR

HS1-SR

Intermediates

Tank 2

Tank 1

LSFO

HSFO

Final products

}

Distillation

}

Pooling

}

Blending

Figure 12.1: A simplified refinery

Product

properties . . .

Crude oils are by no means identical. Their composition strongly depends on

their location of origin. In Figure 12.1 there are four crudes: two of them

are high-sulphur (HS) crudes and two of them low-sulphur (LS) crudes. Their

sulphur content is referred to as a product property. Product properties are

to a certain extent retained during the distillation phase. That is why the

labels HS and LS are also attached to the intermediate product streams for

each originating crude 1 and 2.

. . . and their

measurement

Product properties cannot be measured in a uniform manner. There are prop-

erties, such as sulphur content, that are naturally expressed as a percentage

of total volume or total mass. Other properties, such as viscosity and pour

point, are not naturally measured in these terms. For instance, pour point is

the lowest temperature, expressed as a multiple of 3 degrees Celsius, at which

oil is observed to flow when cooled and examined under prescribed condi-

tions. Special care is then required to compute such a property for a mixture

of products.



Chapter 12. A Pooling Problem 125

Mixing

properties

causes dilution

When two or more intermediate products are pooled in a single tank, a new

product will result. The properties of this new product will be related to the

properties of the originating products, but there will always be some form of

dilution of each property. When there are multiple pool tanks, it is desirable

to minimize the dilution effect across pool tanks. The resulting variability in

pool properties is needed to meet the property requirements of the final prod-

ucts. For instance, in Figure 12.1 all high-sulphur intermediates are not pooled

with any low-sulphur intermediates in order to maintain sufficient variability

in sulphur property values across the two pool tanks.

Intermediate

and final

products

In Figure 12.1, each of the two crude distillers produces four intermediate

products, namely, a short residue (SR), a cracked residue (CR), a heavy gas oil

(HGO) and a visbroken gas oil (VGO). In order to track the properties of the

originating four crude oils, the name of each intermediate is prefixed with the

name of the crude. In this case, such a naming convention results in sixteen

different product names. Only one final product, namely fuel oil (FO), is pro-

duced in two qualities, resulting in two final product names. You can imagine

how the number of possible product names can explode in large real-world

applications where there are more products and several additional properties.

The number of product names becomes even larger when the entire refinery

process is considered over several discrete time periods, and properties are

tracked over time.

Pooled productsTheoretically, it is attractive to store all intermediate products in their own

intermediate product tanks. This delays any dilution of product properties

until final products have to be blended to specification. In practice, however,

the unique intermediate product streams outnumber the available tanks, and

product pooling is required. For the sake of keeping the problem fairly simple,

it is assumed that the flow of intermediate products into the pool tanks equals

the flow required to blend the final products, and that each pool tank has

limited capacity.

Limitation on

intermediates

In the example of this chapter it is assumed that the volume of each intermedi-

ate product to be used must stay within specified bounds. This is a slight sim-

plification, because in actuality, intermediate products are produced in fixed

relative proportions, and their absolute volume is related to the volume of the

emanating crude. However, the distillation phase is not part of the problem in

this chapter, which justifies the assumption of fixed bounds on inputs.

Maximizing

sales value

The price of a final product is not entirely constant, but is assumed to be

dependent on its associated property values. This implies that price becomes

an unknown in the pooling model to be build. The objective function is to

maximize the total sales value of final products to be made.



Chapter 12. A Pooling Problem 126

Pooling problem

summarized

The pooling problem considered in this chapter is to maximize the sales value

of end products by deciding how much of each intermediate stream, within

limits, is to be placed in each of the pool tanks. The extra restrictions are that

the new pool mixtures are sufficient to produce the required amount of final

products, and that the properties of the new mixtures are sufficient to satisfy

final product requirements.

12.2 Model description

This sectionIn this section the basic rules for blending on volume and blending on weight

are developed before stating the mathematical formulation of the underlying

pooling problem.

Proportional

blending . . .

For the sake of simplicity, consider two intermediate products (1 and 2) to be

mixed into a new pooled product (3). Let the symbol x denote the amount of

product, and let the symbol p denote a particular property. The following two

equalities express proportional blending.

x3 = x1 + x2

p3x3 = p1x1 + p2x2

The first identity is the product balance equation, which is linear. The second

identity is the property determination equation, and is nonlinear when both

x3 and p3 are considered to be unknown.

. . . requires

consistent

measurements

Proportional blending is properly defined when the units of measurement are

consistent. Consistency is obtained, for instance, when product amounts are

measured in terms of mass, and the product property is measured as a per-

centage of mass. Similarly, consistency is also obtained when product amounts

are measured in terms of volume, and the product property is measured as a

percentage of volume. If required, it is always possible to transform volume

into mass or vice versa using product densities.

If this is not the

case . . .

As has been mentioned in the previous section, there are several product prop-

erties, such as viscosity and pour point, that are not measured as a percent-

age of mass or volume. These properties play a vital role in determining the

quality of a blend. In practice, a nonlinear function of such properties is con-

structed such that the resulting transformed property values can be viewed

as a percentage of either volume or mass. The determination of such special-

ized nonlinear functions is based on laboratory experiments and curve fitting

techniques.



Chapter 12. A Pooling Problem 127

. . . then use

transformed

measurements

Let f(p) denote a nonlinear function of one of the properties discussed in

the previous paragraph. Assume that x is expressed in terms of mass, and

that f(p) is measured as a percentage of mass. Then the following identities

express proportional blending.

x3 = x1 + x2

f(p3)x3 = f(p1)x1 + f(p2)x2

You could of course use a variable for f(p) and apply the inverse of f to

obtain p after you have found the solution of the underlying model. This is

what is typically done in practice.

Verbal model

statement

By considering the basic pooling problem described in this chapter, it is fairly

straightforward to describe the objective and constraints in a compact verbal

manner.

Maximize: total sales value of final products

Subject to:

� for all pool tanks: the bounded flow entering a pool tank must be

equal to the flow leaving a pool tank,

� for all properties and pool tanks: the property values of pooled

product are determined by the property values of the products

entering the pool tank,

� for all properties and final products: the property values of final

product are determined by the property values of the products

coming from the pool tanks,

� for all final products: the quantities of final product must be

between specified bounds,

� for all properties and final products: the property values of final

product must be between specified bounds,

NotationThe following notation is based as much as possible on the use of a single

letter for each identifier for reasons of compactness. Such compact notation

is not recommended for practical models built with a system such as Aimms,

because short names do not contribute to the readability and maintainability

of computerized models.

Indices:

p properties

i intermediates

t pool tanks

f final products

Parameters:

vpi value of property p in intermediate i

r i minimal amount of intermediate i to be used

r i maximal amount of intermediate i to be used



Chapter 12. A Pooling Problem 128

r f minimal required amount of final product f

r f maximal required amount of final product f

wpf minimal value of property p in final product f

wpf maximal value of property p in final product f

ct capacity of pool tank t

Variables:

vpt value of property p in pool tank t

vpf value of property p in final product f

xit flow of intermediate i to pool tank t

xtf flow of pool tank t to final product f

st total stock of pooled product in pool tank t

πf sales price of final product f

Flow constraintsAs discussed in the previous section, the amount of each intermediate prod-

uct to be pooled is restricted from above and below. Instead of writing a single

flow balance constraint for each pool tank, there are separate equations for

both inflow and outflow using the same stock variable. It is then straight-

forward to specify a simple bound on the stock level in each pool tank. The

following five constraints capture these limitations on flow from and to the

pool tanks.

∑

t

xit ≥ r i ∀i

∑

t

xit ≤ r i ∀i

st =
∑

i

xit ∀t

st =
∑

f

xtf ∀t

st ≤ ct ∀t

Property value

determination

constraints

The property value determination constraints are essentially the proportional

blending equalities explained at the beginning of this section. These con-

straints are only specified for pooled and final products, because the property

values of all intermediate products are assumed to be known.

vpt
∑

i

xit =
∑

i

vpixit ∀(p, t)

vpf
∑

t

xtf =
∑

t

vptxtf ∀(p, f )



Chapter 12. A Pooling Problem 129

Final product

requirement

constraints

Due to market requirements with respect to quantity and quality, both the

amount of final product and the associated property values must be between

a priori specified bounds.

∑

t

xtf ≥ r f ∀f

∑

t

xtf ≤ r f ∀f

vpf ≥ wpf ∀(p, f )

vpf ≤ wpf ∀(p, f )

Objective

function

As has been indicated in the previous section, the price of a final product is not

entirely constant, but is assumed to be dependent on its associated property

values. In the specification below, only an abstract functional reference F to

property dependence is indicated. In the worked example of the next section a

particular function is used for numerical computations. The objective function

to be maximized can then be written as follows.

∑

f

πf
∑

t

xtf

πf = F(vpf )

12.3 A worked example

This sectionIn this section you will find a description of model input data that is consistent

with the entities in Figure 12.1. In addition, you will find some comments

based on running a few computational experiments with Aimms.

Domain

restrictions on x

The variable xit denotes the flow of intermediate i to pool tank t. In Fig-

ure 12.1, these intermediate flows are restricted such that all high and low sul-

phur products are pooled into separate pool tanks. In Aimms, you can model

this by simply specifying an index domain as part of the declaration of the

variable x. Such a domain is then a parameter with nonzero entries for the

allowed combinations of i and t.

Variable status

of v

The symbol v is used both as a parameter and a variable depending on the

index references. In Aimms, you can implement this dual status by declaring

the symbol to be a variable, and then changing its status to non-variable for

selected index combinations. You can accomplish this change by writing an

assignment statement inside a procedure using the NonVar suffix. A typical

assignment is

v(p,i).NonVar := 1;



Chapter 12. A Pooling Problem 130

Intermediate

product data

Both the lower and upper bound on the amount in [kton] of each intermedi-

ate product to be pooled are displayed in Table 12.1. In this table you also

find the property values associated with the properties sulphur and V50, both

measured as a percentage of mass. The property V50 is a derived measure of

viscosity for which the proportional blending rule is appropriate.

r i r i vpi
Sulphur V50

[kton] [kton] [%] [%]

HS1-SR 1 3 5.84 43.7

HS1-CR 3 5.40 36.8

HS1-HGO 3 0.24 12.8

HS1-VGO 3 2.01 15.4

HS2-SR 1 3 5.85 47.3

HS2-CR 3 5.38 39.2

HS2-HGO 3 0.26 13.1

HS2-VGO 3 2.04 15.9

LS1-SR 1 3 0.64 39.9

LS1-CR 3 0.57 38.2

LS1-HGO 3 0.02 13.5

LS1-VGO 3 0.14 16.3

LS2-SR 1 3 0.93 38.1

LS2-CR 3 0.85 34.1

LS2-HGO 3 0.03 13.2

LS2-VGO 3 0.26 15.5

Table 12.1: Intermediate product data

Pool tank dataThe only data solely linked to pool tanks is their capacity. In this simplified

example it is assumed that the capacity of each pool tank is 15 [kton].

Final product

requirements

In Table 12.1 you will find the upper and lower bounds on both the quantities

and property values of the final products to be blended.

r f r f wpf wpf wpf wpf

Sulphur V50

Min Max Min Max Min Max

[kton] [kton] [%] [%] [%] [%]

LSFO 10 11 1.5 30.0 34.0

HSFO 11 17 3.5 32.0 40.0

Table 12.2: Final product requirements



Chapter 12. A Pooling Problem 131

Price of final

product

In this particular example, the unit sales price of each final product is made

dependent on its sulphur content, with low sulphur levels worth more than

high sulphur levels. The base price of one [ton] of low sulphur fuel oil with the

highest level of permitted sulphur is equal to 150 dollars. Similarly, the base

price of one [ton] of high sulphur fuel oil with the highest level of permitted

sulphur is equal to 100 dollars. These base prices can only increase as the

relative level of sulphur decreases. The following formula for πf in terms of

the base price π If is used.

πf = π
I
f (2−

vSulphur,f

wSulphur,f
)

Initial model

run

Once you have implemented the model of the previous section in Aimms, you

are likely to obtain an error indicating that ”all Jacobian elements in the row

are very small”. This message comes directly from the solver, and is most

likely a reflection of some initial variable values at their default value of zero.

The algorithm uses a matrix with derivative values for all constraints in terms

of all variables. Several of these derivative values correspond with the product

of two variables. From basic calculus you know that the term xy has zero

partial derivatives with respect to both x and y when these are at their default

value of zero.

Initialize flow

values

The remedy to fix the problem mentioned in the previous paragraph is straight-

forward. By initializing the flow variables x away from their lower bound of

zero, the error message will disappear. In this example you could consider

random flow values for the intermediate products between their bounds, and

distribute the corresponding content of the pool tanks equally over the final

products. As a result, the flow balance constraint are already satisfied. As

it turns out, specifying initial values for variables in nonlinear mathematical

programs is just one of the ways to make the solution process more robust.

Setting bounds on variables, and scaling your data such that solution values

become of similar magnitude, are all useful ways to improve the likelihood

that a solver will find a correct solution.

Derive initial

property values

As you start to experiment with initial values for the x variables, you might

find that the solver still has difficulties finding a feasible solution in some of

the cases that you try. As it turns out, you can reduce the number of times

the solver is unable to find a feasible solution by also computing the initial

values of the v variables using both the values of x and the property value

determination equalities.



Chapter 12. A Pooling Problem 132

Multiple

solutions exist

If you have not found different optimal solution values after experimenting

with various initial values for x and v , you may want to write an experiment in

which you let the system generate random initial values for the x variables and

compute the corresponding values of v . It is easy to write such a procedure

in Aimms, and make a page to display the various objective function values in

a table. In this example, two distinct local optimal objective function values

were found. They are 3624.0 and 4714.4.

12.4 Summary

In this chapter a simplified pooling problem was introduced together with a

small data set for computational experiments. The problem was transformed

into a nonlinear programming model with proportional blending constraints

to determine new product property values. Initial values of the solution vari-

ables were needed not only to support the solution finding process, but also

to determine different locally optimal solutions.

Exercises

12.1 Implement the mathematical program described in Section 12.2 using

the example data provided in Section 12.3.

12.2 Experiment with several initial values by writing a procedure in Aimms

as described in Section 12.3. Try to find at least two different local

optima.

12.3 Investigate the effect of removing all pool tanks on the objective func-

tion value. Without pool tanks, final products are blended on the basis

of intermediate product streams only.



Bibliography

[Fl89] C.A. Floudas, A. Aggarwal, and A.R. Ciric, Global optimum search for

nonconvex NLP and MINLP problems, Computers & Chemical Engineer-

ing 13 (1989).

[Ha78] C.A. Haverly, Studies of the behaviour of recursion for the pooling prob-

lem, ACM SIGMAP Bulletin 26 (1978).


	AIMMS Modeling Guide - Pooling Problem
	A Pooling Problem
	Problem description
	Model description
	A worked example
	Summary
	Exercises

	Bibliography

