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Chapter 2

Formulating Optimization Models

This chapterThis chapter explains the general structure of optimization models, and some

characteristics of their solution. In Chapter 1, an introduction to optimization

models was given. In this chapter, optimization models are introduced at a

more technical level.

Three classes of

constrained

optimization

models

The three main classes of constrained optimization models are known as lin-

ear, integer, and nonlinear programming models. These types have much in

common. They share the same general structure of optimization with restric-

tions. Linear programming is the simplest of the three. As the name indicates,

a linear programming model only consists of linear expressions. Initially,

linear programming will be explained, followed by integer and nonlinear pro-

gramming.

The term

programming

The term programming, as used here, does not denote a particular type of

computer programming, but is synonymous with the word planning. The three

classes of programming models mentioned above all come under the heading

of mathematical programming models.

2.1 Formulating linear programming models

Wide

applicability

Linear programming was developed at the beginning of the mathematical pro-

gramming era, and is still the most widely used type of constrained optimiza-

tion model. This is due to the existence of extensive theory, the availability

of efficient solution methods, and the applicability of linear programming to

many practical problems.

2.1.1 Introduction

Linear

equations and

inequalities

Basic building blocks of linear programming models are linear equations and

linear inequalities in one or more unknowns. These used in linear program-

ming models to describe a great number of practical applications. An example

of a linear equation is:

2x + 3y = 8
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By changing the “=” sign to a “≥” or “≤”, this equation becomes a linear in-

equality, for instance:

2x + 3y ≥ 8

The signs “<” and “>”, denoting strict inequalities, are not used in linear pro-

gramming models. The linearity of these equations and inequalities is char-

acterized by the restriction of employing only “+” and “−” operations on the

terms (where a term is defined as a coefficient times a variable) and no power

terms.

VariablesThe unknowns are referred to as variables. In the example above the vari-

ables are x and y . A solution of a linear programming model consists of a

set of values for the variables, consistent with the linear inequalities and/or

equations. Possible solutions for the linear equation above are, among others:

(x,y) = (1,2) and (4,0).

2.1.2 Example of a linear programming model

Production of

potato chips

To illustrate a linear programming model, the production of chips by a small

company will be studied. The company produces plain and Mexican chips

which have different shapes. Both kinds of potato chips must go through three

main processes, namely slicing, frying, and packing. These processes have the

following time characteristics:

� Mexican chips are sliced with a serrate knife, which takes more time than

slicing plain chips.

� Frying Mexican chips also takes more time than frying plain chips be-

cause of their shape.

� The packing process is faster for Mexican chips because these are only

sold in one kind of bag, while plain chips are sold in both family-bags

and smaller ones.

There is a limit on the amount of time available for each process because

the necessary equipment is also used for other purposes.The chips also have

different contributions to net profit.

DataThe data is specified in Table 2.1. In this simplified example it is assumed that

the market can absorb all the chips at the fixed price.

The planner of the company now has to determine a production plan that

yields maximum net profit, while not violating the constraints described above.
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time [min/kg] plain Mexican availability

required for: chips chips [min]

slicing 2 4 345

frying 4 5 480

packing 4 2 330

net profit

contribution [$/kg] 2 1.5

Table 2.1: Data in the potato chips problem

Decision

variables

The planner’s decision problem can be formulated in terms of a mathematical

notation using linear inequalities. The variables in the inequalities must reflect

what is unknown to the planner, namely his decisions. In this example, the de-

cision variables concern a production plan. The quantity of plain and Mexican

chips to be produced are unknown to the planner. Therefore, the variables are

the amounts of both types of chips to be produced.

Variable namesIn order to obtain a concise mathematical description it is convenient to choose

short names for the variables. Let Xp therefore denote the unknown amount

of plain chips to be produced, and let Xm denote the unknown quantity of

Mexican chips to be produced. Xp and Xm are both measured in kilograms.

Inequalities that reflect the availability of the production processes can now

be stated.

The constraint

on frying

The following inequality, measured in minutes, can be written to describe the

limited availability of the fryer:

4Xp + 5Xm ≤ 480 [min]

In words this inequality states:

The four minutes required to fry a kilogram of plain chips

multiplied by the planned number of kilograms of plain chips

plus

the five minutes required to fry a kilogram of Mexican chips

multiplied by the planned number of kilograms of Mexican chips

must be less than or equal to

the 480 minutes the fryer is available.

Or, a bit shorter:

The time required to fry the plain chips

plus

the time required to fry the Mexican chips

must be less than or equal to

the time the fryer is available.
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So now there is an inequality that describes the limited availability of the fryer.

Units of

measure

An easy check to see whether the meaning of an inequality makes sense is to

write it in terms of units of measure. This yields:

4[min/kg]Xp[kg]+ 5[min/kg]Xm[kg] ≤ 480[min]

The resulting units for each term should be identical, which they are in this

case (minutes).

Other

constraints

Similar inequalities can also be written for the availabilities of the slicer and

the packer:

2Xp + 4Xm ≤ 345 [min]

4Xp + 2Xm ≤ 330 [min]

Together these inequalities almost give a complete description of the situation.

One set of inequalities is still missing. Obviously, it is not possible to produce

a negative amount of chips. So, the following lower bounds on the variables

must be added for a complete description of the problem:

Xp ≥ 0, Xm ≥ 0 [kg]

These last inequalities are referred to as nonnegativity constraints.

Optimal

decisions

The company’s planner has to make a choice. From these possible production

options, he wants to choose the plan that yields the maximum net profit. By

maximizing profit, the number of plans is reduced to those that are preferred.

The following linear equation gives the net profit:

P = 2Xp + 1.5Xm [$]

The quantity P can be regarded as an additional variable, for which the maxi-

mum value is to be found. The value of P depends on the value of the other

variables.

Verbal

summary

The decision problem has just been posed as a mathematical problem instead

of a verbal problem. In order to show similarities and differences between

them, both a verbal description of the problem and the mathematical model

are given. The verbal description of the decision problem is:

Maximize: Net profit,

Subject to:

� a time restriction on slicing,

� a time restriction on frying,

� a time restriction on packing, and

� negative amounts cannot be produced.
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Mathematical

summary

The mathematical model is formulated as follows:

Maximize: P = 2Xp + 1.5Xm

Subject to:
2Xp + 4Xm ≤ 345 (slicing)

4Xp + 5Xm ≤ 480 (frying)

4Xp + 2Xm ≤ 330 (packing)

Xp, Xm ≥ 0

2.1.3 Picturing the formulation and the solution

Picturing

the decision

problem

In this small problem the inequalities can be visualized in a two-dimensional

drawing. Where the x-axis and the y-axis represent Xp and Xm respectively,

the inequalities and their implications can be plotted. The easiest way to plot

the slicer availability inequality is as follows.

◮ First change the “≤” sign to an “=” and plot the border.

Setting the value of Xp to 0, then the value of Xm can be calculated: Xm =

345/4 = 86.25. In the same way the value of Xp is calculated as 172.5 when

Xm is set to zero.

Amount of

(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(172.5, 0)

Figure 2.1: The constraint on slicing visualized

So far, two points have been found in the Xp-Xm plane, namely (Xp, Xm) =

(0,86.25) and (Xp, Xm) = (172.5,0). The line that connects these points is the

line

2Xp + 4Xm = 345

which is plotted.

◮ Second, determine whether a single point at one side of the line, such as

the origin, satisfies the constraint. If it does, shade that side of the line.
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The shaded region in Figure 2.1 contains all (Xp, Xm) that satisfy the con-

straints:

2Xp + 4Xm ≤ 345, Xp ≥ 0 and Xm ≥ 0

In other words, the shaded region contains all combinations of the quantities

of the two types of chips that can be sliced in one day.

Picturing

the feasible

region

Other inequalities can also be represented graphically, as shown in Figure 2.2.

From this figure, it is clear that there are many combinations of production lev-

els for plain and Mexican chips that satisfy all these inequalities. The shaded

region bounded by the lines corresponding to the inequalities represents all

the allowed production levels, and is called the feasible region.

(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(82.5, 0)

packing

frying slicing

Amount of

Figure 2.2: The feasible region

Picturing

the profit

function

When a value, of say $150, is chosen for the variable P , a line can be drawn that

represents all combinations of production levels for Mexican and plain chips

that yield a profit of $150. Such a line is called a contour of the profit function,

and is drawn in Figure 2.3. The arrow indicates the direction of increasing

profit. Since the profit function is linear, the contours are straight lines.

Picturing

the optimal

decision

But how can one determine which combination yields the maximum net profit?

Observe that a higher value for P yields a contour parallel to the previous one.

Moreover, increasing the value of P causes the line to shift to the right. This is

also illustrated in Figure 2.3. However, the profit cannot increase indefinitely,

because the profit line will fall outside the feasible region if it shifts too far to

the right. In fact, it is clear from the application that the profit cannot increase

indefinitely because of the limitations imposed by the availability of the slicer,

fryer, and packer.
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profit = $150

(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(82.5, 0)

Amount of

Figure 2.3: Different profit lines

Best solutionThe best solution attainable is when the profit line is shifted as far to the right

as possible while still touching the feasible region.

(0, 0)

Amount of

Mexican chips

plain chips

packing

frying slicing

Amount of

profit = $190

(57.5, 50)

Figure 2.4: The optimal solution

From Figure 2.4, it can be seen that this point is the intersection of the lines

corresponding to the frying and packing restrictions. The coordinates of this

point can now be calculated by solving a system of two equations in two

unknowns—the frying and packing restrictions as equalities:
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4Xp + 5Xm = 480 (frying)

4Xp + 2Xm = 330 (packing)

The above system yields (Xp, Xm) = (57.5,50) and the corresponding profit

is $190. This combination of values for the decision variables is called the

optimal solution.

Non-binding

constraints

Considering Figure 2.4 once again, it can be observed that only two constraints

really restrict the optimal solution. Only the constraints on frying and pack-

ing are binding. The constraint on slicing can be omitted without changing

the optimal solution. Such a constraint is known as a non-binding constraint.

Although non-binding constraints can be removed from the model without

consequences, it is often sensible to include them anyway. A non-binding con-

straint could become binding as data change, or when experiments are carried

out using the model. Moreover, when you build a model, you probably will not

know in advance which constraints are non-binding. It is therefore better to

include all known constraints.

Corner solutionsConsidering Figure 2.4 once again, one can see that the optimal solution is on a

corner of the feasible region, namely, the intersection of two lines. This implies

that the exact value can be calculated by solving a system of two equations and

two unknowns. In general, it can be stated that if a linear programming model

has an optimal solution, then there is always an optimal corner solution. This

is illustrated in Figure 2.5. Depending on the slope of the objective function,

the solution is either at A, B, or C.

A
B

C

Figure 2.5: There is always an optimal corner solution
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Multiple optimaA special case occurs when the slope of the objective is parallel to the slope

of one of the binding constraints, as in Figure 2.6. Then there are two optimal

corner solutions and an infinite number of optimal solutions along the line

segment connecting these two corner solutions. This is a case of so-called

multiple or alternative optima.

Figure 2.6: Multiple optima

Limitations of

pictures

The graphical solution method so far used in this section is only suitable for

problems with two decision variables. When there are three decision variables,

a similar three-dimensional figure evolves, but this is a lot harder to draw

and interpret. Figures with more than three dimensions, corresponding to the

number of decision variables, cannot be drawn. The optimal solution must

then be expressed algebraically, and solved numerically. The graphical solu-

tion method is only used for purposes of illustration.

Computer

solutions

The method most often used to calculate an optimal solution is the so-called

simplex method, developed by George Dantzig ([?]). This method examines the

corners of the feasible region in a structured sequence, and stops when the op-

timal solution has been found. For very small models, these calculations could

be done manually, but this is both time consuming and prone to errors. In

general, these calculations are best done by a computer, using a sophisticated

implementation of the simplex method. Almost without exception, such an

algorithm finds an optimal solution, or concludes that no such solution exists.

OptimalityWhen an optimal solution is found by a solver, caution is still needed. Since

a model is a simplified picture of the real problem, there may be aspects that

are neglected by the model but still influence the practical optimality of the

solution. Moreover, for most situations there is no single, excellent from all

aspects, optimal solution, but a few different ones, each one optimal in its own

way. Therefore, the practical interpretation of the model results should always

be considered carefully. Experiments can be done using different objectives.

In Chapter 4, an introduction is given to sensitivity analysis—solution changes

due to changes in the data.
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InfeasibilityWhen a problem is declared to be infeasible by a solver, it means that the

feasible region is empty. In other words, there is no solution that satisfies all

the constraints simultaneously. This is illustrated in Figure 2.7. Infeasibility

can be caused by having too many or conflicting requirements, or by errors in

data specification, or by errors in the construction of model equations. Such

a result is an incentive to check the correctness of the model. Sometimes an

infeasible solution is practically acceptable because the constraints that are

violated are not so critical.

Figure 2.7: Infeasibility illustrated

UnboundednessUnboundedness is just what the word implies; the constraints fail to bound

the feasible region in the direction in which the objective is optimized. As a

result, the value of the objective function increases or decreases indefinitely,

which might look attractive, but is certainly not realistic. In Figure 2.8, a graph-

ical illustration is given. Unboundedness is not a problem occurring in reality

but a formulation error. Common errors causing unboundedness include the

following. It could be that a free variable should be nonnegative, or that the

direction of optimization has been inadvertently reversed. Alternatively, a con-

straint may have been omitted. Note that whether an unbounded constraint

set causes difficulties depends on the objective function. In Figure 2.9 an ex-

ample is given in which an optimal solution does exist, although the feasible

region is unbounded.

ReferencesReaders who want to know more about the theoretical aspects of linear pro-

gramming, or the simplex method, can refer to [?] or [?], and there are many

other excellent works on the subject.
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Figure 2.8: Unbounded objective, unbounded feasible region

2.2 Formulating mixed integer programming models

This sectionIn this section some basic characteristics of mixed integer programming mod-

els and their solution will be discussed.

Need for integer

solutions . . .

Recall the example of the chips-producing company in the previous section

where the optimal solution was (Xp, Xm) = (57.5,50). If chips are packed in

bags of 1 kilogram, this optimal solution cannot be translated into a practical

solution. One approach is to round down the solution. In this example, round-

ing yields the feasible solution (Xp, Xm) = (57,50), but the profit is reduced

from $190 to $189.

. . . illustratedThere are many real-world problems that require their solutions to have inte-

ger values. Examples are problems that involve equipment utilization, setup

costs, batch sizes, and “yes-no” decisions. Fractional solutions of these prob-

lems do not make real-world sense; just imagine constructing half a building.

Pros and cons of

rounding . . .

Rounding is a straightforward way to obtain integer values. There might be

doubt, however, whether such a solution is optimal or even feasible. In prac-

tice, rounding is a satisfactory approach when:

� the figures to be rounded are so large that the error is negligible,

� the input data are not known with certainty, so that a fractional solution

is not that accurate anyway,

� the rounding procedure is certain to give a feasible solution, and

� algorithms developed especially to search for an integer solution are too

expensive in terms of computer resources and time.
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Figure 2.9: Bounded objective, unbounded feasible region

. . . an

alternative

The alternative to rounding has already been mentioned—making use of an

integer programming algorithm. Next, the potato chips example will be used to

present some aspects of integer programming. When an integer programming

algorithm is used in the example above, the solution (Xp, Xm) = (58,49) yields

a higher profit, $189.5.

Extending the

potato chips

example

Consider again the chips-producing company. Their special chips are becom-

ing so popular that a large supermarket chain wants to sell these potato chips

in their stores. The additional restriction is that the chips must be delivered

in batches of 30 kg, for efficiency reasons. As a result, the optimal produc-

tion plan, determined above, is no longer adequate. The optimal amounts of

57.5 kg of plain and 50 kg of Mexican chips would make up, respectively, 1.92

and 1.67 batches of potato chips. This solution does not satisfy the additional

restriction imposed by the supermarket chain. An integer programming model

could now be used to determine a new (and acceptable) production plan.

DescriptionThe linear programming model of Section 2 can be reformulated as an inte-

ger programming model by measuring the amounts of chips in batches, and

by adding the requirement that the solution takes on integer values. When

measuring the amounts of chips in batches of 30 kg, the production processes

require the following amounts of time. Each batch of plain chips takes 60

minutes to slice, 120 minutes to fry, and 120 minutes to pack. Each batch of

Mexican chips takes 120 minutes to slice, 150 minutes to fry, and 60 minutes

to pack. Furthermore, the net profit on a batch of plain chips is $60, while the

net profit on a batch of Mexican chips is $45.
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FormulationLet XBp denote the number of batches of plain chips produced, and let XBm de-

note the number of batches of Mexican chips produced. Note that the restric-

tion is added that XBp and XBm must have integer values (fractions of batches

are not allowed). Then the integer programming model becomes:

Maximize: 60XBp + 45XBm = P

Subject to:

60XBp + 120XBm ≤ 345 (slicing)

120XBp + 150XBm ≤ 480 (frying)

120XBp + 60XBm ≤ 330 (packing)

XBp , X
B
m ≥ 0

XBp , X
B
m integers

(0, 0)

Batches of

Mexican chips

plain chips

Batches of

profit = $165

(2, 1)

Figure 2.10: The feasible region in the integer program

Picturing the

solution

Figure 2.10 is almost the same as Figure 2.4, except that the feasible region is

now limited to the grid points within the region bounded by the constraints. It

is clear that the grid point that maximizes the profit, subject to the constraints,

is (XBp , X
B
m) = (2,1). This implies a production plan with 60 kilograms of

plain chips, 30 kilograms of Mexican chips, and a profit of $165. Note that

this solution is not a corner or on the boundary of the region determined by

the frying, slicing, and packing constraints. These constraints do limit the

feasible region, however, because otherwise a higher profit would be possible.

Notice also that the profit has dropped from $190 to $165. The company might

consider making a weekly production plan, and delivering the batches once a

week. In this way the production of a part of a batch in a day would be allowed,

and this would increase the average daily profit. From this last comment, it is
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clear that formulating a model involves more than merely formulating a set of

constraints and an objective function.

Pure and mixed

integer

programming

Constrained optimization problems in which all variables must take on inte-

ger values are referred to as pure integer programming problems. Constrained

optimization problems, in which only some of the variables must take on in-

teger values, are referred to as mixed integer programming problems. If both

the objective and all constraints are linear, then the term (mixed) integer linear

programming applies.

Zero-one

programming

A zero-one programming problem is a pure integer programming problem with

the additional restraint that all variables are either zero or one. Such zero-one

variables are referred to as binary variables. Binary variables provide a variety

of new possibilities for formulating logical conditions and yes/no decisions

in integer programming models. The use of binary variables is illustrated in

Chapters 7 and 9.

SolvabilityFor a model builder it is a straightforward matter to add the requirement of

integrality to a mathematical problem description. However, solving an inte-

ger programming problem is almost always harder than solving the underlying

linear program. Most of the solution algorithms available do, in fact, test all

promising integer solutions until the best (or a good) one is found. A sequence

of linear programs is solved in order to obtain a solution of an integer pro-

gram. The most widely used solution algorithms work on the so-called branch

and bound method, in which a tree structure is used to conduct the search

systematically. The branch and bound method, as well as some alternative

algorithms, is explained in many textbooks on integer programming, for ex-

ample [?].

Relaxed LP

models

In integer programming, the way a model is formulated can influence its solv-

ability. If you have trouble finding an integer solution, a good approach is

to first drop the integrality requirement and solve the model as an LP (this

LP model is referred to as the relaxed (LP) model of the integer programming

model). Then reformulate the model until the optimal LP solution value is

close to the integer one. You can then apply an integer programming solution

algorithm (see [?] for examples). One method of speeding up the solution pro-

cess is to bound all variables (upper and lower bounds) as tight as possible, so

that the number of possible integer solutions is reduced.

Optimality

tolerance

In the previous paragraph, the remark was made that in integer programming,

searching for an optimal solution might take too much time, because a se-

quence of linear programs has to be solved in order to obtain an integer solu-

tion. A widespread strategy is to specify a measure of the maximum (absolute

or relative) deviation between the objective value of the integer solution and
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the optimal objective value of the relaxed (LP) problem. As soon as a solution

is within this measure, the algorithm terminates. The solution thus found can

be regarded as a compromise between optimality and practical feasibility.

InfeasibilityNotice that a feasible linear program may become infeasible as soon as the

requirement of integrality is added. For example, picture a feasible region

which is not empty, but excludes all grid points.

UnboundednessTo be able to solve a mixed integer models, integer variables should only be

able to take a finite number of values. For this reason, pure integer models (i.e.

models without any continuous variable) are never unbounded.

Integer solutions

from linear

programs

Besides difficult integer programming problems, there exist also easy ones.

These are problems that can be formulated as network flow problems. These

problems can be solved as linear programs, and the optimal solution is guar-

anteed to be integer. This is due to a special mathematical property of net-

work flow problems (i.e. totally unimodularity of the constraint matrix). It is

unfortunate that this property can easily disappear as a result of small model

extensions, so the number of easy-to-solve integer programming problems en-

countered in practice is relatively small. Network flow problems are discussed

in more detail in Chapter 5.

2.3 Formulating nonlinear programming models

This sectionIn this section some basic characteristics of the third type of constrained mod-

els, namely nonlinear programming models, will be discussed.

Nonlinear

expressions

Besides adding integrality constraints to a linear programming model, an-

other major extension can be made by relaxing the convention that all expres-

sions must be linear. Since many physical and economic phenomena in the

world surrounding us are highly nonlinear, nonlinear programming models

are sometimes required rather than linear ones.

Extending the

potato chips

example

Competition is growing. The chips-producing company decides to change its

selling prices, which seem to be too high. The company decides to maximize

the production of potato chips (which forms the supply), by setting the prices

so that supply and demand are equal. Models in which supply and demand are

equated are widely used in economics, and are known as equilibrium models.

[?] gives an introduction. The company’s marketing manager has determined

the relationship between demand (D) and price (P ) to be the following identi-

ties.

� Demand for plain chips: Dp = −66.7Pp + 300

� Demand for Mexican chips: Dm = −83.4Pm + 416.6
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Furthermore, the fixed production costs are $2 per kg for both chip types.

FormulationThe constraints on the limited availability of the slicer, fryer, and packer have

not changed. The objective, however, has. The net profit now depends on the

prices that the company sets. By definition, the profit equals revenue minus

costs, which can be written as

P = (Pp − 2)Xp + (Pm − 2)Xm

Since the company wants to set the price in such a way that supply equals

demand, the demand curves can be used to determine that price.

� Supply equals demand for plain chips:

Xp = Dp = −66.7Pp + 300

� Supply equals demand for Mexican chips:

Xm = Dm = −83.4Pm + 416.6

Which can also be written as

Pp = −0.015Xp + 4.5

Pm = −0.012Xm + 5.0

where Dp and Dm have been eliminated , and Pp and Pm have been solved

for. These prices can now be used in the objective function, which becomes a

nonlinear function depending only on Xp and Xm:

P = (−0.015Xp + 4.5− 2)Xp + (−0.012Xm + 5− 2)Xm

or

P = −0.015X2
p + 2.5Xp − 0.012X2

m + 3Xm

Algebraic

description

A new (nonlinear) objective function has been derived, and the model can now

be stated completely.

Maximize: −0.015X2
p + 2.5Xp − 0.012X2

m + 3Xm = P

Subject to:

2Xp + 4Xm ≤ 345 (slicing)

4Xp + 5Xm ≤ 480 (frying)

4Xp + 2Xm ≤ 330 (packing)

Xp, Xm ≥ 0
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(0, 0)

Amount of

(0, 86.25)

Mexican chips

plain chips(82.5, 0)

Amount of

Figure 2.11: The feasible region in the nonlinear programming model

Picturing the

solution

When the contour of the objective and the area of the feasible region are plot-

ted, the same pictorial solution procedure can be followed as in the previous

examples. Figure 2.11 shows this plot. One difference from previous exam-

ples is that the contour of the profit function is no longer linear. This contour

can still be shifted to the right as long as it touches the feasible region. From

the figure the optimal point can roughly be determined: about 40 kg of plain

chips, and about 60 kg of Mexican chips. Note that this optimal point is not on

a corner. Using Aimms to determine the exact solution gives 42.84 kg of plain

chips, and 61.73 kg of Mexican chips, which yields a profit of $219.03.

TerminologyA nonlinear programming problem consists of an algebraic objective function

subject to a set of algebraic constraints and simple bounds. The term alge-

braic is used here to indicate that algebraic operators for addition, subtraction,

division, multiplication, exponentiation, etc. are applied to the variables. Dif-

ferential and integral operators are not considered. The algebraic constraints

consist of equations and/or inequalities. The simple bounds are lower and/or

upper bounds on the variables. The variables themselves can take on any real

value between these bounds. If no simple bounds are stated for a particu-

lar variable, then its value may vary between minus infinity and plus infinity.

Nonlinear programming models are often referred to as NLP models, and their

objective contours and constraint boundaries need no longer be straight lines.

The combinations of curved contours and boundaries can make them very dif-

ficult to solve.
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Local and global

optima

Figure 2.12: A non-corner solution of a nonlinear program

global maximum

local maximum

Figure 2.13: Local and global optima illustrated

Figures 2.11 and 2.12 illustrate that the optimal solution of a nonlinear pro-

gramming model need not be on a corner. Furthermore if a solution is found,

it may only be optimal with respect to the points in a small neighborhood,

while a better optimum exists further away. An example of this is given in Fig-

ure 2.13. The terms globally and locally optimal are used to make the distinc-

tion. Only in the specific situation where the nonlinear programming problem

has only one optimal solution can one ignore this distinction. The theoretical

conditions under which a problem only has one optimal solution are not easy

to verify for most real problems. As a result caution on the part of a model

builder is needed. For a theoretical treatment of nonlinear programming, see

[?].
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SolvabilityEven though it is not too difficult to construct a large variety of nonlinear

programming problems, solving them is a different matter. The reasons for

this are that the theory of nonlinear programming is much less developed than

the theory of linear programming, and because the solution algorithms are not

always capable of solving the nonlinear programming problems presented to

them. It should be noted, however, that problems in which the nonlinear terms

appear only in the objective function are generally easier to solve than those

in which nonlinear terms occur in the constraints. Nonlinear programming

models with integer variables are even more difficult to solve and will not be

addressed in this book.

2.4 Summary

In this chapter, the three most common types of constrained have been intro-

duced: linear programming models, integer linear programming models and

nonlinear programming models. Linear programming (LP) models must sat-

isfy the restriction that both the objective function and the constraints are

linear. Despite this restriction, linear programming models are still the most

common due to the availability of powerful solution algorithms. Integer lin-

ear programming (IP) models are like linear ones, except that one or more of

the variables must take on integer values. Except for a small group, namely

network flow models, integer programming models are harder to solve than

linear programs. Nonlinear programming (NLP) models can have a nonlinear

objective and/or nonlinear constraints. An optimal solution is not guaranteed

to be globally optimal. When an optimization model is solved, one of the fol-

lowing situations will occur: an optimal solution is found, which is the desired

situation; the problem is infeasible, which is a result of inconsistencies in the

constraint set; the problem is unbounded, which is often caused by a modeling

error.
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