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Chapter 17

An Inventory Control Problem

This chapterIn this chapter you will encounter a multi-period inventory control problem

with uncertain demand. At the beginning of each period the volume of pro-

duction is decided prior to knowing the exact level of demand. During each

period the demand becomes known, and as a result, the actual inventory can

be determined. The objective in this problem is to minimize overall expected

cost. The problem can be translated into a stochastic multi-stage optimization

model. Such a model is a nontrivial extension of the two-stage model discussed

in Chapter 16, and will be examined in detail. An alternative statement of the

objective function is developed, and an instance of the stochastic inventory

model is provided for illustrative purposes.

ReferencesAs already stated in Chapter 16, there is a vast literature on stochastic pro-

gramming, but most of it is only accessible to mathematically skilled read-

ers. Two selected book references on stochastic programming are [In94] and

[Ka94].

KeywordsLinear Program, Stochastic Program, Multi-Stage, Control-State Variables,

Mathematical Derivation, Worked Example.

17.1 Introduction to multi-stage concepts

This sectionIn this section the extension of two-stage stochastic programming to multi-

stage programming is discussed. Tree-based terminology is used to character-

ize the underlying model structure.

Event

parameters

Stochastic models contain so-called event parameters that do not have a priori

fixed values. An event is an act of nature that falls outside the control of a

decision maker. A typical example of an event parameter is product demand

inside a decision model that determines production levels. The exact demand

values are not known when the production decision has to be made, but they

become known afterwards. Prior to the production decision, it only makes

sense to consider various data realizations of the event parameter demand,

and somehow take these into account when making the production decision.
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Control and

state variables

A stochastic model contains two types of variables, namely control and state

variables. Control variables refer to all those decision variables that must be

decided at the beginning of a period prior to the outcome of the uncertain

event parameters. State variables, on the other hand, refer to all those decision

variables that are to be determined at the end of a period after the outcome of

the uncertain event parameters are known.

Two-stage

versus

multi-stage

The term two-stage decision making is reserved for the sequence of control de-

cisions (first stage), event realizations, and state determination (second stage)

for a single time period. The term multi-stage decision making refers to se-

quential two-stage decision making, and is illustrated in Figure 17.1.

C1 E1 S1

period 1

C2 E2 S2

period 2

Cn En Sn

period n

Figure 17.1: Multi-stage decision making

Assume few

realizations

The number of possible data realizations of event parameters is usually very

large. In theory, it is customary to relate the event parameters to continuous

random variables with infinitely many outcomes. However, in practical appli-

cations it turns out better from a computational point of view to assume not

only a finite number of data realizations, but also relatively few of them. This

requires careful data modeling, so that the approximation with relatively few

data realizations is still useful for decision making.

Tree with event

probabilities

Whenever the underlying model is a multi-period model, the data realizations

of event parameters can be expressed most conveniently in the form of a tree.

An example is provided in Figure 17.2. Each level in the tree corresponds

to a time slice, and each arc represents a particular realization of the event

parameters. A node in the tree refers to a state of the system. The label

associated with each arc is the event description. The fraction associated with

each arc is the corresponding event probability. Note that the sum over all

probabilities emanating from a single state equals one, reflecting the fact that

all event parameter realizations are incorporated in the tree.

Conditional

probabilities . . .

The event probabilities mentioned in the previous paragraph can be viewed as

conditional probabilities. They describe the probability that a particular event

realization will take place given the state from which this event emanates. In

practical applications, these conditional probabilities form the most natural

input to describe the occurrence of events.
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Figure 17.2: Tree with event labels and conditional event probabilities

. . . versus

unconditional

probabilities

By multiplying the event probabilities along the path from the root (the ini-

tial state) until a particular state, the unconditional probability to reach that

particular state is computed. The tree with unconditional state probabilities is

illustrated in Figure 17.3. Note that for all events in a single period, the sum

over all unconditional probabilities add up to one. These probabilities will be

used in the sequel to weight the outcome at each state to compute the overall

expected outcome.

ScenariosA scenario in the multi-stage programming framework is the collection of all

event data instances along a path from the root to a particular leaf node in

the event tree. Thus, the number of leaf nodes determines the number of

scenarios. Note that the concepts of scenario and event coincide when there is

only a single period. By definition, the probabilities associated with scenarios

are the same as the unconditional probabilities associated with the leaf nodes

(i.e. terminal states).

Two related

terminologies

You may have noticed that there are two related terminologies that mingle

naturally in the description of multi-stage stochastic programming models.

One characterizes the concepts typically used in the stochastic programming

literature, while the other one characterizes these same concepts in terms of

tree structures. The tree terminology enables you to visualize concepts from

stochastic programming in a convenient manner, and will be used throughout
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period 1 period 2 period 3 period 4

1.0000

0.7000

O

0.3000

P

0.4200

O

0.2800

P

0.2100

O

0.0900

P

0.2100

O

0.2100

P

0.1680

O

0.1120

P

0.1470

O

0.0630

P

0.0540

O

0.0360

P

0.0840O

0.1260P

0.1050O

0.1050P

0.0336O

0.1344P

0.0560O

0.0560P

0.0882O
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0.0324O

0.0216P

0.0252O

0.0108P

Figure 17.3: Tree with unconditional state probabilities

the chapter. The two related terminologies are summarized in Table 17.1.

stochastic tree-based

terminology terminology

event arc

state node

initial state root node

final state leaf node

scenario path (root-to-leaf)

Table 17.1: Two related terminologies

17.2 An inventory control problem

This sectionIn this section you will encounter a simplified example in which the volume of

beer to be bottled is decided while minimizing bottling, inventory and external

supply costs. This example is used to illustrate the multi-stage approach to

stochastic modeling discussed in the previous section.
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Bottling of beerConsider the decision of how much beer to bottle during a particular week.

There are different beer types, and the available bottling machines can be used

for all types. There is an overall bottling capacity limitation. Beer bottled in a

particular week is available to satisfy demand of subsequent weeks. Bottling

cost and storage cost are proportional to the amount of beer that is either

bottled or stored. There is a minimum amount of storage required at the end

of the last period.

Decide now and

learn later

Demand is assumed to be uncertain due to major fluctuations in the weather.

The decision variable of how much beer to bottle in a particular week is taken

prior to knowing the demand to be satisfied. Therefore, the decision variable is

a control variable, and demand is the event parameter. Once weekly demand

becomes known, the inventory can be determined. Therefore, the inventory

variable is a state variable. The term ‘decide now and learn later’ is frequently

used in the literature, and reflects the role of the control variables with respect

to the event parameters.

Demand

scenarios

The uncertain demand over time can be characterized in terms of scenarios.

For the sake of simplicity, assume that there are only a few of them. There will

be pessimistic and optimistic events emanating from each state, and their con-

ditional probabilities are known. All input data and model results are provided

in Section 17.5.

17.3 A multi-stage programming model

This sectionIn this section a multi-stage programming model formulation of the inventory

control problem of the previous section is developed in a step-by-step fashion,

and the entire model summary is presented at the end.

Notation based

on states

The model identifiers need to be linked to the scenario tree in some uniform

fashion. By definition, all variables are linked to nodes: state variables are de-

fined for every node, while control variables are defined for emanating nodes.

It is therefore natural to index variables with a state index. Event parameters,

however, are linked to arcs and not to nodes. In order to obtain a uniform

notation for all identifiers, event parameters will also be indexed with a state

index in exactly the same way as state variables. This is a natural choice, as all

arcs correspond to a reachable state.

Bottling

capacity

constraint

The decision to bottle beer of various types during a particular time period

is restricted by the overall available bottling capacity c during that period ex-

pressed in [hl]. Let b denote beer types to be bottled, and s the states to be

considered. In addition, let xbs denote the amount of beer of type b to be

bottled at emanating state s in [hl]. Note that this decision is only defined

for emanating states and thus not for terminating states. To enforce this re-
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striction, consider the element parameter αs , which refers to the previous (or

emanating) state of state s. When s refers to the initial state, the value of αs

is empty. For nonempty elements αs the bottling capacity constraint can then

be written as follows. ∑

b

xbαs ≤ c ∀αs

It is straightforward to implement element parameters, such as αs , in the

Aimms language.

Inventory

determination

constraint

The inventory of each beer type at a particular reachable state, with the excep-

tion of the already known inventory at the initial state, is equal to the inventory

at the emanating state plus the amount to be bottled decided at the emanat-

ing state plus externally supplied beer pertaining to the reachable state minus

the demand pertaining to that reachable state. Note that externally supplied

beer is used immediately to satisfy current demand, and will not exceed the

demand due to cost minimization. Let ybs denote the amount of beer of type

b that is stored at state s in [hl], and let zbs denote the external supply of beer

of type b at state s in [hl]. Then, using dbs to denote the demand of beer of

type b in state s in [hl], the inventory determination constraint can be written

as follows.

ybs = y
b
αs + x

b
αs + z

b
s − d

b
s ∀(s, b) |αs

Inventory

capacity

constraint

Assume that the space taken up by the different types of bottled beer is pro-

portional to the amount of [hl] bottled, and that total inventory space is lim-

ited. Let ȳ denote the maximum inventory of bottled beer expressed in [hl].

Then the inventory capacity constraint can be written as follows.

∑

b

ybs ≤ ȳ ∀s

Demand

requirement

constraint

In the previous inventory determination constraint there is nothing to prevent

currently bottled beer to be used to satisfy current demand. However, as in-

dicated in the problem description, the amount bottled in a particular period

is only available for use during subsequent periods. That is why an extra con-

straint is needed to make sure that at each reachable state, inventory of each

type of beer at the corresponding emanating state, plus the external supply

of beer pertaining to the reachable state, is greater than or equal to the corre-

sponding demand of beer. This constraint can be written as follows.

ybαs + z
b
s ≥ d

b
s ∀(s, b)
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Profit

determination

constraint

During each period decisions are made to contribute to overall profit. For each

state, the contribution to profit is determined by considering sales revenues at-

tached to this state minus the sum of all costs associated with this state. These

costs cover the corresponding bottling cost, the external supply cost, and the

inventory cost. Let psb denote the selling price of beer of type b in [$/hl],

and let cpb , cib , and ceb denote the variable cost coefficients in [$/hl] asso-

ciated with bottling, inventory and external supply. The entire state-specific

contribution to profit, denoted by vs , can now be written as follows.

vs =
∑

b

psbdbs −
∑

b

(cpbxbαs + cibybs + cebzbs ) ∀s

Objective

function

In the presence of uncertain demand it does not make sense to talk about a

deterministic overall profit determination. The approach in this section is to

sum all state-specific profit contributions weighted with their unconditional

probability of occurrence. It turns out that this computation expresses the

expected profit level for the entire planning horizon, the length of which is

equal to the number of time periods covered by the event tree. Such profit

level can then be written as follows.

∑

s

psvs

Alternative

formulation

In the next section it is shown that the above expression coincides with the ex-

pected profit over all scenarios, where scenario-specific contributions to profit

are weighted with their unconditional probability of occurrence. The num-

ber of terms in this alternative formulation of the objective function is then

equal to the number of terminal states (i.e. the number of leaf nodes in the

event tree). The two main ingredients are the scenario probabilities and the

scenario profits. The scenario probabilities are the unconditional probabilities

associated with the leaf nodes, and add up to one. The profit contribution per

scenario is obtained by summing all corresponding state-specific profit contri-

butions.

Verbal model

summary

The above objective and the constraints that make up the stochastic program-

ming formulation of the simplified inventory control problem can now be sum-

marized through the following qualitative model formulation.

Maximize: total expected net profit,

Subject to:

� for all emanating states: total bottling volume must be less than

or equal to overall bottling capacity,

� for all beer types and reachable states: inventory at reachable

state is equal to inventory at emanating state plus bottling

volume at emanating state plus external supply pertaining to

reachable state minus demand pertaining to reachable state,
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� for all reachable states: inventory of bottled beer at reachable

state must be less than or equal to maximum inventory of

bottled beer,

� for all beer types and reachable states: inventory at emanating

state plus external supply pertaining to reachable state must be

greater than or equal to demand pertaining to reachable state,

and

� for all reachable states: total net profit is sales revenue minus

total costs consisting of bottling, inventory and external supply

costs.

NotationThe following symbols have been introduced to describe the objective function

and the constraints.

Indices:

b beer types

s states

Parameters:

psb selling price of beer type b [$/hl]

cpb production cost of bottling beer type b [$/hl]

cib inventory cost of storing beer type b [$/hl]

ceb external supply cost of beer type b [$/hl]

c overall capacity to bottle beer [hl]

ȳ maximum inventory of bottled beer [hl]

dbs demand of beer type b in state s [hl]

ps probability of reaching state s [-]

αs previous state of state s in event tree

Variables:

xbs beer type b bottled at emanating state s [hl]

ybs beer type b stored at state s [hl]

zbs external supply of beer b at state s [hl]

vs state-specific profit contribution at state s [$]

Mathematical

model summary

The mathematical description of the model can now be summarized as follows.

Maximize: ∑

s

psvs
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Subject to: ∑

b

xbαs ≤ c ∀αs

ybαs + x
b
αs
+ zbs − d

b
s = y

b
s ∀(s, b) |αs

∑

b

ybs ≤ ȳ ∀s

ybαs + z
b
s ≥ d

b
s ∀(s, b)

∑

b

psbdbs −
∑

b

(cpbxbαs + cibybs + cebzbs ) = vs ∀s

xbs ≥ 0 ∀(b, s)

ybs ≥ 0 ∀(b, s)

zbs ≥ 0 ∀(b, s)

17.4 Equivalent alternative objective function

This sectionIn this section you will find a proof of the fact that the expected profit function

used in the previous section can be expressed in an alternative but equivalent

form.

Recursive

profits and

probabilities

Consider the following identifiers defined over the set of states.

πs conditional probability of event prior to state s

ps unconditional probability of reaching state s

vs state-specific profit contribution at state s [$]

ws cumulative profit contribution at state s [$]

Then, the recursive relationships between these identifiers are defined for each

node in the tree (starting at the root), and will be used in the sequel.

ps = πspαs

ws = vs +wαs

InitializationThe recursive unconditional probabilities emanate from the initial state prob-

ability, which is equal to one. The recursive cumulative profit levels emanate

from the initial state profit level, which is assumed to be zero. These recursive

relationships can be implemented inside Aimms using a FOR statement inside a

procedure.

Alternative

formulation

Let l = {0,1, . . .} denote a level in the event tree, and let L(l) denote the set of

all nodes corresponding to this level. In addition, let l̂ denote the last level of

the tree. Then the objective function expressing expected profit can be written

in two seemingly different but equivalent forms.
∑

s

psvs =
∑

s∈L(l̂)

psws
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This equality turns out to be a special instance of the following theorem.

TheoremLet the symbol l̄ denote any particular level of the event tree. Then the follow-

ing equality holds for each l̄.

l̄∑

l=0

∑

s∈L(l)

psvs =
∑

s∈L(l̄)

psws

CorollaryNote that when l̄ is equal to l̂, then the term on the left of the equal sign is

nothing else but
∑
s psvs , and the alternative formulation follows directly from

the theorem.

ProofThe proof will be carried out by induction on the number of levels l̄. For l̄ = 0,

the theorem holds trivially. Consider any particular l̄ > 0, and assume that

the theorem holds for l̄ − 1. Then to prove that the theorem also holds for

l̄, you need to rewrite summations, use the above recursive definitions of ps

and ws , use the fact that
∑
k |αk=s πk = 1, and, of course, use the statement

of the theorem for l̄ − 1 during the last step. All this is done in the following

statements.

∑

s∈L(l̄)

psws =
∑

s∈L(l̄)

ps(vs +wαs )

=
∑

s∈L(l̄)

psvs +
∑

s∈L(l̄)

pswαs

=
∑

s∈L(l̄)

psvs +
∑

s∈L(l̄−1)

∑

k |αk=s

πkpαkwαk

=
∑

s∈L(l̄)

psvs +
∑

s∈L(l̄−1)

psws
∑

k |αk=s

πk

=
∑

s∈L(l̄)

psvs +
∑

s∈L(l̄−1)

psws

=
∑

s∈L(l̄)

psvs +

l̄−1∑

l=0

∑

s∈L(l)

psvs

=

l̄∑

l=0

∑

s∈L(l)

psvs

�

17.5 A worked example

This sectionIn this section an input data set is provided together with an overview of the re-

sults based on the multi-stage programming model developed in Section 17.3.

The initial probabilities are the same as in Figures 17.2 and 17.3. The revenues
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and cost values are presented in Table 17.2 while the demand requirements

for both beer types are listed in Figure 17.4.

b psb cpb cib ceb

[$/hl] [$/hl] [$/hl] [$/hl]

light 300 12.0 5.0 195.0

regular 400 10.0 5.0 200.0

Table 17.2: Revenues and cost values

The overall bottling capacity c is 46.0 [hl] and the maximum inventory of bot-

tled beer ȳ is 52.0 [hl]. Initial stock for light beer is 17 [hl], and initial stock

for regular beer is 35 [hl].

period 1 period 2 period 3 period 4

(20,30)

(23,33))

O

(17,30)

P

(22,33)

O

(18,27)

P

(20,32)

O

(17,27)

P

(24,34)

O

(18,28)

P

(21,31)

O

(18,26)

P

(24,34)

O

(19,29)

P

(20,33)

O

(18,27)

P

(25,35)
O

(24,33)
P

(20,30)
O

(18,26)
P

(23,32)
O

(20,29)
P

(19,29)
O

(16,25)
P

(26,34)
O

(23,32)
P

(21,30)
O

(18,29)
P

(22,34)
O

(19,30)
P

(20,28)
O

(17,25)
P

Figure 17.4: Demand requirements for both beer types (light,regular)

Optimal

solution

The optimal solution of the multi-stage programming model is presented in

Table 17.3 with a total weighted profit of 76482.4 [$]. Notice that the hierarchi-

cal structure of the scenarios is not only reflected in the order and description

of their labels, but also in the zero-nonzero pattern of the control and state

variables. Even though optimal decisions are determined for each period and

all possible scenarios, in most practical applications only the initial decisions

are implemented. The model is usually solved again in each subsequent period

after new scenario information has become available.



Chapter 17. An Inventory Control Problem 192

Binding

constraints

Once you have implemented the model yourself, you may want to verify that

the production capacity constraint is binding and has a positive shadow price

for scenarios ’I’, ’O’, ’OO’, ’OP’ and ’PO’. Similarly, the storage capacity con-

straint is binding for scenarios ’PP’ and ’PPP’. This indicates that both types of

capacity play a vital role in the optimal use of the brewery.

b light regular

s xbs ybs zbs dbs xbs ybs zbs dbs vs

I 18.0 17.0 20.0 20.0 28.0 35.0 30.0 30.0 7840.0

O 18.0 18.0 6.0 23.0 28.0 30.0 33.0 18194.0

OO 18.0 18.0 4.0 22.0 28.0 28.0 3.0 33.0 17694.0

OOO 18.0 6.0 24.0 28.0 6.0 34.0 17704.0

OOOO 7.0 25.0 7.0 35.0 18735.0

OOOP 6.0 24.0 5.0 33.0 18230.0

OOP 18.0 18.0 28.0 28.0 15874.0

OOPO 2.0 20.0 2.0 30.0 17210.0

OOPP 18.0 2.0 26.0 15790.0

OP 19.0 18.0 18.0 27.0 31.0 27.0 15459.0

OPO 19.0 3.0 21.0 27.0 31.0 17387.0

OPOO 4.0 23.0 5.0 32.0 17920.0

OPOP 1.0 20.0 2.0 29.0 17005.0

OPP 19.0 18.0 32.0 26.0 15047.0

OPPO 19.0 3.0 29.0 17285.0

OPPP 3.0 16.0 7.0 25.0 14750.0

P 18.0 18.0 17.0 27.0 33.0 30.0 16349.0

PO 17.0 18.0 2.0 20.0 29.0 28.0 32.0 17694.0

POO 17.0 6.0 24.0 29.0 6.0 34.0 17706.0

POOO 9.0 26.0 5.0 34.0 18645.0

POOP 6.0 23.0 3.0 32.0 17930.0

POP 17.0 1.0 19.0 29.0 1.0 29.0 16181.0

POPO 4.0 21.0 1.0 30.0 17320.0

POPP 1.0 18.0 29.0 16805.0

PP 19.0 19.0 17.0 26.0 33.0 27.0 15154.0

PPO 19.0 1.0 20.0 26.0 33.0 18292.0

PPOO 3.0 22.0 8.0 34.0 18015.0

PPOP 19.0 4.0 30.0 16900.0

PPP 20.0 18.0 32.0 27.0 15452.0

PPPO 20.0 4.0 28.0 17180.0

PPPP 3.0 17.0 7.0 25.0 15050.0

Table 17.3: Optimal solution

17.6 Summary

In this chapter a multi-stage stochastic programming model was viewed as a

sequence of two-stage stochastic programming models. A tree-based termi-

nology was used to describe event probabilities and multi-stage scenarios. All

concepts were illustrated on the basis of a simplified inventory control model.

Two alternative and seemingly different objective functions were introduced,

and were shown to be equivalent. A complete input data set was provided,
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together with an overview of the model results.

Exercises

17.1 Implement the multi-stage mathematical program summarized at the

end of Section 17.3 using the example data provided in Section 17.5.

Verify that the optimal solution found with Aimms coincides with the

one presented in Table 17.3.

17.2 Implement the model with the alternative objective function described

in Section 17.4, and verify whether the optimal solution remains the

same.

17.3 Set up an experiment in Aimms to investigate the sensitivity of the

overall optimal stochastic programming objective function value to

changes in the number of scenario’s.
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