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Chapter 22

A Facility Location Problem

This chapterThis chapter considers the problem of selecting distribution centers along with

their associated customer zones. For small and medium-sized data sets, the

mathematical model is a straightforward mixed-integer programming formu-

lation and can easily be solved with standard solvers. However for large data

sets, a decomposition approach is proposed. This chapter explains the Ben-

ders’ decomposition technique and applies it to the facility location problem.

ReferencesThe example in this chapter is based on ”Multicommodity Distribution System

Design by Benders Decomposition” ([Ge74]) by Geoffrion and Graves.

KeywordsInteger Program, Mathematical Reformulation, Mathematical Derivation, Cus-

tomized Algorithm, Auxiliary Model, Constraint Generation, Worked Example.

22.1 Problem description

Distribution

system design

A commonly occurring problem in distribution system design is the optimal

location of intermediate distribution centers between production plants and

customer zones. These intermediate facilities (temporarily) store a large vari-

ety of commodities that are later shipped to designated customer zones.

Basic problem

in words

Consider the situation where several commodities are produced at a number

of plants with known production capacities. The demands for each commod-

ity at a number of customer zones are also known. This demand is satisfied

by shipping via intermediate distribution centers, and for reasons of adminis-

tration and efficiency, each customer zone is assigned exclusively to a single

distribution center. For each center there is a lower as well as an upper limit

on the total throughput (of all commodities). There is also a fixed rental charge

and a per unit throughput charge associated with each distribution center. In

addition, there is a variable unit cost of shipping a commodity from a plant to

a customer zone through a distribution center. This cost usually includes the

unit production cost.
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Plants Distribution centers Customer zones

Figure 22.1: Commodity distribution scheme

Decisions to be

made

The facility location problem is shown schematically in Figure 22.1. It has the

property that the main decisions are of type yes/no. The problem is to deter-

mine which distribution centers should be selected, and what customer zones

should be served by the selected distribution centers. The optimum solution is

clearly dependent on the pattern of transportation flows for all commodities.

It is assumed that the time frame under consideration is sufficiently long to

motivate good decision making.

Cost

minimization

The decisions described in the previous paragraphs are to be made with the

objective to meet the given demands at minimum total distribution and pro-

duction cost, subject to plant capacities and distribution center throughput

requirements.

Problem

extensions

This chapter formulates and solves the above problem description. However

in real-world applications, there may be additional constraints which require

some specialized formulation. Some possibilities are mentioned below.

� The throughput capacity in a particular distribution center can be treated

as a decision variable with an associated cost.

� Top management could impose an a priori limit on the number of dis-

tribution centers, or express preferences for particular logical combina-

tions of such centers (not A unless B, not C and D, etc.).

� Similarly, there could be an a priori preference for certain logical combi-

nations of customer zones and distribution centers (if Center A is open,

then Zone 2 must be assigned, etc.).
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� If distribution centers happen to share common resources or facilities,

there could be joint capacity constraints.

You are referred to Chapter 7 for ideas on how to model these special logical

conditions.

22.2 Mathematical formulation

This sectionThis section presents the mathematical description of the facility location

problem discussed in the previous section.

Qualitative

model

description

The objective and the constraints are described in the following qualitative

model formulation.

Minimize: total production and transport costs,

Subject to:

� for all commodities and production plants: transport must be

less than or equal to available supply,

� for all commodities, distribution centers and customer zones:

transport must be greater than or equal to required demand,

� for all distribution centers: throughput must be between specific

bounds, and

� for all customer zones: supply must come from exactly one

distribution center.

NotationThe following notation will be used in this chapter:

Indices:

c commodities

p production plants

d distribution centers

z customer zones

Parameters:

Scp supply (production capacity) of commodity c at plant p

Dcz demand for commodity c in customer zone z

Md maximum throughput at distribution center d

Md minimum throughput at distribution center d

Rd per unit throughput charge at distribution center d

Fd fixed cost for distribution center d

Kcpdz variable cost for production and shipping of commodity

c, from plant p via distribution center d to customer

zone z

Variables:

xcpdz nonnegative amount of commodity c shipped from plant

p via distribution center d to customer zone z
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vd binary to indicate selection of distribution center d

ydz binary to indicate that customer zone z is served by dis-

tribution center d

Supply

constraint

The supply constraint specifies that for each commodity c and each produc-

tion plant p, the total amount shipped to customer zones via distribution cen-

ters cannot be more than the available production capacity,

∑

dz

xcpdz ≤ Scp ∀c,p

Demand

constraint

The demand constraint specifies that the demand for each commodity c in

each zone z should be supplied by all plants, but only through the chosen

distribution center ydz,

∑

p

xcpdz ≥ Dczydz ∀c,d, z

Throughput

constraints

The throughput constraints make sure that for each distribution center d the

total volume of commodities to be delivered to its customer zones remains

between the minimum and maximum allowed throughput,

Mdvd ≤
∑

cpz

xcpdz =
∑

cz

Dczydz ≤ Mdvd ∀d

Allocation

constraint

The allocation constraint ensures that each customer zone z is allocated to

exactly one distribution center d.

∑

d

ydz = 1 ∀z

Objective

function

The objective function that is to be minimized is essentially the addition of

production and transportation costs augmented with the fixed and variable

charges for distribution centers and the throughput of commodities through

these centers.

Minimize:
∑

cpdz

Kcpdzxcpdz +
∑

d

[Fdvd + Rd
∑

cz

Dczydz]

22.3 Solve large instances through decomposition

Black box

approach

The facility location problem can be solved for small to medium sized data

sets using any of the mixed integer programming solvers that are available

through Aimms. However, its solution process is based on a branch-and-bound

approach and this can sometimes be improved if you add some constraints.
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These constraints are redundant for the integer formulation but tighten the as-

sociated relaxed linear program solved at each node of the underlying branch-

and-bound tree.

Redundant

constraints

Two examples of such redundant constraints are:

ydz ≤ vd ∀d, z, and
∑

d

vd ≤ L

where L is a heuristically determined upper limit on the number of distribu-

tion centers to be opened (based on total demand). For your application, you

may want to test if adding these constraints does indeed improve the solution

process. In general, the benefit increases as the data set becomes larger.

Large instancesIn some practical applications, it is not unusual for the number of commodities

and customer zones to be in the order of 100’s to 1000’s. Under these condi-

tions, it is possible that the internal memory required by the solver to hold the

initial data set is insufficient. If there is enough memory for the solver to start

the underlying branch-and-bound solution process, the number of nodes to

be searched can be extremely large, and inefficient search strategies (such as

depth-first search) may be required to keep the entire search tree in memory.

DecompositionWhen your model uses an extremely large data set, you may consider re-

examining your approach to the problem. One option is to decompose the

problem into several smaller subproblems that are solved sequentially rather

than simultaneously. The next section explains one such approach, namely

Benders’ decomposition. The technique is a powerful algorithmic-based ap-

proach and its application to solve large instances of the facility location prob-

lem will be detailed.

22.4 Benders’ decomposition with feasible subproblems

This sectionThis section presents the mathematical description of Benders’ decomposi-

tion for the case with feasible subproblems. It is based on an abstract model

that has been partitioned into an easy linear portion and a difficult nonlin-

ear/integer portion. Once you understand the underlying decomposition the-

ory plus the basic rules for writing dual linear programs described in the next

section, you will be able to apply the Benders’ decomposition approach to the

facility location problem.
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Initial problem

P(x,y)

Consider the following minimization problem, which is referred to as P(x,y):

Minimize:

cTx + f(y)

Subject to:

Ax + F(y) = b

x ≥ 0

y ∈ Y

with A ∈ Rm×n, x and c ∈ Rn, b ∈ Rm, and y ∈ Y ⊂ Rp . Here, f(y) and F(y)

may be nonlinear. Y can be a discrete or a continuous range.

Feasible

subproblems

P(x|y)

First, it is important to observe that for a fixed value of y ∈ Y the problem

becomes a linear program in terms of x. This is represented mathematically

as P(x|y). Next, it is assumed that P(x|y) has a finite optimal solution x for

every y ∈ Y . This may seem to be a rather restrictive assumption, but in most

real-world applications this assumption is already met or else you can modify

Y in such a way that the assumption becomes valid.

Equivalent

reformulation

P1(x,y)

The expression for P(x,y) can be written in terms of an equivalent nested

minimization statement, P1(x,y):

min
y∈Y

{

f(y)+min
x
{cTx

∣

∣ Ax = b − F(y), x ≥ 0}
}

Equivalent

reformulation

P2(u,y)

This statement can be rewritten by substituting the dual formulation of the in-

ner optimization problem (see Section 22.6), to get an equivalent formulation,

P2(u,y):

min
y∈Y

{

f(y)+max
u
{[b − F(y)]Tu

∣

∣ ATu ≤ c}
}

Extreme point

reformulation

P3(u,y)

The main advantage of the latter formulation is that the constraint set of the

inner problem is independent of y . Furthermore, the optimal solution of the

inner maximization problem is finite because of the explicit assumption that

P(x|y) has a finite optimal solution for every y ∈ Y . Such an optimal solution

will always be at one of the extreme points u ∈ U . Therefore, the following

equivalent formulation, P3(u,y), may be obtained:

min
y∈Y

{

f(y)+max
u∈U

[b − F(y)]Tu
}
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Full master

P4(y,m)

This nested formulation of P3(x,y) can finally be re-written as a single mini-

mization problem which is referred to as the full master problem, P4(y,m):

Minimize:

f(y)+m

Subject to:

[b − F(y)]Tu ≤m u ∈ U

y ∈ Y

Solve P(x,y)

iteratively

In the full master problem it is important to observe that there is one con-

straint for each extreme point. It is true that there may be an enormous num-

ber in a problem of even moderate size. However, only a small fraction of

the constraints will be binding in the optimal solution. This presents a natu-

ral setting for applying an iterative scheme in which a master problem begins

with only a few (or no) constraints while new constraints are added as needed.

This constraint generation technique is dual to the column generation scheme

described in Chapter 20.

The relaxed

master problem

M(y,m)

From the full master problem, it is possible to define a relaxed master problem

M(y,m) which considers a subset B of the constraints U .

Minimize:

f(y)+m

Subject to:

[b − F(y)]Tu ≤m u ∈ B

y ∈ Y

where B is initially empty and m is initially 0.

The subproblem

S(u|y)

The Benders subproblem is S(u|y), which solves for an extreme point u given

a fixed value of y ∈ Y , can be written as the following maximization problem:

Maximize:

[b − F(y)]Tu

Subject to:

ATu ≤ c

with u ∈ Rm. S(u|y) has a finite optimal solution, because of the assumption

that P(x|y) has a finite optimal solution for every y ∈ Y .
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A flowchart of

Benders’

decomposition

Figure 22.2 presents a flowchart of Benders’ decomposition algorithm for the

case when all subproblems are feasible.

ε > 0 relative convergence tolerance

B := ∅ set with generated constraints

UB := inf upper bound for P(x,y)

Solve M(y,m = 0)

LB := f(y) lower bound for P(x,y)

❄

Solve S(u|y) to get u

UB := min(UB, f (y)+ [b − F(y)]Tu)

❄

UB < LB+ ε|LB| ✲YES
STOP

❄
NO

C := ([b − F(y)]Tu ≤m) construct new constraint

B := B + {C} adds a constraint to M(y,m)

Solve M(y,m)

LB := f(y)+m

✲

Figure 22.2: Benders’ decomposition algorithm flowchart

The iterative

process in words

Summarizing Benders’ decomposition algorithm in words, the subproblem is

solved for u given some initial y ∈ Y determined by the master. Next, there

is a simple test to determine whether a constraint involving u must be added

to the master. If so, the master is solved to produce a new y as input to

the subproblem which is solved again. This process continues until optimality

(within a tolerance level) can be concluded.

Increasing

lower bounds

Since B is a subset of U , the optimal value of the objective function of the

relaxed master problem M(y,m) is a lower bound on the optimal value of the

objective function of the full master problem P4(y,m) and thus of P(x,y).

Each time a new constraint is added to the master, the optimal value of its

objective function can only increase or stay the same.



Chapter 22. A Facility Location Problem 266

Decreasing

upper bounds

The optimal solution u plus the corresponding value of y of the subproblem

S(u|y), when substituted in the constraints of P3(u,y), produces an upper

bound on the optimal value of P3(u,y) and thus of P(x,y). The best upper

bound found during the iterative process, can only decrease or stay the same.

TerminationAs soon as the lower and upper bounds of P(x,y) are sufficiently close, the

iterative process can be terminated. In practice, you cannot expect the two

bounds to be identical due to numerical differences when computing the lower

and upper bounds. It is customary to set a relative sufficiently small tolerance

typically of the order 1 to
1

100
of a percent.

Premature

termination

When the iterative process is terminated prematurely for whatever reason, the

latest y-value is still feasible for P(x|y). The current lower and upper bounds

on P(x,y) provide an indication on how far the latest solution (x,y) is re-

moved from optimality.

22.5 Convergence of Benders’ decomposition

Uniqueness

assumption

results in . . .

For the moment, assume that for every iteration the extreme point u produced

by solving the subproblem S(u|y) is unique. Each such point will then result

in the addition of a new constraint to the relaxed master problem.

. . . finite

number of steps

As a result of the uniqueness assumption the iterative process will terminate

in a finite number of steps. After all, there are only a finite number of extreme

points. In the event that they have all been generated by solving S(u|y) re-

peatedly, the resulting relaxed master problem M(y,m) becomes equivalent

to the full master problem P4(y,m) and thus the original problem P(x,y).

. . . converging

bounds

The sequence of relaxed master problems M(y,m) produces a monotone se-

quence of lower bounds. In the event that after a finite number of steps the

relaxed master problem M(y,m) becomes the full master problem P4(y,m),

the set B becomes equal to the set U . The corresponding lower bound is then

equal to the original objective function value of P4(y,m) and thus of the orig-

inal problem P(x,y). At that moment both the optimal value of f(y) and the

optimal u-value of the subproblem make up the original solution of P3(u,y).

As a result, the upper bound is then equal to the optimal objective function

value of P3(u,y) and thus of the original problem P(x,y).

. . . overall

convergence

Based on the uniqueness assumption and the resulting convergence of lower

and upper bounds in a finite number of steps, the overall convergence of

Benders’ decomposition is guaranteed. Termination takes place whenever the

lower bound on the objective function value of P(x,y) is equal to its upper

bound.
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Is uniqueness

assumption

true?

The entire convergence argument of the Benders’ decomposition algorithm so

far hinges on the uniqueness assumption, i.e. the assumption that all extreme

points u produced by solving the subproblems S(u|y) during the iterative

process are unique as long as termination has not been reached. Assume that

at some point during the iteration process prior to termination, the u-value

produced by solving the subproblem is not unique. In this case, the lower

bound is still strictly less than the upper bound, but the relaxed master prob-

lem will produce the same y value as in the previous iteration. The Benders’ al-

gorithm then cycles from here on and produces the same solution tuple (û, ŷ)

each solution. This tuple has the property that the current lower bound LB

(obtained from the relaxed master problem) is

f(ŷ)+m

and that the current upper bound UB (with û obtained from the subproblem

and substituted in the objective function of P3(û, ŷ)) is at least as large as

f(ŷ)+ [b − F(ŷ)]Tû

Note that

m ≥ [b − F(ŷ)]Tu, for u ∈ B

by construction. Note also that û is already in B due to cycling, which implies

that

m ≥ [b − F(ŷ)]Tû

Combining the above leads to

LB = f(ŷ)+m ≥ f(ŷ)+ [b − F(ŷ)]Tû ≥ UB

which is a contradiction to the fact that prior to termination the lower bound

is strictly less than the upper bound. This shows that the uniqueness assump-

tion is true and that Benders’ decomposition with feasible subproblems as

described in this chapter will always converge.

22.6 Formulating dual models

This sectionIn order to apply the Benders’ decomposition scheme, it is necessary to for-

mulate the dual of P(x|y). The rules for this step can be found in books on

linear programming. For purposes of completeness and later reference these

rules are summarized in this section in the form of typical examples.

Dual of a

minimization

problem

If a primal problem is stated as:

Minimize:

c1x1 + c2x2
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Subject to:

a11x1 + a12x2 ≥ b1

a21x1 + a22x2 = b2

a31x1 + a32x2 ≤ b3

x1 ≥ 0, x2 ≥ 0

then its dual problem is:

Maximize:

u1b1 +u2b2 +u3b3

Subject to:

a11u1 + a21u2 + a31u3 ≤ c1

a12u1 + a22u2 + a32u3 ≤ c2

u1 ≥ 0, u2 free , u3 ≤ 0

Dual of a

maximization

problem

If a primal problem is stated as:

Maximize:

c1x1 + c2x2

Subject to:

a11x1 + a12x2 ≥ b1

a21x1 + a22x2 = b2

a31x1 + a32x2 ≤ b3

x1 ≥ 0, x2 ≥ 0

then its dual problem is:

Minimize:

u1b1 +u2b2 +u3b3

Subject to:

a11u1 + a21u2 + a31u3 ≥ c1

a12u1 + a22u2 + a32u3 ≥ c2

u1 ≤ 0, u2 free , u3 ≥ 0
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22.7 Application of Benders’ decomposition

This sectionUsing the decomposition and duality theory of the previous sections, the fa-

cility location example can now be divided into a master problem and a dual

subproblem.

Facility location

problem

P(x,v,y)

The original facility location problem can be summarized as follows.

Minimize:

∑

cpdz

Kcpdzxcpdz +
∑

d

{

Fdvd + Rd
∑

cz

Dczydz
}

Subject to:
∑

dz

xcpdz ≤ Scp ∀(c,p) (1)

∑

p

xcpdz = Dczydz ∀(c, d, z) (2)

∑

d

ydz = 1 ∀z (3)

Mdvd ≤
∑

cz

Dczydz ≤ Mdvd ∀d (4)

vd, ydz ∈ {0,1} (5)

xcpdz ≥ 0 (6)

How to

decompose

To conduct a Benders’ decomposition, it is first necessary to divide the vari-

ables and constraints into two groups. The binary variables vd and ydz, to-

gether with the constraints (3), (4) and (5) represent the set Y . The continu-

ous variable xcpdz, together with the constraints (1), (2) and (6) represent the

linear part to be dualized. As detailed soon, σ and π are two dual variables

introduced for constraints (1) and (2).

Model notationIn the description of the Benders’ decomposition algorithm, the various mod-

els are indicated by P(x,y), M(y,m) and S(u|y). The correspondence be-

tween the variables used here and those defined for the facility location prob-

lem is as follows.

� x used previously is equivalent to x used above,

� y used previously is equivalent to v and y used above, and

� u used previously is equivalent to σ and π used above.

As a result, the equivalent model indicators become P(x,v,y), M(v,y,m)

and S(σ ,π|v,y), respectively.
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Initial master

model

M(v,y,m = 0)

The initial master model M(v,y,m = 0) can be stated as follows.

Minimize:
∑

d

{

Fdvd + Rd
∑

cz

Dczydz
}

Subject to:
∑

d

ydz = 1 ∀z (3)

Mdvd ≤
∑

cz

Dczydz ≤Mdvd ∀d (4)

vd, ydz ∈ {0,1} (5)

Note that the initial master model does not yet contain any Benders’ cuts (i.e.

m = 0) and that it corresponds to solving:

min
y∈Y

f(y)

previously introduced in the original Benders’ decomposition algorithm.

Problem to be

dualized

The problem to be dualized, namely the equivalent of the inner optimization

problem in P1(x,y) of Section 22.4, can now be stated as follows.

Minimize:
∑

cpdz

Kcpdzxcpdz

Subject to:
∑

dz

xcpdz ≤ Scp ∀(c,p) | Scp > 0 (1)

∑

p

xcpdz = Dczydz ∀(c, d, z) |ydz = 1 (2)

xcpdz ≥ 0 (6)

Resulting

subproblem

S(σ ,π|v,y)

By introducing two dual variables σcp and πcdz corresponding to the two con-

straints (1) and (2) respectively, the dual formulation of the problem from the

previous paragraph can be written in accordance with the rules mentioned in

Section 22.6. Note that the dual variable σcp is only defined when Scp > 0, and

the dual variable πcdz is only defined when ydz = 1.
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Maximize:
∑

cp

σcpScp +
∑

cdz

πcdzDczydz

Subject to:

σcp +πcdz ≤ Kcpdz ∀(c,p,d, z)

σcp ≤ 0

πcdz free

Subproblem is

always feasible

The question arises whether the above subproblem S(σ ,π|v,y) is always fea-

sible for any solution of the initial master problem M(v,y,m = 0). If this is

the case, then the Benders’ decomposition algorithm described in this chapter

is applicable to the original facility location problem. Note that,

∑

p

Scp ≥
∑

z

Dcz ∀c

is a natural necessary requirement, and that

∑

z

Dcz ≡
∑

dz

Dczydz ∀c

is an identity, because
∑

dydz = 1. These together imply that there is enough

supply in the system to meet the demand no matter which distribution center

d is used to serve a particular customer zone z.

Benders’ cut to

be added

The Benders’ cut to be added each iteration is directly derived from the objec-

tive function of the above subproblem S(σ ,π|v,y) evaluated at the original

solution (σ ,π). This new constraint is of the form

∑

cp

σcpScp +
∑

cdz

πcdzDczydz ≤m

where (σcp, πcdz) are parameters and ydz and m are unknowns.

Resulting

master problem

M(v,y,m)

By adding the Bender’s cuts to the initial master problem M(v,y,m = 0), the

following regular master problem M(v,y,m) can be obtained after introduc-

ing the set B of Benders’ cuts generated so far. Note that the optimal dual

variables σ and π have been given an extra index b ∈ B for each Benders’ cut.
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Minimize:

∑

d

{

Fdvd + Rd
∑

cz

Dczydz
}

+m

Subject to:
∑

d

ydz = 1 ∀z

Mdvd ≤
∑

cz

Dczydz ≤Mvd ∀d

∑

cp

σbcpScp +
∑

cdz

πbcdzDczydz ≤m ∀b

vd, ydz ∈ {0,1}

All ingredients

available

At this point all relevant components of the original facility location problem

to be used inside the Benders’ decomposition algorithm have been presented.

These components, together with the flowchart in Section 22.4, form all neces-

sary ingredients to implement the decomposition algorithm in Aimms.

22.8 Computational considerations

This sectionThe presentation thus far has mainly focussed on the theory of Benders’ de-

composition and its application to the particular facility location problem. Im-

plementation issues have barely been considered. This section touches on two

of these issues, namely subproblem splitting aimed at preserving primary mem-

ory, and use of first-found integer solution aimed at diminishing computational

time. Whether or not these aims are reached, depends strongly on the data

associated with each particular model instance.

Splitting

subproblem

S(σ ,π|v,y)

The dual subproblem can be broken up and solved independently for each

commodity c. This gives the advantage that the LP model is divided into |c|

smaller models which can all be solved independently. This can reduce mem-

ory usage, which is especially true when Kcpdz is stored on disk or tape. In

this case, it is sufficient to read data into primary memory for only one c at

the time. For each fixed commodity c the problem then becomes
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Maximize:
∑

p

σcpScp +
∑

dz

πcdzDczydz

Subject to:

σcp +πcdz ≤ Kcpdz ∀(p,d, z)

σcp ≤ 0

πcdz free

Joining solutionsAfter solving the above problem for each fixed commodity c, the objective

function value of the overall problem S(σ ,π|v,y), is then the sum over all

commodities of the individual objective function values.

Use first integer

solution

The Benders’ cut is derived after finding the optimal integer solution to the

master problem. In practice, finding optimal integer solutions can be ex-

tremely time consuming as most solution algorithms have difficulty proving

that a perceived optimal solution is indeed the optimal solution. Finding a

first integer solution is in general easier than finding an optimal integer so-

lution. That is why an alternative implementation of Benders’ decomposition

can be proposed to take advantage of such a first integer solution.

Extra cut

required

Consider the objective function value of the relaxed master problem for the

first integer solution found. This value is not necessarily optimal and there-

fore cannot be considered as a valid lower bound for the original problem.

Nevertheless, it will be treated as such. Now, the Benders’ algorithm can termi-

nate prematurely whenever this fake lower bound exceeds the current upper

bound. In order to avoid premature termination in the presence of these fake

lower bounds, the following constraint should be added:

f(y)+m ≤ UB− ǫ, ǫ ≥ 0, small

This constraint makes sure that any fake lower bound resulting from the use of

a first integer solution of the master problem cannot be greater than or equal

to the current upper bound, and thus will never cause unwanted premature

termination.

Convergence

with first

integer solutions

New Benders’ cuts are added every iteration. Their presence together with the

above constraint on the fake lower bound will eventually result in an empty in-

teger solution space. This happens when the generated Benders’ cuts are such

that the true lower bound is greater than or equal to the upper bound minus ǫ.

From original Benders’ algorithm it follows that convergence has occurred and

that the current upper bound provides equals the optimal objective function

value. Thus, the alternative approach based on first integer solutions termi-

nates when the modified master problem becomes infeasible and no longer

produces a first integer solution.
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22.9 A worked example

This sectionIn this section you will find a small and somewhat artificial example to illus-

trate the computational results of applying the Benders’ decomposition ap-

proach to the facility location problem described in this chapter.

Network layoutIn this example there are two production plants, three customer zones, and

seven potential sites for distribution centers. Their coordinates are presented

in Table 22.1, and are used to determine the transport cost figures as well as

the map in Figure 22.3.

City Type X-coord. Y-coord.

Arnhem Production plant 191 444

Rotterdam Production plant 92 436

Amsterdam Distribution center 121 488

The Hague Distribution center 79 454

Utrecht Distribution center 136 455

Gouda Distribution center 108 447

Amersfoort Distribution center 155 464

Zwolle Distribution center 203 503

Nijmegen Distribution center 187 427

Maastricht Customer zone 175 318

Haarlem Customer zone 103 489

Groningen Customer zone 233 582

Table 22.1: Considered cities and their coordinates

CommoditiesA total of two commodities are considered. The corresponding supply and

demand data for the production plants and the customer zones are provided

in Table 22.2, and are specified without units.

Product A Product B

City Scp Dcz Scp Dcz

Arnhem 18 18

Rotterdam 15 40

Maastricht 8 9

Haarlem 9 10

Groningen 7 11

Table 22.2: Supply and demand data
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Throughput

data

For each distribution center the minimal and maximal throughput data, to-

gether with the associated throughput cost figures, are displayed in Table 22.3

d Md Md Rd Fd

Amsterdam 2 20 5.0 180

The Hague 20 7.0 130

Utrecht 14 3.0 60

Gouda 20 5.5 150

Amersfoort 21 6.0 140

Zwolle 17 7.0 150

Nijmegen 16 3.5 100

Table 22.3: Distribution throughput data

Cost

determination

The transport cost values Kcpdz are based on distance according to the follow-

ing formula:

Kcpdz =

(

√

(Xp −Xd)
2
+ (Yp − Yd)

2
+

√

(Xz −Xd)
2
+ (Yz − Yd)

2
)

/100

Note that these cost values are the same for both products, and could have

been written as Kpdz.

SolutionIn the optimal solution ‘The Hague’, ’Gouda’ and ‘Amersfoort’ are selected

as distribution centers. ‘Haarlem’ is served from ‘The Hague’, ‘Maastricht’ is

served from ‘Gouda’, and ‘Groningen’ is served from ‘Amersfoort’. The optimal

flows through the network are presented in Table 22.4. The graphical repre-

sentation of the optimal flows is displayed in Figure 22.3. The corresponding

total production and transport costs amount to 828.9408. This optimal solu-

tion was obtained with an optimality tolerance of ε = 0.0001 and a total of 15

Benders’ cuts.

c p d z xcpdz

product A Arnhem Gouda Maastricht 2

product A Arnhem Amersfoort Groningen 7

product A Rotterdam The Hague Haarlem 9

product A Rotterdam Gouda Maastricht 6

product B Arnhem Amersfoort Groningen 11

product B Rotterdam The Hague Haarlem 10

product B Rotterdam Gouda Maastricht 9

Table 22.4: Optimal flows
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Utrecht

AmsterdamHaarlem

GoudaThe Hague

Rotterdam
Arnhem

Zwolle

Amersfoort

Groningen

Nijmegen

Maastricht

Product A

Product B

Figure 22.3: Optimal commodity flows

Final commentsThe computational performance of the Benders’ decomposition method in

terms of solution times is inferior when compared to solving the model as

a single mathematical program. Nevertheless, the decomposition method pro-

vides a solution approach for extremely large model instances, with the added

advantage that a feasible solution is available at any iteration. A premature ter-

mination of the algorithm (for instance, when the upper bound remains nearly

constant) may very well lead to a good near-optimal solution. This observation

applies to the data instance provided in this section.

22.10 Summary

In this chapter a facility location problem was translated into a mixed-integer

mathematical program. A Benders’ decomposition approach was introduced

to support the solution of large model instances. The theory underlying the

decomposition method with feasible subproblems was first introduced, and

subsequently applied to the facility location model. A flowchart illustrating

the general Benders’ decomposition algorithm was presented as the basis for

an implementation in Aimms. A small data set was provided for computational

purposes.
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Exercises

22.1 Implement the facility location model described in Section 22.2 using

the example data presented in Tables 22.1, 22.2 and 22.3.

22.2 Implement the same model by using the Benders’ decomposition ap-

proach described in Section 22.4 and further applied in Section 22.7.

Verify whether the solution found with Aimms is the same as the one

found without applying Benders’ decomposition.

22.3 Implement the Benders’ decomposition approach based on using the

first integer solution found during the solution of the relaxed master

model as described in Section 22.8. In Aimms you need to set the

option Maximal number of integer solutions to 1 in order for the MIP

solver to stop after it has found the first feasible integer solution.
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